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Abstract: The present paper concerns the problem of estimating the loading induced by the wind on
a gantry crane standing in the open air. Sufficiently strong wind may cause the device to move or
even tip over. Two different structures were studied, namely the box girder and truss girder. At the
very beginning, the two sectional scaled parts of the main horizontal beam (box and truss girder)
of the gantry were prepared. Next, experimental analysis using these models was carried out in an
aerodynamic tunnel to estimate the horizontal forces induced by the airflow acting on them. The
experimental values of the aerodynamic forces were exploited to verify the 3D computational model
of the studied structure. Numerical computations were carried out using the ANSYS Fluent 2022R2
system for both sectional models of the gantry crane mentioned above. The standard k-epsilon
model of the turbulent flow of the air is employed. Satisfactory agreement of the values between
the experimental and numerical results was achieved. As a result of the performed computations,
the magnitude of the critical wind velocity that can be dangerous for the studied gantry cranes was
estimated. Finally, a model of the gantry crane with box girder at full scale was analyzed using CFD
simulations for different Davenport wind profiles. The results obtained from the experimental and
numerical analysis of the sectional models were compared with the appropriate standards. In the
current work, attention is drawn to the importance of changing wind direction in the vertical plane
since, as shown in the results of this work, even a small change in vertical angle, up to 6◦, causes
significant changes in the value of the force required to overturn the gantry crane.
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1. Introduction

With the rapid change in climate conditions, the phenomena associated with strong
winds are becoming more dangerous. Moreover, early wind prediction is also becoming
more difficult. An example is the category 5 Hurricane Otis [1], which devastated Acapulco
city in Mexico on 25 October 2023. At the very beginning, this hurricane was estimated
as only a tropical storm, but unexpectedly, it became an unusually strong hurricane. The
wind blew at 265 km/h. Sudden gusts of wind were even stronger. The observed wind
gust speed was equal to 330 km/h. Equally dangerous weather phenomena also occur in
previously moderate climate zones. At the beginning of November 2023, Europe was hit
by Hurricane Ciaran [2]. The wind gust speed exceeded 200 km/h. In such conditions,
all types of lifting equipment, such as scissor lifts, elevating work platforms of different
kinds, and cranes, including tower cranes, are particularly vulnerable to destruction [3–11].
This paper examines the problem of the wind load acting on the gantry crane, particularly
how strong the wind must be to cause the whole structure to tip over. Gantry cranes seem
very stable and resistant to strong gusts of wind. However, cases of this type of structure
overturning due to strong winds have been known to occur [12,13].
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The wind load is considered one of the most important loads in the design process. It
is found in many codes, such as [14–19]. The European Standard ISO-4302 [14] (like the
other cited standards) concerns wind loading in cranes. According to the standard, if the
wind blows at a constant speed from any horizontal direction, it will cause a quasi-static
uniform load (pressure) on the investigated structure. This approach should be treated as
a relatively simple method. The calculation method also considers redundancy qualities,
considering the effects of gusts (rapid changes in wind speed) and the dynamic response of
the crane structure. When calculating wind for cranes, two load states are considered.

The first is the wind load for cranes in the working state. This is the highest wind load
that acts on the crane during its operation and for which it was designed. The wind load is
assumed to act from the least favorable direction in combination with other operating loads.
According to the code [14], the operating state wind speeds and corresponding pressures are
as follows: if the crane manufacturer has not adopted and specified other values in the crane’s
operating instructions, then, in the case of normal cranes working in open space, the design
wind speed is equal to V = 20 m/s, and the corresponding wind design wind pressure is
p = 250 N/m2, whereas in the case of cranes that must work in high winds, the design wind
speed and design wind pressure are equal to V = 28.5 m/s and p = 500 N/m2, respectively.

The second crane load condition, according to [14], is the wind load on cranes in the
non-working state. This is the strongest (storm) wind gust load from the least favorable
direction that acts on the crane in the non-working state and for which the crane was
designed. The wind speed is variable and depends on the geographic location and the
degree of exposure of the crane to the wind.

Regardless of the code, however, the following equation is used to calculate wind load
F of the entire crane, its parts, and individual structural elements [14]:

F = A · p ·C f , (1)

where A is the effective frontal area of the part under consideration in m2, i.e., the area of the
projection of all elements on a plane, which is perpendicular to the wind direction; p denotes
the wind pressure; and Cf is the streamlining coefficient of the part under consideration in
the direction of the wind action.

When calculating the wind load of a crane in a non-swinging state, the wind pressure
is assumed to have a constant value in each 10 m vertical height interval of the crane.
Alternatively, wind pressure can be calculated at locations at any height, or a constant value
of wind pressure calculated for the highest point on the structure can be assumed.

The resultant wind load acting on a structure is the sum of the loads on the individual
components. In the case when the direction of the wind is not parallel to the longitudinal
axis of the component or frame surface, the magnitude of the aerodynamic force is estimated
with the use of the following expression:

F = A · p ·C f · sin2θ, (2)

in which θ is the angle between the wind direction and the longitudinal axis or surface
(θ < 90◦). However, it should be stressed that the approach presented in the mentioned
standards could be inadequate compared to real-life conditions. This is mainly due to
different additional phenomena like vibrations, interference with the neighboring buildings
and structures, etc. Therefore, works that report the results of the measured wind conditions
performed on real-scale structures are very important [20–22]. Next, these results are the
basis for creating appropriate conditions in the aerodynamic tunnels, where the scaled
models or parts of real-scale structures are investigated [23–26].

The rapid evolution of finite element software enables performing numerical analyses
of more and more complicated problems which concern the phenomena of the airflow
around and through crane-like engineering structures for different wind profiles [27–29].
Further mechanical analysis is possible when the distribution of the wind-induced load on
the analyzed structure is available. Finally, the displacement or stress distribution in the
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most important nodes of the structure can be estimated [30]. However, other approaches in
computer science are also developed to determine the stability margin during lift operations,
for example, Romanello [31]. El Ouni et al. [32] proposed and designed an active system
of actuators and sensors for the mitigation of the dangerous effects of wind on the crane.
Chen et al. [33] prepared a mathematical model for the evaluation of the wind coefficients
for the tower crane.

As mentioned above, a particularly dangerous situation is when a sudden gust of
wind acts on the crane structure with a payload during the operation service, for example,
as demonstrated by Skelton et al. [34] and Cekus et al. [35,36].

The direct motivation for this work is the below-described accidents. It is worth noting
that the wind damage, primarily involving cranes being blown along rails, is the highest
damage cost. For example, in the accident at the LNG gas terminal in Świnoujście (Poland)
in 2017 [37], not only the crane was damaged but also the critical infrastructure in the
immediate vicinity. The dome of the eastern gas tank and a section of the pipeline were
damaged. An example of a gantry crane accident with a box girder, which was destroyed
due to exceptionally high wind, is a large gantry crane at the Damen ship repair yard in
Schiedam, near Rotterdam, The Netherlands, in 2018 [38]. According to media information,
the crane was properly secured, but one side of the crane began moving, causing a twist
that broke the girder away from its supports. Witnesses to this event claim that the high
winds may have created a localized tornado effect. Another accident involves the case of
the gantry crane with a truss girder described in the work of Frendo [13].

In the present work, two kinds of gantry cranes are studied: a gantry with a box
girder and a gantry with a truss girder. For both structures, we prepared the scaled
sectional models of the main horizontal girders (box girder and truss girder). Next, we
performed experimental tests in the aerodynamic tunnel to estimate the horizontal and
vertical aerodynamic coefficients of these models. The results of these tests were exploited
to verify these results, which were obtained from CFD simulations. After, computations
were performed for the real structure, namely a gantry crane with a box girder, when
the numerical model was verified. These calculations aim to evaluate the magnitude of
the wind speed, which causes the whole structure to tip over. An appropriate research
framework diagram is depicted in Figure 1.
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It should be stressed that performing the CFD simulation is very difficult for gantry
cranes with the horizontal truss girder. It is mainly caused by the fact that the appropriate
mesh must consist of a significantly large number of elements with proper geometry. Often,
it is very difficult; therefore, the aerodynamic forces and wind speed causing overturning for
this kind of structure are estimated based on the sectional model. The obtained results are
confronted with appropriate standards. It should be noted that this work is a continuation
of the problems presented in the previous papers [38,39].

2. Materials and Methods
2.1. Analysis Object

The currently presented work concerns the investigations of two gantry cranes, namely
a gantry with a horizontal box girder, SBS-8, and a gantry with a horizontal truss girder,
SBS-4.5, designed and produced by the Polish factory ZREMB. Both structures are shown
in Figure 2a,b.
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Figure 2. The real research objects: (a) the gantry crane SB-8 with box girder; (b) the gantry crane
SBS-4.5 with truss girder.

The gantry cranes, which are the subject of investigation, consist of one girder sus-
pended on two supports equipped with a rail-type chassis. The structure does not need to
be constructed in a manufacturing place but can work indoors and outdoors due to mobile
support. The basic element of the gantry crane’s supporting structure is the girder, which is
made of welded sheet metal or a truss (Figure 2a,b). The girder carries the loads that arise
during the operation of the gantry crane and is also exposed to strong gusts of wind.

The box girder of the SB-8 gantry crane and the truss girder of the SBS-4.5 gantry crane
were selected for experimental wind impact studies in the wind tunnel. The overall dimen-
sions of both gantry cranes are presented in Figure 3a,b. The basic technical parameters of
the above-mentioned gantry cranes are listed in Table 1.

Table 1. Basic technical parameters of studied gantry crane.

SB-8 SBS-4

Capacity 8 4.5 (tons)
Span 5.75 + 16 + 5.75 3.825 + 10 + 3.825 (m)

Lift height 8.0 6.0 (m)

2.2. Sectional Models of the Girder

In the first steps of the numerical and experimental investigations, the scaled sectional
models of the box girder “B” and truss girder “T” are involved. Sectional models represent
the part of the horizontal girder of a gantry crane and are based on the dimensions of real
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objects. Because of the dimensions of the wind tunnel measurement space, the geometric
scale of the models was adopted as 1:8.5. The models’ basic dimensions are shown in
Figure 4a,b.

According to the dimensions of the scaled models, shown in Figure 4a,b, the cor-
responding physical models used in the experimental and numerical models for CFD
simulation were prepared. The finished models are shown in Figures 5 and 6.

Structural steel was used to make the models, and the structural elements of the
box girder and the lattice girder section were connected by welding. The two models
for experimental testing were closed on both sides, with an aluminum disc of diameter
D = 400 mm and thickness t = 4 mm. The round plates dissipate air turbulence at the ends
of the cross-sectional models. The holders allow the models to connect to the measuring
device (three-component aerodynamic balance). For numerical models, the corresponding
holders are not necessary.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 
(a) 

 
(b) 

Figure 3. The geometrical dimensions of (a) the gantry crane SB-8 and (b) the gantry crane SBS-4.5. 

Table 1. Basic technical parameters of studied gantry crane. 

 SB-8 SBS-4  
Capacity 8 4,5  (tons) 

Span 5.75 + 16 + 5.75 3.825 + 10 + 3.825 (m) 
Lift height 8.0 6.0 (m) 

2.2. Sectional Models of the Girder 
In the first steps of the numerical and experimental investigations, the scaled sec-

tional models of the box girder “B” and truss girder “T” are involved. Sectional models 
represent the part of the horizontal girder of a gantry crane and are based on the dimen-
sions of real objects. Because of the dimensions of the wind tunnel measurement space, 
the geometric scale of the models was adopted as 1:8.5. The models’ basic dimensions are 
shown in Figure 4a,b. 

 
(a) 

27500 

Figure 3. The geometrical dimensions of (a) the gantry crane SB-8 and (b) the gantry crane SBS-4.5.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 
(a) 

 
(b) 

Figure 3. The geometrical dimensions of (a) the gantry crane SB-8 and (b) the gantry crane SBS-4.5. 

Table 1. Basic technical parameters of studied gantry crane. 

 SB-8 SBS-4  
Capacity 8 4,5  (tons) 

Span 5.75 + 16 + 5.75 3.825 + 10 + 3.825 (m) 
Lift height 8.0 6.0 (m) 

2.2. Sectional Models of the Girder 
In the first steps of the numerical and experimental investigations, the scaled sec-

tional models of the box girder “B” and truss girder “T” are involved. Sectional models 
represent the part of the horizontal girder of a gantry crane and are based on the dimen-
sions of real objects. Because of the dimensions of the wind tunnel measurement space, 
the geometric scale of the models was adopted as 1:8.5. The models’ basic dimensions are 
shown in Figure 4a,b. 

 
(a) 

27500 

Figure 4. Cont.



Appl. Sci. 2024, 14, 1092 6 of 21
Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 22 
 

 
(b) 

Figure 4. The overall dimension of the scaled section model: (a) model of box girder SB-8; (b) model 
of truss girder SB-4.5. 

According to the dimensions of the scaled models, shown in Figure 4a,b, the corre-
sponding physical models used in the experimental and numerical models for CFD sim-
ulation were prepared. The finished models are shown in Figures 5 and 6. 

  
(a) (b) 

Figure 5. The model of the box girder of the SB-8: (a) for experimental tests; (b) for CFD simulation. 

  
(a) (b) 

Figure 6. The model of the truss girder of the SB-4.5: (a) for experimental tests; (b) for CFD simula-
tion. 

Structural steel was used to make the models, and the structural elements of the box 
girder and the lattice girder section were connected by welding. The two models for ex-
perimental testing were closed on both sides, with an aluminum disc of diameter D = 400 
mm and thickness t = 4 mm. The round plates dissipate air turbulence at the ends of the 

Figure 4. The overall dimension of the scaled section model: (a) model of box girder SB-8; (b) model
of truss girder SB-4.5.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 22 
 

 
(b) 

Figure 4. The overall dimension of the scaled section model: (a) model of box girder SB-8; (b) model 
of truss girder SB-4.5. 

According to the dimensions of the scaled models, shown in Figure 4a,b, the corre-
sponding physical models used in the experimental and numerical models for CFD sim-
ulation were prepared. The finished models are shown in Figures 5 and 6. 

  
(a) (b) 

Figure 5. The model of the box girder of the SB-8: (a) for experimental tests; (b) for CFD simulation. 

  
(a) (b) 

Figure 6. The model of the truss girder of the SB-4.5: (a) for experimental tests; (b) for CFD simula-
tion. 

Structural steel was used to make the models, and the structural elements of the box 
girder and the lattice girder section were connected by welding. The two models for ex-
perimental testing were closed on both sides, with an aluminum disc of diameter D = 400 
mm and thickness t = 4 mm. The round plates dissipate air turbulence at the ends of the 

Figure 5. The model of the box girder of the SB-8: (a) for experimental tests; (b) for CFD simulation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 22 
 

 
(b) 

Figure 4. The overall dimension of the scaled section model: (a) model of box girder SB-8; (b) model 
of truss girder SB-4.5. 

According to the dimensions of the scaled models, shown in Figure 4a,b, the corre-
sponding physical models used in the experimental and numerical models for CFD sim-
ulation were prepared. The finished models are shown in Figures 5 and 6. 

  
(a) (b) 

Figure 5. The model of the box girder of the SB-8: (a) for experimental tests; (b) for CFD simulation. 

  
(a) (b) 

Figure 6. The model of the truss girder of the SB-4.5: (a) for experimental tests; (b) for CFD simula-
tion. 

Structural steel was used to make the models, and the structural elements of the box 
girder and the lattice girder section were connected by welding. The two models for ex-
perimental testing were closed on both sides, with an aluminum disc of diameter D = 400 
mm and thickness t = 4 mm. The round plates dissipate air turbulence at the ends of the 

Figure 6. The model of the truss girder of the SB-4.5: (a) for experimental tests; (b) for CFD simulation.

2.3. Experimental Setup

Experimental studies were carried out at the Wind Engineering Laboratory of the
Cracow University of Technology [40]. The aerodynamic tunnel allows for a maximum
wind speed of about 40 m/s in a measuring area of 10 m in length. The flow can take place
in both closed and open circuits. The shape of the measurement space is rectangular and is
2.2 m wide and 1.4 m high.

A closed-circuit tunnel was used during the test. The first 6 m of the measurement
space is intended to create a profile of wind speed and induce turbulent flow. For this
purpose, a barrier, and spires of appropriate geometry and spacing were used. The barrier
is 200 mm high, and its top edge is irregular and zigzag. The spires are pyramid-shaped.
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The width at the base is 300 mm, and the height is 1000 mm. Both elements are located at
the tunnel close to the inlet, as shown in Figure 7a. The flat urban terrain and turbulent
flow are assumed.
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Figure 7. Elements of tunnel equipment: (a) spires and a barrier for generating turbulent flow;
(b) vertical rod with pressure sensors for determining the wind profile.

The wind speed measurement was carried out using a set of pressure sensors, as
shown in Figure 7b. The wind profile was determined independently in the tunnel without
the investigated sectional models. Next, the appropriate model was installed inside the
tunnel, and the measurements were performed. For these settings, the wind profile was
determined at heights between 200 and 700 mm above the floor of the tunnel using six
anemometers placed vertically at 100 mm. The height range was determined by the location
of the model in the measurement space. The sectional models were placed 350 mm above
the tunnel floor. Therefore, the mean value of wind speed Vref = 17.01 m/s was assumed
at a 400 mm height (mean value of dynamic pressure pref = 181.59 N/m2). Turbulence
intensity IV = 12.7% and is the quotient of the standard deviation of the measured wind
speed σv and the mean value of wind speed Vref. The resulting wind profile and turbulence
intensity are shown in Figure 8a,b.
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The coordinate system and the method for defining the wind direction angle θ are
shown in Figure 9. For the models tested in the tunnel, the aerodynamic forces Fx and Fy
and the aerodynamic moment Mxy are measured using a three-component balance based
on the electrical resistance of the strain gauges. The fixed x, y, and z coordinate system is as
follows: x—along the wind direction, y—across the wind direction, and z—in the vertical
direction; W—wind direction, with changes from −6◦–6◦ in 1◦ increments.
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The model of the studied girder of the gantry crane was installed horizontally onto
the aerodynamic balance. The angle of the wind direction θ was changed by rotating the
model in the xy plane. A diagram of the measuring system is depicted in Figure 10.
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To preview the wind speed value in real time, a wind speed sensor with a ther-
moanemometer was also used to measure the wind speed. The sampling time of the
experimental data was equal to 5000 ms.
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2.4. CFD Simulation
Scaled Sectional Models

The CFD analysis was performed to estimate the magnitude of the aerodynamic forces
acting on the studied sectional models of the gantry crane and the whole gantry (in the real
scale) crane. The numerical simulations were carried out with the commercially available
software ANSYS FLUENT 2022R2. All performed simulations were performed under the
assumption of the steady state of the airflow. Moreover, the standard air properties (density,
temperature, ambient pressure, and viscosity) were also assumed, namely ρ = 1.225 kg/m3,
p0 = 101,325.25 Pa, and µ = 1.7894 × 10−5 Pa s, and T = 15 ◦C.

The CFD computations in the case of the scaled sectional models were performed
under the assumption that the simulations recreate the conditions in the aerodynamic
tunnel. The transversal dimensions of the measurement are 2200 × 1400 mm. The length
of the considered part of the aerodynamic tunnel is equal to Lt= 2500 mm. The sectional
models were placed at a distance L1 = 1000 m from the inlet (Figure 11a,b, where the inlet
is shown as a blue wall).
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Figure 11. Studied sectional models immersed in the volume filled with the air: (a) box girder;
(b) truss girder.

We decided to use the standard k-ε model because the dominant effect is the aerody-
namic drag in the current work. This model of turbulent flow ensures relatively accurate
precision when predicting aerodynamic forces under the assumption of ideal rigidity of
the investigated models of structures. Moreover, this model has been successfully used in
different works [29,38,39,42,43].

However, it is worth noting that besides the k- ε model, the following models are
exploited, namely the Reynolds stress model and k-omega model. The Reynolds model [44]
can cause significant problems with computation convergence, and the computation pro-
cess is prolonged. On the other hand, the k-ω model [45–47] demands creating a special
mesh of finite cells at the stationary boundaries, which consists of very small elements.
Consequently, it causes the number of cells, nodes, and degrees of freedom to be signifi-
cantly large. Moreover, this model has several variants that can, unfortunately, generate
completely different results depending on the problem.

Figure 12a,b shows the meshes generated for the box and truss girders, respectively.
For the box girder model, the approximate size of the tetrahedral elements varies from
lc = 2.5 mm to lc = 60 mm. The total number of cells is equal to 2,763,302, and the total
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number of nodes is 689,675. For the model of the truss girder, the size of tetrahedral
elements varies from lc = 2 mm to lc = 60 mm (3,646,476 cells and 889,314 nodes).
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Several CFD simulations were performed with different sizes of the elements to
estimate the impact of the element size on the aerodynamic forces. The convergent test
was made for the sectional model of the box girder mainly due to the possibility of the
change of size of the elements being strongly limited in the case of truss structures. The
computations were performed for wind speed V = 17.1 m/s and a turbulence intensity of
12%. The hydraulic diameter is equal to DH = 1.712 m. The wind direction (Figure 9) is
assumed to be equal to θ = 0◦. The results are reported in Table 2.

Table 2. Aerodynamic forces for different mesh.

Cell Size (mm) Faces (Box Girder) Nodes Cells Fx (N) Fy (N)

1.5 14,251,914 (186,649) 1,698,020 6,655,980 38.605 20.094
2.5 5,857,993 (71,680) 689,675 2,743,302 38.491 20.035
3.5 4,923,579 (35,813) 571,922 2,312,836 37.077 18.521

As observed, the finite cell size equal to lc = 2.5 mm seems to be optimal concern-
ing the time of calculation and the obtained precision. To obtain a convergent solution,
111 iterations are required. However, the solution could not be converged concerning
the assumed default criteria for larger elements. The problem is mainly caused by the
continuity criterion. For the smaller elements, the obtained results differ not significantly,
but the time of calculation (154 iterations) is radically and unacceptably longer.

3. Results

Aerodynamic forces obtained from experimental and numerical studies were used
to determine the aerodynamic coefficients for the two girder models. The formulas for
determining the drag coefficient Cx and the lateral force coefficient Cy are as follows:

Cx =
2Fx

ρVre f
2 · Are f

, Cy =
2Fy

ρVre f
2 · Are f

(3)

where Aref is the effective area, which is ArefB = 0.112 m2 for box girder model and ArefT = 0.028 m2

for truss girder model.
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3.1. Experimental and Numerical Results Obtained from CFD Simulation

Tables 3 and 4 summarize the values of the aerodynamic forces and coefficients
obtained from the tunnel tests and CFD simulations for various angle θ (Figure 9) for gantry
cranes with horizontal box and truss girders, respectively.

Table 3. Aerodynamic forces and coefficients of the box girder section model.

Experiment CFD

θ (◦) Fx (N) Fy (N) Cx Cy Fx (N) Fy (N) Cx Cy

−6 36.698 15.918 1.76 0.76 40.869 14.573 1.96 0.70
−4 37.621 13.905 1.80 0.67 40.157 16.494 1.92 0.79
−2 38.421 15.572 1.84 0.75 39.358 18.345 1.88 0.88
0 36.087 20.032 1.73 0.96 38.491 20.035 1.84 0.96
2 36.108 23.338 1.73 1.12 37.562 21.501 1.80 1.03
4 36.870 23.505 1.77 1.13 36.638 22.642 1.75 1.08
6 34.171 25.197 1.64 1.21 35.733 23.401 1.71 1.12

Table 4. Aerodynamic forces and coefficients of the truss girder section model.

Experiment CFD

θ (◦) Fx (N) Fy (N) Cx Cy Fx (N) Fy (N) Cx Cy

−6 12.050 0.082 2.54 0.02 10.487 0.310 2.21 0.07
−4 11.269 0.137 2.37 0.03 10.372 0.320 2.18 0.07
−2 11.110 0.037 2.34 0.01 10.303 0.343 2.17 0.07
0 10.351 0.740 2.18 0.16 10.256 0.430 2.16 0.09
2 10.606 1.007 2.23 0.21 10.248 0.561 2.16 0.12
4 10.991 1.628 2.31 0.34 10.267 0.713 2.16 0.15
6 12.176 1.564 2.56 0.33 10.335 0.846 2.17 0.18

In the case of the box girder, the aerodynamic drag force Fx slightly increases with
increasing the angle theta. Contrary to drag force Fx, the aerodynamic lift force Fy decreases.
However, the variations in the lift force Fy are much more significant. In Figure 13a,b, the
selected results of CFD analysis for θ = 0◦ are shown.
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On the other hand, the wind direction impact in the studied angle range is negligible
for the truss girder. The drag force Fx values are almost four times less than the box girder.
The lift force Fy values are comparable with zero.
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3.2. Experimental Verification of the CFD Results

To evaluate the agreement of the values of the resulting aerodynamic coefficients, the
relative error is calculated using the following formula:

εAVG = |
Cexp

X − Cnum
X

Cnum
X

|, (4)

where Cx
exp is the aerodynamic force coefficient from the experiment, and Cx

num is from the
CFD, computed for the Fx component (Tables 3 and 4). In the case of the box girder, the aver-
age error does not exceed 5%, and the maximal value of the relative error,
εAVG= 10.204%, is reached for the angle θ equal to −6◦, whereas in the case of the truss girder,
the average error does not exceed 9%, and its maximal value is equal to
εAVG = 17.972% and is obtained for the angle θ equal to 6◦. The comparison of the aero-
dynamic force coefficients from the experiment and numerical simulation is shown in
Figures 14 and 15 for the box girder and the truss girder, respectively. It is worth noting the
relatively good agreement between the experimental and numerical results. The average
value of the average error is satisfactory.
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4. Discussion
4.1. Overturning and Stabilizing Moments Assumed for Gantry Crane According to ISO 4302

Using the resulting coefficients for the box and truss girder model, detailed calcu-
lations of the actual ZREMB SB-8 and SBS-4.5 gantry crane stabilities were conducted.
The maximum overturning moment MO and the stabilizing moment MS were determined
concerning the tipping line, which is shown in Figure 16a,b. In the case of a gantry crane,
the overturning line is between the supports, i.e., at the circle contact of the crane and
rail contact widths. Calculations were conducted for the least favorable wind direction
(Figure 16a,b).
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Figure 16. The gantry crane: (a) ZREMB SB-8 box girder “B”; (b) ZREMB SBS-4.5 truss girder “T”.

It was assumed that a crane operating outdoors is affected by a wind pressure of
245 N/m2, which corresponds to a wind speed of 20 m/s. According to Figure 16a,b, for
the stationary gantry crane example with the wheels locked but not coupled to the rail,
all loads and forces that can act simultaneously are considered in their most unfavorable
combinations. The effective area Aref for the real objects was calculated and yielded the
following results for the gantry crane: ArefB = ArefB1 + ArefB2 + ArefB3 = 40.24 m2 for the box
girder and ArefT = ArefT1 + ArefT2 + ArefT3 = 13.05 m2 for the truss girder. The effective area
was calculated as an area of the perpendicular projection of the structure on the plane,
which is perpendicular to the wind direction. The angle attack of the wind was not taken
into account.

The self-weight, the components of the effective area, and all the assumed technical
parameters of the actual object are presented in Table 5. The masses of the gantry crane
elements are assumed as static structural loads Q (stationary), with a factor equal to 1. For
dynamic loads, like wind load W, the taken factor is 1.1, according to [48].

Taking the above into account, for the gantry crane to remain stable, the following
conditions must be met:

MS > MO, (5)

where MS is the sum of stabilizing moments; MO is the sum of overturning moments.
The stabilizing moments for box girder B gantry crane MSB include the following:

MSB = MSB1 + MSB2 + MSB3. (6)
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MSB1 = 625,878.00 Nm, MSB2 = 2209.02 Nm, and MSB3 = 5687.84 Nm are moments
resulting from the product of structural loadings QB1, QB2, and QB3, and distances lB1, lB2,
and lB3 are those from the tipping line (according to Table 5).

Table 5. Loads and surface areas used for gantry crane stability calculations (B and T girder) for the
wind speed of 20 m/s.

Box Girder Truss Girder

Sign Value Description Sign Value Description

Wind load W [N];
horizontal direction

WB1 7897.51 acting on hB1 = 10.422 m;
girder WT1 2276.05 acting on hT1 = 8.244 m; girder

WB2 206.49 acting on hB2 = 7.69 m;
operator’s cabin WT2 206.49 acting on hT2 = 5.127 m;

operator’s cabin

WB3 1755.98 acting on the arm hB3 = 5.477 m;
supports and ladders WT3 714.93 acting on the arm hT2 = 5.127 m;

supports and ladder

Effective area Aref [m2]

ArefB1 32.23 girder ArefT1 9.29 girder

ArefB1 0.84 operator’s cabin ArefT2 0.84 operator’s cabin

ArefB1 7.17 supports and ladders ArefT3 2.92 supports and ladder

Structural load Q [kg];
vertical direction

QB1 15,950 acting on the arm hB1 equal to
4.0 m; on girder QT1 6875 acting on the arm hT1 equal to

2.1 m; girder

QB2 180
acting on hB2 = 1.251 m;

operator’s cabin and
of the one person

QT2 180 acting on hT2 = 0.492 m;
operator’s cabin, one person

QB3 100 acting on hB3 = 5.798 m;
supports and ladders - - -

The overturning moments include the following:

MOB = MOB1 + MOB2 + MOB3, (7)

MOB1 = 90,538.67 Nm, MOB2 = 1746.70 Nm, and MOB3 = 10,579.27 Nm are moments
resulting from the product of wind loadings WB1, WB2, and WB3 acting at distances hB1, hB2,
and hB3.

Considering the above data, Condition (5) for a box girder B crane for a wind speed of
20 m/s is as follows:

MS = 628, 087.02 Nm > MO = 102, 864.65 Nm, (8)

The condition for the stability of the gantry crane is satisfied.
Similarly, the stabilizing moments for the truss girder T gantry crane include

the following:
MST = MST1 + MST2. (9)

where MST1 = QST1·lT1 = 141, 631.88 Nm; MST2 = QST2·lT2 = 141, 631.88 Nm.
The overturning moments include the following:

MOT = MOT1 + MOT2 + MOT3, (10)

where MOT1 = WT1·hT1 = 20, 640.13 Nm; MOT2 = WT2·hT2 = 1164.54 Nm; MOT3 =
WT3·hT3 = 4031.98 Nm.

Condition (5) for a truss crane with a wind speed of 20 m/s is satisfied as follows:

MS = 142, 500.65 Nm > MO = 25, 836.65 Nm. (11)
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4.2. Influence of the Type of Girder (Its Contour) on the Stability of the Crane Used to Obtain
Aerodynamic Coefficients for Three Different Wind Speed

The components of the forces Fx and Fy for the actual object were determined by
utilizing the aerodynamic coefficients estimated in the previous study. Considering the
components Fx and Fy, the FX and FY forces acting relative to the tipping line of the gantry
crane were calculated.

FX = Fxcos(β), FY = Fysin(β), (12)

The resultant value of the force Frd and moment MFrd acting relative to the tipping line
of the gantry crane was then determined relative to the wind angle θ.

Frd =

√
(FX)

2 + (FY)
2, MFrd = Frd·h1. (13)

The moment MFrd was taken to be a dynamic moment with a factor of 1.1.
The sum of overturning moments from the MOexp experiment and the MO CFD simula-

tion was determined as a function of wind angle θ:

MOexp = MFrd exp + MO2 + MO3, MO CFD = MFrd CFD + MO2 + MO3, (14)

The calculation results are shown graphically in Figures 17–19 for three example wind
speeds V of 20, 30, and 40 m/s. In this case, only the forces from the girder (the girder itself
without the cabin, ladders, and housing) were assumed.
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Considering the above results, it is possible to determine the characteristics of the
capsizing moment as a function of wind speed. These graphs are shown in Figure 20. In
the case of the box girder, the curves are prepared for the following set of parameters:
angle θ = −2◦ (experimental), θ = −6◦ (CFD simulation). In the case of the truss girder, the
curves are prepared for the following set of parameters: θ = 6◦ (experiment) and θ = −6◦

(CFD simulation).
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Figure 20. Overturning and stabilizing moments for selected wind angles θ compared with the
calculations performed according to Eurocode: (a) for box girder gantry crane—wind speeds
V = 14–55 m/s; (b) for truss girder gantry crane—wind speeds V = 14–50 m/s.

According to Figure 20, the gantry crane will be overturned at the approximate wind
speed V, as shown in Table 6.

Table 6. The wind speed V for which overturning moments cause loss of stability of the gantry crane
(B and T girder).

V MO for the Box Girder (Nm) V MO for the Truss Girder (Nm)

(m/s) MO ECODE MO exp −2◦ MO CFD −6◦ (m/s) MO ECODE MO exp 6◦ MO CFD −6◦

37.43 - - 628,117 32.20 - 142,546 -
38.45 - 628,332 - 34.44 - - 142,583
49.43 628,329 - - 46.97 142,501 - -

However, according to the standard [14] and the manufacturer’s recommendations,
the permissible wind speed for all gantry cranes operating in the open terrain should not
exceed 20 m/s (72 km/h).

4.3. Simulation Overturning of the Real-Scale Structure of the Gantry Cranes

Due to the significant difficulty in generating the appropriate FE mesh for the gantry
crane with the truss horizontal girder, the computations at real scale were performed
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only for the gantry crane with the box horizontal girder. The FE model was prepared
according to the geometrical dimensions shown in Figure 3a. The simplified model consists
of the horizontal girder, left and right support, and the operator’s cabin. The gantry crane
was placed in a rectangular box filled with air of the following geometrical dimensions:
75 × 105 × 30 m. Like previous studies, the k-ε model was used. The wind speed is
assumed to be V = 17.1 m/s, and the turbulent intensity is equal to 12%. The turbulent
length scale is assumed to be Lturb = 3.5 m. The computations were made for three different
Davenport wind profiles, where VG is a gradient velocity (VG = 17.1 m/s) measured at
zG height (zG = 9.89 m). The Davenport wind profile is described with the following
formula [14]:

V(z) = VG

(
Z

ZG

)α

, (15)

where the exponent α is equal to 0.4, 0.28, and 0.16 for the urban, village, and open
terrain, respectively.

The rest of the parameters are identical to those described above for the sectional
model analysis. The assumed minimal element size is equal to 30 mm, and the maximal
cell length is approximately equal to 3200 mm. The whole mesh consists of 8,748,698 nodes
and 2,135,393 cells. The fragment of the finite cell mesh (faces) created for the box girder is
shown in Figure 21, and the whole model (static pressure) is shown in Figure 22.
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In Table 7, the resultant components Fx and Fy of the aerodynamic forces and the
overall moment Mz are estimated for the tipping line. The tipping line is shown in Figure 22.
As observed, depending on the terrain (in other words, together with the decreasing
exponent α in Formula (15)), the values of the Fx force component and the moment Mz
slightly increase. Assuming the reference area Aref = 41.106 m² and Bref = 9.89 m, the
appropriate moment coefficients can be determined with the following equation:

CM =
Mz

1
2 ρv2 Are f Bre f

. (16)

where exponent α is equal to 0.4, 0.28, and 0.16 for the urban, village, and open terrain,
respectively. The appropriate values of coefficient CM are shown in Table 7.

Table 7. Aerodynamic forces and moments for real-scale structure.

Wind Profile (Terrain) Fx (N) Fy (N) Mz (Nm) CM

Urban 11,097.461 4192.185 −121,687.84 1.670
Village 11,353.304 4139.967 −122,673.19 1.683
Open 11,721.647 4080.948 −124,223.43 1.705

The gantry crane would overturn if the moment induced by the wind, computed for
the tipping line, were greater than the stabilizing moment, Mz > Ms. In the current case,
the stabilizing moment is mainly caused by the self-weight of the structure and can be
estimated, as shown in Figure 16, as follows:

Ms = Q2lB2 = 714.16 kNm (17)

Next, the critical wind speed can be computed as follows:

Vcr =

√
2Ms

CMρAre f Bre f
(18)

Considering the values of the moment coefficients, as shown in Table 7, the fol-
lowing critical wind speeds, which cause gantry crane overturning, can be obtained:
V1 = 41.445 m/s (149.202 km/h) for urban terrain, V2 = 41.278 m/s (148.602 km/h) for
village terrain, and V3 = 41.020 m/s (147.672 km/h) for open terrain. The obtained values
of the critical wind speed are almost identical, and from a practical point of view, the terrain
type has almost no influence on the critical value of the wind speed.

5. Conclusions

This article covers the maximum wind speed at which a gantry crane remains stable.
According to the standard [14], the maximum design wind speed V is 20 m/s for all cranes
installed in the open. Experimental testing and numerical analysis showed compliance
with the standard regarding the stability behavior of this type of structure in open space at
an average wind speed of 20 m/s. This study assumed that the gantry crane is stopped
but not anchored to the rails on which it moves. For cranes installed in coastal areas, the
wind situation is different. The standard states that overhead cranes that must continue to
operate in high winds have a maximum design wind speed of 28.5 m/s (102.6 km/h), such
as container cranes. In this case, the wind speed for such a facility can range from 20 m/s
to 40 m/s (wind speed with gusts of 3 s).

As is reported from the data presented in this paper, the gantry crane with the truss
horizontal girder can be overturned at 32.2 m/s (115.92 km/h) of wind speed. On the other
hand, the gantry crane with the box girder can be overturned even at 37.45 m/s (134.75)
of wind speed. The critical wind speed values obtained from CFD simulations for three
different wind profiles and a box girder crane are almost identical and do not depend much
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on the type of terrain, and the obtained values are V1 = 41.445 m/s (149.202 km/h) for
urban terrain, V2 = 41.278 m/s (148.602 km/h) for village terrain, and V3 = 41.020 m/s
(147.672 km/h) for the open terrain, which are slightly higher than those determined
according to the standards. In other words, estimations based on the standards provide
underestimated critical wind speed values; thus, they are safe.

Although the standards provide the magnitudes of the moments regardless of wind
direction, the results reported in the current work show significant differences due to the
variation in the angle theta. The change in angle theta means that the wind direction is not
parallel to the horizontal plane.

Wind strength depends mainly on the geographical location and the degree of wind
exposure of the crane, as evidenced by the gantry crane accidents given in the Intro-
duction, among others, including a box crane at the LNG terminal in Swinoujscie [37]
(coastal area) and the truss girder crane example described by Frendo [13], where the
gantry crane derailed and collapsed after traveling about 60 m in very strong winds of
about 30.56 m/s (110 km/h). The given gantry crane disaster examples caused by high
winds occurred when the wind speed was comparable to the values reported in this paper.

In this study, the authors wanted to draw attention to the importance of changing
wind direction in the vertical plane. Usually, the change in wind direction is considered in
the horizontal plane. However, as shown in the results, even a small change in the vertical
angle, e.g., only up to 6◦, causes significant changes in the value of the overturning moment
(for selected angles). Thus, we wanted to show that adopting standard calculations for
overhead cranes, which are usually located in urban or non-urban areas but not far from
the city, can often lead to accidents, especially when the crane is operated in a coastal
(seaside) area.
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