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Abstract: The behavior of a cell is strongly influenced by the physical properties and stimuli in its
microenvironment. Furthermore, the activation and modulation of mechanotransduction pathways
are involved in tissue development and homeostasis and even pathological processes. Thus, when
developing materials aimed at mimicking the extracellular matrixes of healthy or pathological tissues,
their mechanical features should be closely considered. In this context, nanoindentation represents a
powerful technique for mechanically characterizing biological tissues and hydrogels at the cell-length
scale. However, standardized experimental protocols and data analysis techniques are lacking. Here,
we proposed a methodological approach based on the nanoindentation technique for quantitatively
analyzing and comparing the time-dependent load relaxation responses of soft biological tissues and
hydrogels. As this was an explanatory study, stress-relaxation nanoindentation tests were performed
on samples of pig and human lung tissues and of a specific gelatin-methacryloyl (GelMA) hydrogel
to quantify and compare their viscoelastic properties. The proposed method allowed for identifying
the characteristic parameters needed for describing the behavior of each sample, permitting us to
quantitatively compare their mechanical behaviors. All samples showed load relaxation at a defined
indentation depth because of their intrinsic viscoelastic behaviors, and the GelMA samples showed
the highest relaxation capabilities. The distribution of the characterization parameters showed that
the biological samples presented similar time-dependent responses, while differences were observed
in the GelMA samples. Overall, the proposed methodological approach allows for providing key
insights into the time-dependent behaviors of soft biological tissues and hydrogels at the cell-length
scale in view of supporting tissue engineering and pathophysiological investigations.

Keywords: nanoindentation; viscoelastic characterization; soft tissue biomechanics; constitutive
model; mechanotransduction
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1. Introduction

The ability of a cell to sense and respond to mechanical cues from its microenvironment
is a fundamental process known as mechanotransduction. This intricate phenomenon plays
a crucial role in a wide range of cellular functions, including cell adhesion, migration,
differentiation, tissue development, and homeostasis [1]. Cellular mechanotransduction is
further involved in several pathophysiological processes and is being considered for its
potential as a therapeutic target [2].

In the last two decades, researchers have focused on how the mechanical properties
of biological tissues and their extracellular matrixes (ECMs) influence a cell’s response,
investigating mostly their elastic properties [3–10]. However, soft biological tissues exhibit
a time-dependent mechanical behavior characterized by significant stress relaxation in
response to a prescribed deformation [11], and the viscous properties of these tissues have
emerged recently as key elements that influence cellular behavior [12–15]. Soft biological
tissues show a viscoelastic nature that arises from the combined effects of their elastic
and viscous properties, characterizing their instantaneous and time-dependent responses,
respectively. The global mechanical response of soft biological tissues is due to micro-
scale reactions and rearrangements of a cell’s cytoskeleton and ECM biopolymers, and
it is influenced by their unique molecular compositions, microstructures, and hydration
levels. Thus, in view of investigating the activated signaling pathways and related cellular
responses involved in mechanotransduction processes, it is crucial to characterize the
viscoelastic behaviors of soft biological tissues at the cell-length scale and fabricate materials
mimicking their mechanical features.

In this context, several materials and substrates have been developed, and it has
been demonstrated that by tailoring their characteristics (e.g., stiffness, surface, chem-
istry, and topography), it is possible to influence cultured cells and direct their devel-
opment in a desirable way [16–18]. For example, polyacrylamide (PAM) gels and poly-
dimethylsiloxane (PDMS) substrates, functionalized with ECM proteins, have been widely
adopted in mechanotransduction studies because of their well-defined manufacturing
protocols, which guarantee the robust and reproducible control of the substrate’s stiff-
ness [14,19,20]. Hydrogels, composed of cross-linked polymer networks that can ab-
sorb and retain water [12,21–23], have emerged as promising materials for replicating
a cell’s microenvironment for mechanotransduction studies and tissue engineering ap-
plications [24,25]. However, their viscoelastic properties have not been fully investi-
gated [13,14], and in order to mimic the native viscoelasticity, new design guidelines
for the next-generation manufacture of hydrogels are needed.

Therefore, it has become crucial to develop a robust methodological approach for
characterizing the viscoelastic properties of soft biological tissues and hydrogels. In clin-
ical scenarios, several approaches have been developed for assessing the stiffness and
viscoelasticity of biological tissues in a non-invasive way, including ultrasound elastog-
raphy [26–29], magnetic resonance elastography (MRE) [30,31], and optical coherence
elastography (OCE) [32–34]. On the other hand, in experimental lab settings, techniques
such as tensile and compression testing [35,36], dynamic mechanical analysis (DMA),
and nanoindentation [11,37–40] have been adopted to quantitatively characterize the vis-
coelastic behaviors of biological soft tissues and hydrogels. In particular, nanoindentation
has emerged as a powerful tool as it offers the advantage of characterizing mechanical
properties at the cell-length scale with high precision and spatial resolution. Furthermore,
nanoindentation allows for a localized property assessment, which is particularly relevant
given the hierarchical and heterogenous natures of biological tissues [41,42]. Although
the viscoelastic properties of different soft tissues (e.g., murine heart [11], kidney [11],
liver [11,43] cornea [44], periodontal ligament [45], cartilage [42], and brain tissues [43,46])
and of a variety of hydrogels [47–49] have been investigated through different techniques,
the standardization of the applied testing protocols and data analysis methods remain
a challenge. The development of standardized approaches to evaluate their viscoelastic
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behaviors at the micro-scale would ensure the reproducibility and reliability of the results,
enabling meaningful comparisons across different studies and laboratories.

Driven by this need, we developed a robust methodological approach for testing
and analyzing the viscoelastic properties of soft biological tissues and hydrogels at the
cell-scale length. In detail, the nanoindentation technique was adopted for characterizing
the viscoelastic properties of samples of pig and human lung tissues and of a specific
gelatin-methacryloyl (GelMA) hydrogel that was designed for replicating the native me-
chanical properties of human lung tissue. The tests were performed, and we controlled the
indentation depth of the nanoindenter’s tip into the sample’s surface. To extract the pa-
rameters that characterized the sample’s viscoelasticity, the generated experimental curves
were analyzed through a novel approach based on the use of a genetic algorithm [45]. In
addition, time parameters were not assigned as predefined values, but rather, an interval of
possible values was defined to restrict the number of feasible solutions for the algorithm.
Thus, instead of the commonly adopted least-square optimization algorithm, a more robust
approach, based on the genetic algorithm, was developed, reducing the probability of
incurring local minima and improving the fitting procedure [50–52].

2. Materials and Methods
2.1. Sample Preparation

To assess the reliability of the methodological approach proposed for characterizing
the viscoelastic properties of soft biological tissues and hydrogels, samples of pig and
human lung tissues and a specific GelMA hydrogel were tested.

The samples of pig lung tissue were obtained from a local butcher, cut (2 × 1 × 1 cm3),
and glued on the bottom of a plastic Petri dish. The samples were subsequently covered
with phosphate buffered saline (PBS, tablets by Medicago, Uppsala, Sweden) and main-
tained at 37 ◦C until the test was performed to avoid dehydration. In total, 2 samples were
tested on their cross-sectional surfaces, as reported in Figure 1a.
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Figure 1. The tested samples: (a) pig lung sample (cross-section on the left and whole sample on the
right); (b) human lung sample; and (c) GelMA sample.

A human lung tissue sample was obtained from a donor patient treated by lobec-
tomy at the Candiolo Cancer Institute (Candiolo, Torino, Italy). The sample size was
1 × 0.5 × 0.5 cm3. The donor patient provided informed consent. The study was con-
ducted under the approval of the Review Boards of the Institutions (PROFILING protocol
no. 001-IRCC-00IIS-10). The clinical data were entered and maintained in the protocol
owner’ prospective database. The deidentified information in this study was published in
accordance with the ethics guidelines of the PROFILING protocol.

The human lung sample was directly glued to a Petri dish and covered with the cell
culture medium RPMI 1640, which was supplemented with 10 v/v% of fetal bovine serum
(Sigma-Aldrich), and it was maintained at 37 ◦C (Figure 1b).

The GelMA samples were synthesized following a previously developed protocol [53].
Briefly, gelatin from bovine skin (10 g) was added to 100 mL of warm Dulbecco’s phosphate
buffer saline (DPBS) and stirred in rotating conditions on a heating plate at 50 ◦C to
obtain a uniform gelatin solution. Next, 8 mL of methacrylic anhydride (MA) were slowly
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added to the gelatin to obtain the desired methacrylation degree, and the reaction lasted
for 2 h at 50 ◦C under continuous stirring. Then, the solution was diluted in 100 mL
of preheated DPBS to stop the reaction, obtaining a final volume of 200 mL which was,
then dialyzed against distilled water with cellulose membrane (D9527 by Sigma-Aldrich,
St. Louis, MO, USA) with a molecular weight cutoff of 12–14 kDa at 40 ◦C for 7 days to
remove all unreacted species. Lastly, the dialyzed solutions were stored at −80 ◦C for a
minimum of 48 h before being lyophilized and stored at room temperature in the dark
until further use. Before the nanoindentation tests, the GelMA samples were prepared
by photo-polymerization. At first, the freeze-dried GelMA was dissolved at 10 w/v% at
37 ◦C in RPMI supplemented with 2.5 mg/mL of the photo initiator, lithium phenyl-2,4,6-
trimethylbenzoylphosphinate (LAP by Sigma-Aldrich, St. Louis, MO, USA), and then it
was left in the dark until complete dissolution at 37 ◦C. For each sample, 0.05 mL of solution
were transferred to a dedicated mold. Afterwards, the samples were exposed to a fibre lamp
(wavelength of 405 nm, dose of 3.3 mW/cm2) for 5 min, allowing the photo-crosslinking to
occur. The GelMA samples were stored in an incubator at 37 ◦C and analyzed the next day.

2.2. Experimental Procedure

The nanoindentation tests were performed using a Piuma nanoindenter (Optics11 Life,
Amsterdam, The Netherlands) (Figure 2a). Briefly, the indenter head was mounted on a
probe, comprising a reflective cantilever and a spherical tip. Samples with different me-
chanical properties could be tested by selecting the most suitable combination of cantilever
stiffness (kc) and tip radius (R). For this study, a probe with kc = 0.025 N/m and R = 25.5 µm
was selected.
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Figure 2. (a) Piuma nanoindenter (Optics11 Life). (b) Schematic representation of the cantilever/probe–
sample contact, where kc is the cantilever stiffness, δ is the indentation depth, and ∆z and ∆d are the
total displacements covered by the probe and the cantilever bending, respectively.

A standard nanoindentation test consists of 3 distinct phases: (i) the loading phase,
which begins when the probe touches the surface of the sample and the cantilever starts
to bend (Figure 2b); (ii) the holding phase, which starts when a set load (P) or indentation
depth (δ) is reached and kept constant for a defined time period; and (iii) the unloading
phase, during which the probe is retracted from the surface of the sample.

Figure 3a shows a typical nanoindentation input curve, where the set indentation
depth needs to be reached and held constant for a specific holding period (t = 5 s). Ideally,
the set indentation depth should be reached through an impulsive load (δ(t = 0) ≡ δmax;
P(t = 0) ≡ Pmax), but due to practical limitations, the maximum load (Pmax) required to reach
the set indentation depth (δmax) is often applied within a finite ramp time. Figure 3b shows
an explanatory load vs time curve in which the load relaxation portion (from P0 to P∞)
is isolated in order to be analyzed and to evaluate the viscoelastic parameters. Figure 3c
shows the corresponding indentation depth vs load curve.
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The applied load and the indentation depth were derived as follows:

δ = (z − z0)− (d − d0) = ∆z − ∆d and (1)

P = kc· ∆d, (2)

where z and d are the displacements along the vertical z-axis of the probe and of the
cantilever bending, respectively; z0 and d0 are the respective values at the contact point;
and ∆z and ∆d are the total displacements covered by the probe and the cantilever bending,
respectively. The end of the loading phase of the δ-P curve (Figure 3c) was used to derive
the shear modulus corresponding to the onset of the relaxation period [54–56].

All tests were performed in hydrated conditions (in PBS for the pig lung and GelMA
samples and in a cell-culture medium for human lung sample) at a temperature of 37 ◦C,
and they all controlled the indentation depth (I-mode). In I-mode, the constraint set by a
user is a specific indentation depth value to be reached during the loading phase, while
the displacements of the probe and of the cantilever bending are recorded. The I-mode
allows users to perform stress–relaxation tests, which were essential for evaluating the
time-dependent behaviors of the samples. Stress–relaxation tests consist of measuring the
load relaxation over time in response to a constant value of indentation depth, which has
to be reached rapidly. The change in load, required to maintain the imposed strain field, is
measured during the holding phase. The experimental data we obtained were then used to
evaluate the viscoelastic properties of the tested samples.

In our case, the value of δ was set to between 1 µm and 5 µm, and the indentation
rate values (ρ) were selected to reach this value as fast as possible, i.e., ρ = 10–20 µm/s.
The holding time was set to be equal to 5 s for all the experiments. For each sample,
50 indentations were performed, and 11 indentation curves were selected for the analysis.

2.3. Theoretical Remarks

For obtaining the mechanical properties of the samples from the analysis of their
nanoindentation data, models arising from the contact mechanics theory were adopted.
The Hertz model and the Oliver and Pharr model are the most commonly used models [57].
The latter is suitable for analyzing the responses of hard materials, while the Hertz model
can be applied to predict the behaviors of soft materials during the first part of the loading
phase, which is related to the elastic region. Considering the spherical tip of the probe
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and the flat surface of the sample, the Hertz model stated the relation between P and δ
as follows:

P =
4
3
·Ee f f ·R

1
2 ·δ

3
2 , (3)

where Eeff is the effective modulus of the contacting bodies (probe and sample), which is
defined as follows:

1
Ee f f

=

(
1 − ν2

sample

)
Esample

+

(
1 − ν2

probe

)
Eprobe

, (4)

where νsample and νprobe are the Poisson coefficients of the sample and the probe, respectively,
and Esample and Eprobe are the Young’s moduli of the sample and the probe, respectively.
Typically, a probe is made of a much harder material than a sample (Eprobe ≫ Esample), and
thus, Equation (4) can be rewritten as follows:

1
Ee f f

=

(
1 − ν2

sample

)
Esample

. (5)

As regards the viscoelastic responses of materials, different constitutive models have
been developed to predict them. In this study, the generalized Maxwell model, which
is mathematically described by the Prony series, was selected [54–56]. The analytical
formulation describing the load decay during the holding phase as a function of time is
reported below:

P(t) = P∞ + ∑N
k=1 Pk·e

− t
τk N = 2 , (6a)

where P(t = ∞) = P∞ is the equilibrium load, which is the value at the end of the relaxation
time, and in this case, it was set as t = 5 s. The Pk parameters are the material parameters,
while the τk parameters are the time parameters, and these represent the 4 parameters of
the Prony series to be optimized through the fitting procedure.

Alternatively, Equation (6a) can be rewritten as follows:

P(t) = P0·
(

1 − ∑N
k=1 Pk·

(
1 − e−

t
τk

))
N = 2, (6b)

where P(t = 0) ≡ P0 = Pmax is the maximum load, which is the value at the beginning of the
holding period (Figure 2b).

Using only one Maxwell element (N = 1), the fitting was unsatisfactory (see Appendix A);
therefore, a second order Prony series was selected. This behavior was likely related to the
principal constituents of the tested biological tissues, i.e., the highly cross-linked collagen
and the elastic fibers [58], which were responsible for the different relaxation times.

Considering the relationship between the Young’s modulus and the shear modulus G
and the conventional assumption of the incompressibility of the tested samples (v = 0.5),
we determined the following:

Esample = 2G ·
(

1 + νsample

)
→ Esample = 3G. (7)

Consequently, the link between the effective Young’s modulus of the sample (Eeff)
and the shear modulus of the sample was resolved using Ee f f = 4G. Equation (3) could
then become:

P =
16
9
·G·R

1
2 ·δ

3
2 . (8)



Appl. Sci. 2024, 14, 1093 7 of 17

Finally, the Gk parameters that described the variation in the mechanical properties of
the samples, i.e., the constitutive model, were calculated by combining the parameters P1
and P2 of the Prony series and inverting Equation (8), as follows:

Gk =
Pk

16
3 · R

1
2 · δ

3
2
max · βk

, (9)

where βk is the correction factor adopted to compensate for the finite ramp time, which can
be expressed as follows [55,56]:

βk =


τk
tR
·
(

e−
tR
τk − 1

)
k > 0,

1 k = 0

. (10)

Finally, the constitutive model, i.e., the relaxation modulus, was derived as function of
time, as follows:

G(t) = G0·
(

1 − ∑N
k=1 Gk·

(
1 − e−

t
τk

))
N = 2 , (11)

where G(t = 0) ≡ G0 represents the instantaneous shear modulus corresponding to the
maximum load at the beginning of the relaxation time. Using G1 and G2, deduced from
Equation (9), in Equation (11), it was possible to calculate the value of the equilibrium shear
modulus (G(t = ∞) ≡ G∞). The extent of the difference between the instantaneous (G0)
and equilibrium (G∞) shear moduli values was an indication of the viscoelastic properties
of the analyzed samples. Additionally, the viscosity parameters can be easily derived from
the relaxation time:

τk =
ηk
Gk

→ ηk = Gk·τk. (12)

2.4. Fitting Procedure

The genetic algorithm (GA) approach was selected as the optimization tool to fit the
experimental data through the built-in function in the Matlab® software R2023a. It is worth
noting that Equation (6b), used to build the objective function, was normalized with respect
to the maxim load value (Pmax), as follows:

P(t)
P0

= 1 − p1·
(

1 − e−
t

τ1

)
− p2·

(
1 − e−

t
τ2

)
, (13)

where p1 = P1/P0 and p2 = P2/P0. The following four parameters were: the two material
parameters (p1 and p2) and the two time parameters (τ1 and τ2). The optimization process,
schematized in Figure 4, began by filling the initial population needed by the GA with
randomly generated sets of parameters, followed by determining some heuristic solutions.
Random initialization has been proven to reduce the risk of obtaining very similar solu-
tions that occur in local minima [50–52]. Furthermore, a lower and an upper boundary
were set for the design variables through a series or preliminary simulations in order to
confine the searching space to values with a physical meaning, thereby optimizing the
computational cost.
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Figure 4. Schematization of the optimization process for fitting the experimental data.

The experimental data obtained through the nanoindentation tests were provided as
inputs to the GA. A set of 11 experimental curves was considered for each sample. The
algorithm was implemented in order to obtain 15 solutions for each curve. This allowed
us to evaluate the dispersion of the computed solutions and the efficacy of the adopted
method. Finally, the mean value of the 15 solutions was determined in order to provide
a representative solution for each of the 11 analyzed curves. Then, one final set of four
parameters (global parameters) was obtained as an average value of the eleven sets of
solutions achieved for each sample.

2.5. Statistics

The efficacy of the proposed model in fitting the experimental data was evaluated
through the coefficient of determination (R2), commonly defined as follows:

R2 = 1 − SSres

SStot
, (14)

where SSres is the sum of the squares of the residuals, which is proportional to the variance
of the residuals, while SStot is the total sum of the squares proportional to the variance in
the data. The solution where R2 > 95% was the only one accepted.

The normal distribution of the solutions, which resulted from the optimization process,
was assessed by applying the Kolmogorov–Smirnov method. The distribution of the
15 values of each parameter for each curve, computed with a significance level of 5%
(p = 0.05), was found to be normal. Then, due to the non-normality of the distribution of
the parameters when grouped, the non-parametric Kruskal–Wallis test was adopted to
compare the results, and the differences were considered significant when p < 0.01. The
statistical analysis was performed using Matlab® software R2023a.
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3. Results
3.1. Fitting Procedure

The explanatory stress–relaxation nanoindentation data and the fitting curves pre-
dicted by the Prony series are reported in Figure 5, showing the very good agreement
between the experimental and the modelled data.
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Figure 5. Representative experimental and superimposed fitted curves for the tested samples,
showing the goodness of the fitting method.

3.2. Stress–Relaxation Behavior

Figure 6 shows the experimental stress–relaxation nanoindentation data gathered
during the holding phase of the test for the tested materials. The average response of the
tested samples is reported as a red line, and it was obtained using the global parameters
(i.e., the mean values of the material and time parameters listed in Table 1) as input values
for Equation (6b). Interestingly, for all the tested samples, two relaxation phases could
be observed, i.e., an early non-linear decrease in the load, followed by linear decay until
equilibrium was reached. This could be ascribed to the stress decrease related to the
deformation and motion of the material polymer chains [59].
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Table 1. Global parameters: the average values with the standard deviations of the material (p) and
time (τ) parameters for all the tested samples.

Parameters Pig Lung Human Lung GelMA

p1 0.22 ± 0.09 0.16 ± 0.09 0.22 ± 0.09

p2 0.23 ± 0.12 0.16 ± 0.11 0.25 ± 0.10

τ1 (s) 1.22 ± 0.77 1.37 ± 0.78 1.04 ± 0.42

τ2 (s) 0.84 ± 0.76 1.76 ± 0.90 1.07 ± 0.42

The comparison of the average relaxation responses of the tested samples is shown in
Figure 7. The behaviors of the pig lung and GelMA samples were characterized by similar
decreases in the load, while for the human lung samples, the load decay appeared to be
lesser than the other two samples.
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Figure 7. Comparison of the samples’ behaviors modelled with the average values of the material
and time parameters.

Figure 8 shows the contribution of the relaxation time (τ) of the Prony series for the
low and high values found in this study, as reported in Figure 9. The higher the values for
τ, the longer the periods necessary for relaxing the stresses.
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Figure 8. Explanatory curves of the exponential behaviors with the low and high values for τ found
in this study.

Violin plots were selected to represent the distributions of the material and time
parameters obtained through the fitting procedure, including all 15 of the solution sets
for each of the analyzed experimental curves (Figure 9). The distributions of the material
parameters p1 and p2 were normal for all the tested samples (Figure 9a). Differently, for the
time parameters, evident bimodal distributions could be appreciated for the pig lung and
human lung samples, whereas for the GelMA samples, although a bimodal distribution
was present, it was considerably less pronounced (Figure 9b).
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mean values, respectively.

The bimodal distributions of the relaxation times are a direct consequence of the
dispersion of the experimental data shown in Figure 6. It is worth noting that the two
peaks characterizing the distribution of the time parameters were not the result of the
implemented optimization algorithm since the normality of the parameters obtained for
each curve had been verified. Furthermore, the statistical analysis, as reported in Figure 9,
highlighted that there were no statistical differences (p > 0.01) between the material param-
eters of the samples (no intravariability), but there was significant intervariability (p < 0.01).
On the other hand, the time parameters showed intravariability only for the biological
samples (p < 0.01), with no statistical differences were found between the time parameters
characterizing the GelMA samples. Moreover, only the time parameter results for τ2 were
statistically different among all the samples.

A quantitative comparison of the samples’ behaviors was carried out by considering
the instantaneous and equilibrium shear moduli (G0 and G∞, Figure 10a) and the viscosity
parameters (η1 and η2, Figure 10b). The GelMA samples showed the highest values for G0
and the most pronounced reduction in the relaxation modulus (the difference between G0
and G∞), while for the pig and human lung samples, the decrease was less evident. The
highest values obtained for the viscosity parameters could have indicated that the GelMA
samples were characterized by a more solid-like behavior than the biological samples.
The mean values and standard deviations of the relaxation moduli and of the viscosity
parameters of each tested sample are reported in Table 2 and Table 3, respectively.
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Figure 10. Boxplots of the mechanical properties describing the constitutive model of the analyzed
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Table 2. Mean values and standard deviations of the instantaneous and equilibrium relaxation moduli.

Sample G0 (Pa) G∞ (Pa)

Pig lung 1166.7 ± 995.5 792.7 ± 764.7

Human lung 929.1 ± 751.8 702.3 ± 548.2

GelMA 4339.2 ± 2689 2565 ± 1698

Table 3. Mean values and standard deviations of the viscosity parameters.

Sample η1 (Pa·s) η2 (Pa·s)

Pig lung 249.9 ± 263.4 225.7 ± 323.5

Human lung 148 ± 171.4 199.2 ± 262.6

GelMA 847.8 ± 733.1 957.2 ± 705.4

4. Discussion

Knowledge of the time-dependent mechanical behaviors of materials designed for
mimicking native tissues is of paramount importance in the context of mechanobiology and
tissue engineering research. Thus, in this study, we developed a methodological approach
for extrapolating the characteristic mechanical parameters that describe the viscoelastic
behaviors of soft biological tissues and hydrogels.

In particular, the proposed approach was based on the analysis of the stress–relaxation
experimental curves that we obtained by adopting the nanoindentation technique and
controlling the indentation depths to minimize variability in the results [60]. Samples of pig
and human lung tissues and a specific GelMA hydrogel were tested, and their viscoelastic
properties were quantified and compared. For each sample, several stress–relaxation
curves were obtained and analyzed in order to evaluate the relaxation moduli (G0 and G∞)
and the viscosity parameters in a straightforward and consistent way. Moreover, for the
optimization of the experimental data-fitting, the genetic algorithm was demonstrated to
be an effective and reliable choice. Indeed, the adopted approach allowed us to properly
fit the experimental data (Figure 5) and identify the characteristic behaviors of the tested
samples. The explanatory stress–relaxation curves (Figure 6) indicated that for all the
samples, a holding period of 5 s was sufficient for reaching a complete relaxation of the
stresses stored during the instantaneous loading phase at the cell-length scale. Studies
conducted on biological samples at the macroscopic scale have shown that after an impulse
load, a steady state could be reached in minutes or hours [61–63], though at the cell-length
scale, the materials’ responses change, as do the characteristic time-dependent responses.

From the comparison of the mean behaviors of the tested samples, faster decreases
characterized the pig lung and GelMA samples compared to the human lung (Figure 7).
The relaxation behavior, as reported in Equation (13), was determined by the following two
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classes of parameters: (i) the material parameters, pi, that took into account the amount
of force reached at the prescribed deformation, and (ii) the time parameters, τiI, that
controlled the relaxation rate (Figure 8). To identify and compare the potential differences
in the relaxation mechanisms of the tested samples, the values of the time parameters were
not assigned a priori with default values, as has been reported in the literature [11,64–66].
As regards the lung tissue, its mechanics were determined by the synergic interaction of all
its constituents [63]. Accordingly, the adopted viscoelastic model highlighted the evident
bimodal distribution of the time parameters of the biological samples (Figure 9), and the
two peaks in the distribution could have represented the contribution of the most abundant
molecular elements that characterized the microstructures of the biological samples, i.e., the
ECM, which is made of highly cross-linked collagen and elastin [58], and the cells [59,67,68].
Generally, elastic fibers confer to tissues the capability to recover from deformation as soon
as they are unloaded [63,69], and the highly cross-linked collagen and the cells would
be responsible for the dissipation of the energy stored during the deformation [59,67,68],
controlling, thus, the time-dependent behaviors of the biological samples. The intricate
network formed by the elastic fibers, the highly cross-linked collagen [58], and the cells
determined the viscoelastic responses of the biological samples here analyzed. As a matter
of fact, the relaxation times τ1 and τ2 obtained for the biological samples resulted in
significantly different values. However, further studies are required to understand the
contribution of the elemental units that composed the tissues and which determined their
time-dependent responses.

Comparing pig and human native lung tissues, Balestrini J. et al. [70] demonstrated
consistent differences in the contents of their ECM components. In particular, when
compared with pig lung tissue, human lung contains double amount of elastin fibers
(30% vs. 15%) and half the amount of glicosaminoglycans (25% vs. 51%), while the
percentage of collagen remains quite the same. Moreover, another study conducted by
Burgstaller G. et al. [71], which widely analyzed the composition of lung ECM, highlighted
the roles of elastin, collagen, and proteoglycans in providing elasticity, structural support
and strength, and stability, respectively. The higher percentages of elastin in human lungs
could explain the reduced tissue relaxation and, thus, the inferior load decay of the human
lung compared to pig lung illustrated in Figure 7.

On the other hand, the GelMA samples showed a less-obvious bimodal distribution,
and no statistical differences were found between the two time constants. The biggest peak
of the violin plot related to the GelMA sample (Figure 9b) could be linked to the contribution
of the most present molecular segment, i.e., bovine gelatin, while the contribution of the
methacrylic anhydride did not appear to be impactful on the time-dependent response.
As reported in the literature, in the context of hydrogels derived from proteins, their
viscoelastic behaviors are strongly influenced by the unfolding of the molecular protein
chains, which need to overcome friction from other chains [59,72,73]. This has led to the
hypothesis that a higher concentration of bovine gelatin could control the time-dependent
response of a hydrogel.

The absence of intravariability in the material parameters (p1 and p2) and, on the
contrary, the intravariability in the time parameters reported in Figure 9 highlighted that
the time-dependent characteristics were crucial in defining the mechanical behaviors at the
cell-length scale. Furthermore, the GelMA hydrogel was produced in a formulation that
conferred greater viscoelastic properties with respect to the analyzed biological samples,
and it was characterized by one predominant relaxation mechanism. Despite this, the
values of the time parameters found for the GelMA sample were in the same range as the
biological samples. Further improvement will be implemented in the formulation of the
GelMA hydrogel to obtain a more complex relaxing mechanism that better mimics the
mechanical properties of lung tissue.

Despite the promising results obtained in this study, there is space for improvement.
The implementation of a hyper-elastic model [55,56], even if this could introduce a higher
number of parameters that are difficult to interpret, could better model the behaviors of
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biological tissues and further improve our approach. However, the Hertz model adopted
herein is one of the most common approaches in analogous studies and represents a
satisfactory starting point that allowed us to obtain robust and reliable results. Moreover,
in the future, the effect of the loading rate of the indentation test and how it could influence
a material’s response will be further investigated.

5. Conclusions

The proposed methodological approach allowed for the robust characterization and a
comparison of the viscoelastic behaviors of soft biological tissues and a specific hydrogel at
the micro scale, proving its versatility. Furthermore, for each sample, a constitutive model
characterizing its time-dependent behavior was defined. In conclusion, through the pro-
posed approach, a quantitative measure of the viscous properties of soft biological tissues
and a hydrogel was obtained, evaluating the relaxation moduli and the viscous parameters.
The potential of this approach is of considerable value for mechanotransduction studies
as it can provide a powerful tool for defining the mechanical properties of the substrates
developed to mimic ECM tissues.
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Appendix A

Figure A1 highlights the unsatisfactory results obtained by using a first-order Prony
series as a fitting function for the GA optimization process. An R2 lower than 95% was
obtained for several curves, and therefore, the results were not acceptable. In particular, as
shown in Figure A1, R2 = 74% was obtained for the pig lung sample’s representative curve,
R2 = 89% was reached for the human lung sample’s representative curve, and R2 = 46%
was the result for the GelMA sample’s explanatory curve.
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Appendix A 

Figure A1 highlights the unsatisfactory results obtained by using a first-order Prony 

series as a fitting function for the GA optimization process. An R2 lower than 95% was 

obtained for several curves, and therefore, the results were not acceptable. In particular, 

as shown in Figure A1, R2 = 74% was obtained for the pig lung sample’s representative 

curve, R2 = 89% was reached for the human lung sample’s representative curve, and R2 = 

46% was the result for the GelMA sample’s explanatory curve. 

 

Figure A1. Representative experimental and superimposed fitted curves for the tested samples us-

ing the Prony series with one element (N = 1) as the fitting function. 

 

Figure A1. Representative experimental and superimposed fitted curves for the tested samples using
the Prony series with one element (N = 1) as the fitting function.
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