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Abstract: An orthotropic homogenized model is used to investigate the in-plane elastic behavior of
coated masonry walls. The homogenization process mainly consists of modeling the elementary cell
of a three-layer medium by using suitable designed assemblies of in-parallel springs. On the basis
of the latter, the stresses distributed between masonry and reinforcement coatings are analytically
assessed after the determination of the average stress acting on the homogeneous medium. The
precision of the theoretical outcomes is evaluated through comparisons with finite element (FE)
models. Static and dynamic numerical analyses are carried out on both non-homogeneous and
homogeneous FE models of sample systems. The homogeneous model is observed to adequately
capture both the local and global behavior of reinforced masonry walls. Parametric analyses are also
performed to investigate the effectiveness of reinforcement on the overall behavior of the system.

Keywords: coated masonry; homogenization; stress distribution; static and dynamic analyses

1. Introduction

Many masonry buildings are located in seismic areas around the world. However, the
intrinsic low tensile strength of masonry makes existing structures vulnerable to seismic
forces [1], and, for this reason, reinforcing interventions are often required. Some reviews
about the retrofitting methods for unreinforced masonry structures can be found in [2,3]; in
particular, they mention certain traditional techniques, such as methods involving surface
treatments (e.g., reinforced mortar coating [4]), or to more advanced materials, such as
Textile Reinforced Mortar (TRM) [5], Fiber Reinforced Polymers (FRPs) [6], and Fiber
Reinforced Cementitious Matrix (FRCM) [7]. Here, the attention is mainly addressed to an
alternative technique that combines the benefits of traditional methods with the utilization
of advanced materials, namely the Steel Fiber Reinforced Mortar (SFRM) coating [8]. It
involves the application of thin mortar coatings, reinforced with randomly distributed short
fibers in the mortar matrix, either on one or both sides of masonry walls. Such a technology
entails several advantages, e.g., the time-saving related to constructing thin coatings (since
recommendations for minimum rebar cover are no longer necessary) and an enhanced
crack control under service loading conditions (due to the improved tensile strength
offered by steel fibers in the mortar). Above all, experimental tests [8–11] have proved
the effectiveness of this reinforcing technique for masonry panels, especially improved
performances, including increased strength and stiffness, are observed, with outcomes
influenced by the steel fiber content.

In the literature, a number of researchers resort to homogenized models to investigate
both unreinforced and reinforced masonry. Indeed, regarding the former, even today,
macro-modeling approaches are employed, where the overall material is modeled as an
equivalent homogeneous Cauchy continuum (e.g., [12–16]). The latter obeys to macroscopic
constitutive laws, often derived using homogenization techniques both in elastic and non-
elastic regime, e.g., [17–22]. Among these, ref. [17] is a pioneering work, which calculates
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the equivalent elastic constants of unreinforced brick masonry using a two-step (horizontal
and vertical) homogenization process; it is based on a straightforward mechanical system
consisting of elastic springs. A similar more recent paper is [22], where a homogenization
method is formulated to characterize the behavior of unreinforced masonry walls featuring
a regular brick pattern. This involves employing appropriately arranged in-series and in-
parallel springs to model an elementary cell and subsequently determining the “equivalent”
elastic constants of a homogeneous and orthotropic material. Similarly, concerning reinforced
masonry, numerous homogenization models have been developed in the literature, according
to the reinforcement technology (e.g., ref. [23] relative to CFRP reinforced masonry, ref. [24]
referred to FRP grids, ref. [25] for FRCM composites). However, when addressing masonry
walls reinforced by SFRM coatings, there are few modeling attempts documented in the
literature [8,26–29]; moreover, the only homogenization approach is proposed in the recent
paper [30]. In the latter, the methods and philosophy developed in [22] for the unreinforced
masonry are extended to solve a different problem, namely that of reinforced masonry. A
two-step homogenization procedure (in- and out-of-wall) is employed to determine the
(membrane) macroscopic elastic constants of coated masonry subjected to stress in their
plane. The main result entails deriving simple closed-form expressions for the linear elastic
constants of an “equivalent” homogeneous and orthotropic material.

Here, the in-plane behavior of coated masonry walls is analyzed via the homogenized
model defined in [30], where only some preliminary structural analyses have been performed
to prove the considerable reduction in the computational burden with respect to refined
finite element models; the latter require a very dense mesh of dimension at least equal to the
thickness of the thin coating. In addition, in [30] no investigation into the stress states has
been carried out. On the other hand, in this paper, the stresses distributed between masonry
and reinforcement elements are analytically evaluated once the average stress acting on
the homogeneous medium has been determined. A systematic finite element structural
analysis, under different static and dynamic load conditions, is performed to evaluate the
accuracy of the simplified model in predicting both the local and global behavior of coated
masonry walls, with particular attention to the stress jumps occurring at the masonry–
reinforcement interfaces. Finally, the reinforcement effectiveness on the global behavior of
the system is also detected in terms of modal characteristics.

The layout of the paper is as follows. In Section 2, the homogenization procedure
defined in [30] is briefly described. In Section 3, the partition coefficients of the stresses
between masonry and reinforcement are analytically evaluated. In the Sections 4 and 5,
the accuracy of the theory is assessed through comparisons with refined finite element
analyses, referred to sample systems of coated walls; moreover, parametric analyses are
carried out to investigate the benefits provided by the reinforcement. Finally, in Section 6
the main findings of the work are summarized. Appendices A and B close the paper.

2. Background on the Homogenization Process

A paradigmatic model is employed to address coated masonry walls with a running/header
bond pattern, as depicted in Figure 1. The masonry consists of bricks, with dimensions
a × b × h, and mortar beds and joints, with a thickness c. Thin layers of SFRM, each with a
thickness of t, are bonded on both sides of the masonry wall. The fundamental elements of
the system, namely brick, mortar, and SFRM coatings, are considered to be homogeneous
and isotropic; their elastic properties are characterized by Young modulus and Poisson ratio,
denoted as (Eb, νb), (Em, νm), and (Es, νs), respectively. However, based on the assembly
geometry, the resulting composite material is non-homogeneous and orthotropic.
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Coating Masonry

Figure 1. Coated masonry wall with regular brick pattern.

Such a system has been homogenized in [30], where it is substituted by an ‘equivalent’
homogeneous orthotropic material, whose constitutive law, in planar linear elasticity, is: εx

εy
γxy

 =

 1/Ex −νxy/Ey 0
−νyx/Ex 1/Ey 0

0 0 1/Gxy

 σx
σy
τxy

 (1)

In the following, to preserve the consistency of the paper, the homogenization process
used in [30] to identify the equivalent five elastic constants (Ex, Ey, νxy, νyx, Gxy), is briefly
recalled. It is denoted as (xy,z)-homogenization and consists of the following two steps:

• Step 1, xy-homogenization: it is carried out in-wall-plane (x, y) and is applied to the
unreinforced masonry only;

• Step 2, z-homogenization: it is performed out-of-wall-plane (along the normal direction
z) and is applied to a three-layer medium, standing for the coated wall.

It is worth mentioning that in [30], another homogenization strategy, denoted as
(z,xy)-homogenization and characterized by an inverse step order, has also been developed.
Such decomposition of the two processes of homogenization does not commute. This
property is analogous to that found in formulating 2D homogeneous models of plates
with periodic structure, namely that in-plane and transverse homogenizations do not
commute (see, e.g., [31]). However, the analyses performed in [30] have shown that the
two homogenization strategies yield very similar numerical results.

Below, while the homogenization performed in Step 1 is only briefly mentioned, the z-
homogenization of the Step 2 is described with slightly more detail because the subsequent
Section 3 is based on it.

2.1. xy-Homogenization

First, the xy-homogenization is performed by applying the strategy defined in [22] for
the unreinforced wall (uw), where the elastic constants of an ‘equivalent’ homogeneous
orthotropic material are identified by means of specific assemblies of springs, that are
combined in series and/or parallel on a phenomenological basis. The following closed-
form expressions are finally derived:

Euw
x = Eb

αE(βa(βb + αE) + βb + 1)
(βa + 1)(βb + αE)

,

Euw
y = Eb

αE(βb(βa + αE) + βa + 1)
(βb + 1)(βa + αE)

,

νuw
xy = νb

αν(βb(βa + αE)(αEβa + 1) + αEβa(βa + 1)) + αE(βa + 1)
(βb + 1)(βa + αE)(αEβa + 1)

,

Guw
xy = Gb

αG(βa + 1)(βb + 1)
βaβb + βa + βb + αG

(2)
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where nondimensional quantities have been introduced:

αE :=
Em

Eb
, αν :=

νm

νb
, αG :=

Gm

Gb
, βa :=

c
a

, βb :=
c
b

(3)

For the details of the procedure, refer to [22].

2.2. z-Homogenization

Then, the z-homogenization is performed on a three-layer medium (3LM), of dimension
A × B (Figure 2a), composed of a homogeneous and orthotropic internal layer (e = 1), of
thickness h, and of two homogeneous and isotropic external layers (e = 2), of thickness t.
The core (e = 1) stands for the previously homogenized unreinforced masonry of elastic
constants Equation (2), while the skins (e = 2) stand for the SFRM coatings of elastic
constants Es, νs. The 3LM is substituted with an ‘equivalent’ homogeneous orthotropic
medium of dimensions A × B and thickness h + 2t (Figure 2b), referred to as a single-layer
model (1LM). The equivalent elastic constants of the latter are identified by modeling the
in-plane behavior of the non-homogeneous cell by specific assemblies of in-parallel springs,
as depicted in Figure 3.

B

A

ht
t

1

2

x

y
z

h+2t

x

y
z

B

A

(a) (b)

Figure 2. (a) Non-homogeneous cell. (b) Homogeneous orthotropic cell. Labels 1 and 2 denote
masonry and reinforcement elements.

Let us consider, for instance, the cell experiencing normal stresses, with a resultant
force denoted as Nx, as depicted in Figure 3a. Elements 1 and 2 must experience identical
overall elongation due to geometric considerations, specifically to maintain the rectangular
shape of the cell and ensure compatibility with adjacent cells; therefore, they behave as
springs working in-parallel, having stiffness kx1 and kx2, respectively. Similar considerations
have been made for the other in-plane behaviors. The expressions of the spring stiffness ke
(e = 1, 2) are reported in Appendix A.

By equalizing the total stiffness/displacement of each assembly with that of the
homogeneous cell, the equivalent elastic constants are ultimately determined:

Ex = Euw
x

(2αExβ + 1)
2β + 1

,

Ey = Euw
y

(2αEyβ + 1)
2β + 1

,

νxy = νuw
xy

2αExβανxy + 1
2αExβ + 1

,

Gxy = Guw
xy

(2αGxyβ + 1)
2β + 1

(4)
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where the following nondimensional parameters have been introduced:

αEx :=
Es

Euw
x

, αEy :=
Es

Euw
y

, ανxy :=
νs

νuw
xy

, αGxy :=
Gs

Guw
xy

, β :=
t
h

(5)

Nx Nx

Ny

Ny

Txy

Tyx
Tyx

Txy

ks1

ks2

Txy

ks2

Txy

(a)

kx2

kx2

Nx
kx1 Nx

kx2

kx2

kx1

(b) (c) 

x

y z

Figure 3. Spring systems for the in-plane cell behavior: (a) extension along x; (b) transverse dilatation
along x; (c) shear.

3. Stress Distribution in the Three-Layer Model

The spring systems, defined in [30] and mentioned in Section 2.2, allow us to evaluate
how the normal and shear forces, applied to the homogeneous cell (1LM), distribute
themselves between the two parts 1 and 2 of the non-homogeneous cell (3LM).

3.1. Normal Stress Distribution

The averaged stresses of the homogeneous cell, denoted as σ̄x, σ̄y, involve the resulting
normal forces Nx = σ̄x(h + 2t)A and Ny = σ̄y(h + 2t)B, respectively.

Let us consider Nx; it distributes itself between the two parts 1 and 2 of the non-
homogeneous cell, through the spring system in Figure 3a. For equilibrium Nx = Nx1 +

2Nx2, and since the elements are in parallel,
Nx1

kx1
=

Nx2

kx2
. Therefore, by letting σx1 =

Nx1

h

and σx2 =
Nx2

t
, it follows:

σx1 =
2β + 1

1 + 2αExβ
σ̄x,

σx2 =
αEx(2β + 1)
1 + 2αExβ

σ̄x

(6)

where the definitions (5) have been used.
In the same way:

σy1 =
2β + 1

1 + 2αEyβ
σ̄y,

σy2 =
αEy(2β + 1)
1 + 2αEyβ

σ̄y

(7)

These expressions enable the assessment of (local) stress within the components of the
non-homogeneous medium (specifically in the masonry and reinforcement), starting from
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the average normal stress acting on the homogenized medium (σ̄x or σ̄y). Furthermore, for
small values of β, the preceding local stress expressions can be approximated as:

σx1 ≃ σ̄x,
σx2 ≃ αExσ̄x

(8)

σy1 ≃ σ̄y,
σy2 ≃ αEyσ̄y

(9)

It means that the masonry normal stress is about equal to the global stress of the
homogenized model, while the reinforcement normal stress is proportional to the former
via the reinforced-to-unreinforced masonry modulus ratio αEx or αEy.

3.2. Self-Stress State

Also in this case, an interesting investigation concerns the distribution of the self-stress
state σ̃xe, σ̃ye, resulting from the transverse-to-load behavior of the non-homogeneous cell
under the normal forces Ny and Nx, respectively.

Let us consider the transverse dilatation along x (due to Ny), modeled by the spring
system in Figure 3b, where △/2 is the unknown displacement at nodes. By denoting with
Fxe the elastic force at the spring e, the elastic problem is governed by:

Fx1 = kx1(△− εx1B),
Fx2 = kx2(△− εx2B)

(10)

which express the elastic law for the springs, and by:

Fx1 + 2Fx2 = 0 (11)

which expresses the equilibrium condition at the nodes. The resolution to this problem,
specifically, the overall elongation of the assembly, is as follows:

∆ = −
(2β + 1)(αEx + 2βανxy)

(2β + αEx)(2βαEy + 1)

νuw
xy

Euw
y

Bσ̄y (12)

By substituting the solution Equation (12) in Equation (10), the spring forces are

evaluated and, by letting σ̃x1 =
Fx1

hA
, σ̃x2 =

Fx2

tA
, it follows:

σ̃x1 =
2βαEx(2β + 1)(1 − ανxy)

(2αExβ + 1)(2αEyβ + 1)
νuw

xy
Euw

x
Euw

y
σ̄y,

σ̃x2 =
αEx(2β + 1)(−1 + ανxy)

(2αExβ + 1)(2αEyβ + 1)
νuw

xy
Euw

x
Euw

y
σ̄y

(13)

In the same way:

σ̃y1 =
2αEyβ(2β + 1)(1 − ανyx)

(2αEyβ + 1)(2αExβ + 1)
νuw

xy σ̄x,

σ̃y2 =
αEy(2β + 1)(−1 + ανyx)

(2αEyβ + 1)(2αExβ + 1)
νuw

xy σ̄x

(14)

with the nondimensional coefficient ανyx = ανxy
Euw

y

Euw
x

.

It should be noticed that, from Equation (13),
σ̃x2

σ̃x1
= − 1

2β
follows; since β is small

(because the wall is much thicker than the reinforcing coating), it turns out that σ̃x1 ≪
σ̃x2, that is, the self-stress at the masonry is negligible. Conversely, the self-stress at the
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reinforcement can be significant. Similar considerations arise from Equation (14). Thus, for
small values of β, the self-stress expressions can be approximated as:

σ̃x1 ≃ 0,

σ̃x2 ≃ αEx(1 − ανxy)ν
uw
xy

Euw
x

Euw
y

σ̄y
(15)

and
σ̃y1 ≃ 0,
σ̃y2 ≃ αEy(1 − ανyx)ν

uw
xy σ̄x

(16)

Finally, the total stress is determined by the combination of self-stress induced by
transverse elongation and the stress triggered by axial elongation:

σ̂xe = σxe + σ̃xe,
σ̂ye = σye + σ̃ye

(17)

for e = 1, 2 and where Equations (6), (7), (13) and (14) hold.

3.3. Shear Stress Distribution

By denoting by τ̄xy the averaged shear stress of the homogeneous cell, the resulting
horizontal and vertical shear forces are Txy = τ̄xy(h + 2t)B and Tyx = τ̄xy(h + 2t)A,
respectively.

Let us consider the spring system in Figure 3c to evaluate how they distribute
themselves between the elements 1 and 2 of the non-homogeneous cell. For equilibrium

Txy = Txy1 + 2 Txy2, and since the elements are in parallel,
Txy1

ks1
=

Txy2

ks2
. Therefore, by

letting τxy1 =
Txy1

hB
and τxy2 =

Txy2

tB
, it follows:

τxy1 =
2β + 1

1 + 2αGβ
τ̄xy,

τxy2 =
αG(2β + 1)
1 + 2αGβ

τ̄xy

(18)

where the definitions (5) have been used. These expressions allow us to evaluate the (local)
shear stress in the constituents of the non-homogeneous medium, starting from the average
shear stress acting in the homogenized medium (τ̄xy). Moreover, for small values of β,
Equation (18) can be approximated by:

τxy1 ≃ τ̄xy,
τxy2 ≃ αG τ̄xy

(19)

4. Static Structural Analysis and Model Validation

Static structural analyses, under different static load conditions, are carried out to
investigate the accuracy of the homogenized model in describing both the local and global
in-plane behavior of coated masonry walls.

4.1. Sample Systems and FE Models

Two sample systems, denoted as Sample System 1 (without openings) and Sample
System 2 (with a central opening), whose in-plane geometry is represented in Figure 5, are
studied here: H = 2 m and L = 3 m. The elastic and geometric characteristics of the basic
components of both systems, i.e., brick, mortar, and SFRM coating, are described in Table 1,
together with the mass densities of each of them (i.e., ρb, ρm, ρs respectively).
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Table 1. Elastic, geometric, mass characteristics of brick, mortar, and SFRM coating.

Brick
Eb = 9 GPa, νb = 0.15
a = 19 cm, b = 25 cm, h = 30 cm
ρb = 850 kg/m3

Mortar
Em = 4 GPa, νm = 0.2
c = 1 cm
ρm = 1400 kg/m3

SFRM Coating
Es = 25 GPa, νs = 0.18
t = 2.5 cm
ρs = 1800 kg/m3

Accordingly, the results of the homogenization steps are presented in Table 2.

Table 2. Numerical outcomes of the (xy,z)-homogenization.

Step 1: xy-Homogenization (Equation (2)) Step 2: z-Homogenization (Equation (4))

Euw
x = 8.358 GPa

Euw
y = 8.299 GPa

νuw
xy = 0.1496

Guw
xy = 3.504 GPa

Ex = 10.735 GPa
Ey = 10.685 GPa
νxy = 0.15974
Gxy = 4.5170 GPa

Three FE models are implemented for each sample system (see, for example, the
representation in Figure 4 for Sample System 1):

• 3LM: a non-homogeneous three-layer model, denoted as “fine model”, composed of
three Cauchy continuum bodies, defined in a 3D space (x, y, z) (Figure 4a). The
internal medium stands for the homogenized unreinforced masonry, and, therefore, it
obeys to a hyperelastic orthotropic linear law whose in-plane constitutive parameters
are reported in Table 2-step 1. Its equivalent mass density is derived by simple average
operations on volume, from which ρuw = 897.596 kg/m3. The two external layers
stand for the SFRM coatings, modeled as isotropic and homogeneous medium whose
characteristics are in Table 1. The out-of-plane elastic moduli are assumed to be equal
to those in-plane, while the out-of-plane Poisson ratios are set to zero. Quadratic
serendipity tetrahedral finite elements are used. Adherence conditions are assured at
the each element boundary. The model has 239,251 elements and 1,040,793 d.o.f. (the
mesh pattern is shown in Figure A1a).

• 1LM-3D: a homogeneous one-layer model, consisting of one Cauchy continuum body
defined in a 3D space (x, y, z) (Figure 4b). It stands for the reinforced masonry,
previously homogenized, obeying to a hyperelastic orthotropic linear law whose
in-plane constitutive parameters are described in Table 2-step 2. The equivalent mass
density is determined through straightforward averaging operations on volume, from
which ρ = 1026.51 kg/m3. The out-of-plane elastic moduli and Poisson factors are
assumed to be equal to those in-plane and zero, respectively. Quadratic serendipity
tetrahedral finite elements are used. The model has 27,859 elements and 122,355 d.o.f.
(the mesh pattern is shown in Figure A1b).

• 1LM-2D: a homogeneous one-layer model, consisting of one shell element behaving
as a Cauchy continuum in plane stress. Also this model stands for the homogenized
reinforced masonry, and, therefore it has the same elastic and mass characteristics
of the 1LM-3D. The model has 1800 rectangular elements and 5490 d.o.f. (the mesh
pattern is shown in Figure A1c).
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Figure 4. FE models of Sample System 1: (a) 3LM; (b) 1LM-3D; (c) 1LM-2D.

The numerical FE analyses are performed for both case studies by means of commercial
software and using a linear solver; the walls are constrained at the bottom side and free at
the remaining three sides. The calculation times are 236 s, 16 s, and 1 s for 3LM, 1LM-3D,
and 1LM-2D, respectively.

4.2. Results

Static analyses are performed for the sample systems described earlier, considering
two typical load conditions illustrated in Figure 5: (a) a uniform distribution of horizontal
forces is applied along the left vertical side of the Sample System 1; (b) a uniform distribution

of vertical forces is applied along a portion (
L
3

) of the top side of the Sample System 2. The
magnitude of load for unit of area is taken p0 = 100 kPa.

In Figure 5, the contour plots of the resultant displacements on the deformed configurations
are also illustrated. Other numerical results are shown ahead, in terms of displacement and
stress. The used unit of measurement for displacements, space coordinates, and stresses
are cm, m, and kPa, respectively.

p0

L

H

x

y

p0

L/3

2/3H

L/3L/3

H/3

x

y

(a) (b)

Figure 5. Load case schemes and qualitative contour plots of the displacement magnitude on
deformed configuration, at the middle plane (z = 0), of: (a) Sample System 1; (b) Sample System
2. The displacements range from a maximum of about 0.004 cm (red color) to a minimum of 0 cm
(blue color).

4.2.1. Sample System 1

Results relevant to 3LM and 1LM-3D of the Sample System 1 are reported first.
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The curves in Figure 6a,b show a comparison in terms of displacements, evaluated at

the sections x =
L
2

and y =
H
2

, respectively, of the middle plane of the wall (z = 0); a very
strong agreement is observed as the curves overlap.

0.0 0.5 1.0 1.5 2.0
0.0000
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0.0020

0.0025

0.0 0.5 1.0 1.5 2.0 2.5

-0.0005
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(a) (b)

Figure 6. Displacement curves at the middle plane of the panel: (a) u
(

L
2 , y

)
; (b) v

(
x, H

2

)
. 3LM (gray

line) and 1LM-3D (black line).

In Figure 7, normal and shear stresses in the 3LM (gray lines) and 1LM-3D (black lines),
along given selected lines, are shown: the curves (-a, -b, -c) refer at the vertical section

x =
L
2

of the middle plane of each element, while the curves (-d, -e, -f) refer to variations

along the thickness z at the section x =
L
2

of the base wall. It is seen that the results obtained
by the homogeneous model fit on average those of the non-homogeneous model, since the
true stress distribution fast changes in passing through internal and external layers.
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Figure 7. Stress curves: (a) σx

(
L
2 , y

)
, (b) σy

(
L
2 , y

)
, and (c) τxy

(
L
2 , y

)
at the middle plane of each

element and (d) σx

(
L
2 , z

)
, (e) σy

(
L
2 , z

)
, and (f) τxy

(
L
2 , z

)
at the wall base. 3LM (gray line) and

1LM-3D (black line).



Appl. Sci. 2024, 14, 1091 11 of 18

Then, the stresses soliciting the (homogenized) masonry and the reinforcement, as
furnished by the analytical model (Equations (17) and (18)) starting from 1LM-3D, are
shown in Figure 8 (red lines). Remarkably, the analytical predictions approximate the stress
distributions detected from the 3LM (gray lines) to a very satisfactory extent, despite the
fact that the homogeneous model is aimed at describing global, and not local, behavior.
However, upon closer inspection of Figure 8b, a slight deviation is observed between red
and gray curves near the free end (y = H), where the stresses of the 3LM (gray lines)
cancel out, while those resulting from the analytical distribution (red lines) are nonzero,
although with zero average. Such a phenomenon is related to the existence of boundary
layers (e.g., [32]), where it is known that the homogenization is satisfactory far away from
the free edges. In order to further investigate this issue, normal and shear stresses acting

along the horizontal section y =
H
2

are also determined in Figure 9. It is seen that the 3LM
exhibits a boundary layer near the loaded edge (x = 0), which the homogeneous model
(1LM) fails to capture.

In addition, the effect of the self-stresses is highlighted in Figure 10, where the
laws σx

(
L
2 , y

)
and σy

(
L
2 , y

)
, excluding (dashed lines) and including (solid lines) the self-

stresses, are plotted in a small y-range. It appears that self-stress is negligible at the
homogenized masonry (the curves are quasi superimposed), while it is significant at the
reinforcement layers.
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Figure 8. Stress curves: (a) σx

(
L
2 , y

)
; (b) σy

(
L
2 , y

)
, and (c) τxy

(
L
2 , y

)
. 1LM-3D (red lines) vs. 3LM

(gray lines) distributions.
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Figure 9. Stress curves: (a) σx

(
x, H

2

)
; (b) σy

(
x, H

2

)
, and (c) τxy

(
x, H

2

)
. 1LM-3D (red lines) vs. 3LM

(gray lines) distributions.

Finally, a comparison between 1LM-3D and 1LM-2D is also made in terms of displacement
and global stress in Figure 11. The coarse shell model (i.e., 1LM-2D), is observed to
approximate the results of 1LM-3D very effectively, despite having a reduced number of
degrees of freedom.
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Figure 10. Normal stress curves derived by 1LM-3D: (a) σx

(
L
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)
; (b) σy

(
L
2 , y

)
; zoom on a small

y-range. Distribution between homogenized masonry and reinforcement, excluding (dashed lines)
and including (solid lines) the self-stresses.
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Figure 11. Comparison between 1LM-3D and 1LM-2D: (a) u
(
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)
; (b) σ̄x
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2 , y

)
. 1LM-3D (black

solid line) and 1LM-2D (black dots).

4.2.2. Sample System 2

Results relevant to 3LM and 1LM-3D of the Sample System 2 are reported.
A first comparison in terms of displacement is shown in Figure 12, along the horizontal

section y = H of the middle plane of the wall; it is seen that the curves are almost coincident.
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(a) (b)

Figure 12. Displacement curves at the middle plane of the wall: (a) u(x, H); (b) v(x, H). 3LM (gray
line) and 1LM-3D (black line).

A sketch of the stress distribution in the domain of 3LM is provided by the contour
plots of the minimum and maximum principal stresses, shown in Figure 13a,b, respectively;
in addition, in Figure 13c, four measuring points, having in-plane coordinates A =

(
L
2 , 5H

6

)
,

B =
(

L
3 , 5H

6

)
, C =

(
L
6 , 2H

3

)
, and D =

(
L
6 , H

3

)
, are illustrated. Just in these points, the

normal and shear stresses soliciting the internal and external layers of the 3LM, evaluated
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at the middle plane of each element, are compared with those furnished by the analytical
model (according to Equations (17) and (18)) starting from 1LM-3D; the percentage errors
are reported in Table 3. Once again, the accuracy of the homogeneous model is confirmed.

(a) (b)

A

C

D

B

(c)

Figure 13. Contour plots of (a) minimum and (b) maximum principal stresses of 3LM. (c) In-plane
representation of four measuring points A, B, C, and D.

Table 3. Comparison between 1LM-3D and 3LM stress distributions, evaluated in the points A, B, C,
and D: percentage errors.

σxe σye τxye

A e = 1 −1.76% −6.36% -
e = 2 0.42% 3.63% -

B e = 1 −1.14% −2.39% −1.36%
e = 2 1.81% 1.06% 0.0888%

C e = 1 −0.0176% 0.355% 0.134%
e = 2 −0.642% −0.239% 0.0209%

D e = 1 2.26% 0.168% −0.265%
e = 2 −1.34% −0.362% −0.0891%

5. Modal Dynamic Analysis

The natural frequencies provide a “global” measure of the performance, in elastic
regime, of a structural system. Therefore, modal dynamic analyses are carried out to:
(i) further asses the (global) agreement between non-homogeneous and homogeneous
models of the previous sample systems; (ii) evaluate the effectiveness of the reinforcement,
through parametric studies.

5.1. Benchmark Results

Results relevant to 3LM, 1LM-3D, and 1LM-2D of both sample systems described in
Section 4.1 are reported. They consist of the frequencies fi (i = 1, 2, 3) of the first three natural
vibration modes, in Table 4, together with the corresponding modal shapes, in Figure 14. It
is observed that the homogenized model well approximates the in-plane behavior of this
kind of systems, with a very small percentage error.
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Table 4. Comparison between natural frequencies (in [Hz]) of homogeneous vs. non-homogeneous
models: (a) Sample System 1; (b) Sample System 2. Percentage error in brackets.

Modal Frequency 3LM 1LM-3D 1LM-2D

(a)

f1 200.96 200.95 (−0.0050%) 201.085 (0.062%)
f2 403.81 403.77 (−0.0099%) 403.75 (−0.015%)
f3 449.67 449.69 (0.0044%) 449.90 (0.051%)

(b)

f1 129.22 129.21 (−0.0077%) 130.259 (0.80%)
f2 314.32 314.31 (−0.0032%) 315.677 (0.43%)
f3 397.99 397.97 (−0.0050%) 397.881 (−0.027%)

Mode 1 Mode 2 Mode 3

(a)

(b)

Figure 14. Modal shapes: (a) Sample System 1; (b) Sample System 2.

5.2. Parametric Analysis

Parametric analyses are numerically performed on the fine model (3LM) of the Sample
System 1 only to examine the influence of both SFRM modulus and coating thickness
(through the ratios αEx and β of Equation (5)) on the natural frequencies fi (i = 1, 2, 3). The
latter, compared to those of the unreinforced wall f uw

i , are displayed in Figures 15 and 16.
It is observed that, within the ranges examined, the natural frequencies can be increased by
up to 45%, in relation to the elastic modulus of the reinforcement (see Figure 15); on the
contrary, the coating thickness has little influence on the system dynamics, producing a
frequency increment of up to 8% (see Figure 16). In addition, it is worth noting that the
reinforcement affects the different vibration modes at the same way.
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Figure 15. Natural frequencies of the non-homogeneous model vs. reinforced-to-unreinforced wall
modulus ratio, for the Sample System 1; numerical results (black dots) and interpolating laws (solid
black lines).
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Figure 16. Natural frequencies of the non-homogeneous model vs. coating-to-wall thickness ratio,
for the Sample System 1; numerical results (black dots) and interpolating laws (solid black lines).

6. Conclusions

The in-plane behavior of coated masonry walls has been analyzed via a homogenized
orthotropic model, based on suitable designed assemblies of in-parallel springs. Accordingly,
the stresses distributed between masonry and reinforcement coatings have been evaluated
analytically, once the average stress acting on the homogeneous medium has been determined.
Static and dynamic numerical analyses have been carried out on both non-homogeneous
and homogeneous FE models of two sample systems. Parametric analyses have been also
performed to investigate the reinforcement influence on the global behavior of the system.

The following main conclusions are drawn:

• Homogenized FE models of coated wall systems enable structural analysis to be
performed with a significantly reduced computational burden. This is especially
true when much coarser 2D homogeneous models are used, while still achieving
excellent results. This outcome, which was recently discovered in [30] based on a
few preliminary structural analyses on scale models, has been corroborated here. For
instance, concerning Sample System 1, the calculation time of the refined model (3LM)
is found to be 236 times greater than that of the homogenized one (1LM-2D).

• The homogeneous model is able to accurately describe the local displacement field
of the non-homogeneous model, while it fits on average the stress fields, due to the
fast changes occurring across the constituent boundaries. However, when the average
stress is partitioned between masonry and reinforcement via closed-form formulae, the
stress peaks in each element are captured, in spite of the fact the homogeneous model
is aimed at describing global, and not local, behavior. The effect of a self-stress state
in the elements, triggered by the Poisson effect, is also considered. It has been found
to be significant mainly at the reinforcement layers. These results are of particular
importance in structural field, since: (i) local analyses are aimed at strength verification
of each component (i.e., masonry and reinforcement), to asses the effectiveness of
SFRM application; (ii) global analyses, on the other hand, allow for estimating how
the reinforcement modifies the overall mechanical behavior.
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• As evidenced by parametric analyses (within the explored range of parameters), it has
been observed that increasing the elastic moduli or the thickness of the reinforcement
results in an increase in the natural frequencies of a given structural system, due to the
application of reinforcement. This increase can be up to approximately 50%, depending
on the elastic moduli of the reinforcement. On the other hand, the thickness of the
coating has a less significant impact on the system dynamics, as it leads to frequency
increments of up to 10%.

A future prospect of the work could involve performing experimental tests and
more extensive numerical simulations to enhance confidence in analytical predictions and
highlight the advantages of homogenization. For instance, this could include estimating
the reduction in calculation time for a real-size building.
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Appendix A. Equivalent Springs

It is known that a plate under an uniform strain state (such as extension along the x or
y or shear) behaves like an equivalent elastic spring whose stiffness needs to be identified.
This has been made in [30] by equating the elastic energy of the plate to that of the spring.
Below, the expressions of the equivalent stiffness of each spring in Figure 3 are reported:

• For the extension and transverse dilatation along x (Figure 3a,b):

kx1 =
A
B

hEuw
x , kx2 =

A
B

tEs (A1)

• For the shear (Figure 3c):

ks1 =Guw
xy h

B
A

, ks2 = Gst
B
A

(A2)

Moreover, in the horizontal dilatation in Figure 3b, each spring of the assembly
undergoes a prescribed dilation, εxe, due to the Poisson effect, i.e., proportional to the
vertical stress of the corresponding element, σye, namely:

εx1 = −
νuw

xy

Euw
y

σy1, εx2 = − νs

Es
σy2 (A3)

Appendix B. Mesh Pattern Representations

With reference to the Sample System 1, the used mesh pattern is shown in Figure A1,
for 3LM, 1LM-3D, and 1LM-2D, respectively.
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(a) (b)

(c)

Figure A1. Mesh pattern in: (a) 3LM, (b) 1LM-3D, and (c) 1LM-2D of the Sample System 1.
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