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Abstract: The ability to control the temperature distribution T(t, r) and the rate of temperature change
R(t, r) inside glasses is important for their microstructuring. The lattice temperature is considered
at time t, exceeding the electron–phonon thermalization time, and at a distance r from the center
of the model spherical heating zone. In order to describe thermal excitations, the heat capacity of
glasses must be considered as a function of time due to its long-term relaxation. A method for the
analytical calculation of T(t, r) and R(t, r) for glasses with dynamic heat capacity cdyn(t) is proposed.
It is shown that during laser microstructuring, the local cooling rate −R(t, r) significantly depends
on the time dispersion of cdyn(t). It has been established that at the periphery of the model heating
zone of the laser beam focus, the local cooling rate can reach more than 1011 K/s. Strong cooling
rate gradients were found at the periphery of the heating zone, affecting the microstructure of the
material. This effect is significantly enhanced by the time dispersion of cdyn(t). The effect associated
with this time dispersion is significant, even well above the glass transition temperature Tg, since
even short relaxation times of the dynamic heat capacity cdyn(t) are significant.

Keywords: glasses; dynamic heat capacity; non-equilibrium heat transfer; laser-induced microstruc-
turing; femtosecond laser processing; optical storage

1. Introduction

Glass-forming materials are often used to create optical elements and components for
optical integrated circuits. In the last two decades, the technology for the femtosecond laser
microfabrication of various optical structures inside glass-forming materials has been inten-
sively developed. Due to the extremely high peak intensities at the focus of femtosecond
laser pulses, nonlinear processes such as multiphoton absorption can lead to significant
energy absorption even within transparent materials such as glass. Thus, the femtosecond
laser-induced microstructuring of glass-forming materials opens up wide possibilities for
various applications. Laser heating can cause irreversible local phenomena at the beam
focus, such as phase transitions [1], the formation of bubbles or microfluidic channels [2–5],
changes in chemical composition or refractive index [6,7] such as the diffusion and aggrega-
tion of silver ions [6], or photo-oxidation [7]. Spatially selective laser-induced crystallization
or structure changes in glasses allows the direct recording of channel waveguides [1,8–14].
In fact, laser-written waveguides (with improved mode structures of guided light) can be
fabricated through local laser heating inside a glass matrix [8,9]. Thus, optical integrated
circuits can be fabricated using a laser beam that induces local structural changes in a
fglass [15–18]. Photopolymerization and photodamage by highly focused laser pulses can
be used in microchemistry and stereolithography [6,19]. Moreover, the femtosecond laser
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structuring of glass-forming materials can be used for the optical long-term storage of infor-
mation [3,20–30], photonics [18], the fabrication of phase gratings [31], nanogratings [32],
and quantum dots that can be used in various devices [33–35]. Notably, optical storage
based on glass-forming materials has the potential to replace magnetic storage in the quest
to provide high-speed, high-capacity, low-power, low-cost, highly secure, and long-term
data storage [25–30]. However, for the development of these technologies, theoretical mod-
els of thermal processes occurring during spatially selective laser-induced structuring of
glass-forming materials are required. For example, understanding the dynamics of the laser
crystallization process of amorphous Ge films is important for transistor technology, photo-
voltaic devices, particle detectors, and photodetectors [36]. In fact, the laser crystallization
method makes it possible to control the local temperature inside the material and avoid
random nucleation [36]. The ability to form and control the dynamics of changes in the
temperature distribution T(t, r) inside the material is very important for the opportunity
to control the morphology of the laser-written structure inside the glass matrix [22,32,37].
Thus, a deep understanding of the thermal processes inside glass-forming materials under
fast laser thermal perturbations is required. In this paper, we focus on local temperature
changes, especially the local cooling rate −R(t, r) in the focal region during laser-writing
processes in a glass matrix (where R(t, r) is the rate of temperature change).

Femtosecond laser-induced microstructuring is a promising tool because the structures
induced by femtosecond laser pulses can be even smaller than the optical diffraction limit
of the beam focusing since multiphoton absorption is most effective in the central part of
the beam’s focus. Typically, in laser-induced microstructuring, the laser pulse duration
τlaser is on the order of 100 fs, and the radiation wavelength is about 1 µm. When a
transparent material is irradiated with a powerful femtosecond laser pulse focused into
a micro-sized focusing zone, multiphoton absorption of the laser radiation energy via
electrons of the irradiated material occurs. The energy of the electrons in the laser focus
increases sharply during τlaser due to electron–photon interaction. The electrons then
transfer their energy to the lattice through electron–phonon interaction. The thermalization
process takes approximately tens or hundreds of picoseconds [6,10,38,39]. Consequently,
the duration of heating pulses τp that heat the material can be on the order of tens to
hundreds of picoseconds. Thus, the material can be locally heated above the glass transition
temperature Tg and melting temperature Tm. Heat then spreads through the material, and
the hot focal zone is rapidly cooled below Tg.

In this article, we will consider laser pulses of moderate energy Ep (in the range
10–100 nJ), which is sufficient to locally heat the material well above the glass transition
temperature Tg but not sufficient to destroy the material with the formation of voids. Thus,
the intensity of the laser pulses considered in this article is below the material damage
threshold, which, for example, is about 1016 W/cm2 for silica glass [40]. We focus on
micrometer-scale local thermal perturbations caused by laser pulses near or below the
threshold ionization intensity of a material. The threshold ionization intensity of most
transparent solids ranges from 1013 to 1014 W/cm2 for light with a wavelength of about
1 µm [41,42]. For example, the threshold intensity in silica glass and similar glass-forming
materials is about 1013 W/cm2 for light pulses with a wavelength of about 1 µm and a
duration of 100 fs [41].

Thus, we will consider thermal processes in dielectric glasses below the threshold
intensity of ionization of the material and in the time interval after electron–phonon ther-
malization, when there is no electron-hole plasma. Thus, we are interested in changes in
the lattice temperature on a time scale outside the time interval when a multi-temperature
model is usually considered [12–14]. In fact, we are interested in changes in lattice temper-
ature that affect the structure of the material at moderate laser pulse energies and time t
exceeding the electron–phonon thermalization time.

The initial structure of glass-forming materials is not completely restored after the
rapid heating–cooling cycle, which leads to a change in the local properties of the material
in rapidly cooled areas. The local structure, specific volume, density, Rayleigh scattering
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loss, and refractive index of glass-forming materials significantly depend on the local
cooling rate [19,43,44]; see Figure 1.
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Figure 1. Schematic diagram of the specific volume V as a function of temperature T for glass-forming
materials at different cooling rates of −R1 and −R2. Liquid structures freeze to a glassy state with
V2(R2) > V1(R1) at |R 2|> |R 1|.

Thus, we focus on the dynamics of the temperature distribution T(t, r) and study the
local cooling rate −R(t, r) near the focal region during laser-induced microstructuring.
Measurements of the temperature distribution at the focus of the laser beam can be carried
out using micro-Raman spectroscopy [45–47]. However, the time resolution of Raman
spectroscopy (with a measuring pulse duration of about 10 ns and a repetition rate of 1 kHz)
is not sufficient to detect ultrafast changes in the local temperature T(t, r). We found that the
local cooling rate −R(t, r) after the end of the heating pulse can reach more than 1011 K/s in
a thin layer around the focus of the laser beam. In fact, resolving such ultrafast temperature
changes at the periphery of the hot focal zone requires a temporal and spatial resolution of
at least about 0.1 ns and 10 nm, respectively, since the cooling rate −R(t, r) reaches about
600 GK/s in a narrow layer around the hot zone at the laser focus (see below). Thus, the
maximum change in the glass structure occurs at the periphery of the focal region (where
the material undergoes ultrafast quenching). In fact, the laser microstructuring of glasses
makes it possible to form micron-sized domains that are close to spherical or ring-shaped,
with a modified glass structure at the periphery of the domains [19,33,35,39,45,48–52]. For
example, the local modification of silver-doped phosphate glasses with laser pulse energies
Ep in the range of 10–100 nJ led to the formation of micron-sized ring-shaped domains
due to the aggregation of silver nanoclusters at the periphery of the domains [48]. Laser
pulse energy Ep and pulse repetition rate play an important role in the microstructuring of
glass-forming materials. In fact, laser pulses with a sufficient repetition rate can provide
cumulative heating near the focus of the laser beam. In this article, we will focus on the
effect of single laser pulses (the effect of repetition rate will be discussed in a separate
article).

The temperature change associated with the heating pulse is on the order of ∆T = Ep/Cloc,
where Cloc = ρcpV0 and V0 are the heat capacity and volume of the heating zone, and ρ and
cp are the density and specific heat capacity, respectively, of the material. The thermal effect
caused by elastic deformations is negligible compared to ∆T, at least at a moderate Ep, in the
range of, say, 10–100 nJ for a focal region with a radius of about 1 µm. Indeed, the thermoelastic
pressure in the hot zone is less than the maximum pressure response pmax = KBαV∆T to the
temperature change ∆T at constant volume, where KB and αV are the bulk modulus and
the volumetric thermal expansion coefficient. However, the volume of the hot zone is not
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rigidly fixed by the material surrounding this zone. In fact, a pressure wave is created around
the hot zone [53,54]. In this case, the thermoelastic pressure is even less than pmax. Thus,
the elastic energy associated with the thermoelastic pressure in the hot zone of volume V0 is
less than ETE = 1

2 KB(αV∆T)2V0. Therefore, the relative effect associated with thermoelastic
deformations does not exceed ETE/Ep = 1

2 KB(αV)
2∆T/ρcp. For example, for sodium-lime-

silicate glasses with the composition Na2O·2CaO·3SiO2, ETE/Ep is about 1% at ∆T = 2000 K,
KB = 55 GPa, ρ = 2.8 g/cm3, cp = 1.14 J/gK, αV = 3α, and linear thermal expansion α =
7.7·10−6 1/K [55–59]. This ratio is even lower for borosilicate glasses with a low coefficient of
thermal expansion [60]. For example, for borosilicate glasses such as Pyrex, the ETE/Ep ratio is
about 0.1% at ∆T = 2000 K, KB = 33 Gpa, ρ = 2.23 g/cm3, cp = 1.1 J/gK, and α = 3.3·10−6

1/K [60–63]. However, ETE becomes comparable with Ep at laser pulse energies approximately
two orders of magnitude higher than those considered in this work. We are interested in local
temperature changes in a micron-sized hot zone at t > τp, when the pressure waves created
around the hot zone are already at a distance of more than 1–2 µm from the hot zone. However,
at the same time, the front of the temperature change extends only about ten nanometers from
the periphery of the hot zone. Thus, we consider the change in local temperature after the local
pressure in the hot zone has almost stabilized. For example, in silicate glasses at t = 0.5 ns, the
distance tVL is about 3 µm at the longitudinal speed of sound VL ≈ 6·103 m/s [58] and

√
tD0 ≈

10 nm at the thermal diffusion coefficient D0 of about 3·10−7 m2/s [56,62,64].
It Is noteworthy that an important property of glass-forming materials is the long-term

relaxation of the specific heat capacity with rapid changes in temperature. Thus, the heat
capacity of glass-forming materials must be considered as a function of time cdyn(t) [65–67]. In
fact, if a glass-forming material is heated to a liquid state with heat capacity cL from a solid glassy
state with heat capacity cS, then the heat capacity of the material does not change immediately
with the change in temperature but slowly relaxes from cS to cL; see below. The long-term
relaxation of the dynamic heat capacity cdyn(t) of glasses is due to the slow exchange of energy
between different degrees of freedom in glasses. Thus, the thermal response of glass-forming
materials to a thermal perturbation at time t depends on the temperature at earlier times. The
effect of the long-term relaxation of dynamic heat capacity significantly affects the dynamics
of local temperature changes T(t, r) [68,69]. In turn, the rate of change in local temperature
T(t, r) can significantly affect the microstructuring of glass-forming materials [19,37,43,44,70].
An experimental study of the dynamics of the temperature distribution T(t, r) inside a glass
matrix under the action of fast laser thermal perturbations is very difficult. Therefore, it is
necessary to develop theoretical models of thermal processes occurring during the laser-induced
structuring of glasses. In this paper, we will focus on modeling such thermal processes, taking
into account the relaxation effect of the dynamic heat capacity cdyn(t). The dynamic behavior of
glass-forming materials under fast local thermal perturbations can be described using the integro-
differential heat equation with “memory” [68,69]. This equation has an analytical solution, at
least in spherical, cylindrical, and planar geometries [68,69,71]. This work aims to determine
the dynamics of local temperature changes, especially the local rate of the temperature change
R(t, r) associated with laser-induced thermal excitations during laser processing of glasses.
An analytical method for determining T(t, r) and R(t, r) has been developed. The knowledge
obtained can be useful for various technologies related to laser-induced microstructuring.

In the first part of the article, the heat equation with dynamic heat capacity cdyn(t)
is considered. An analytical solution to this equation in general form was presented
in our previous work [69], and then this method was applied to describe local thermal
disturbances in supercooled glass-forming liquids and polymers during the nucleation
of the crystalline phase [70]. We are currently using this method to study the rate of
temperature change R(t, r) inside glasses under local fast laser excitations during laser-
induced microstructuring. An analysis of the dynamic heat capacity cdyn(t) of glass-forming
materials was conducted, and an analytical solution of the heat equation with dynamic
heat capacity for a spherically symmetric problem was constructed. Then, the temperature
distribution T(t, r) was calculated for glasses with dynamic heat capacity cdyn(t) under
local fast laser excitations. Examples with borosilicate and sodium-lime-silicate glasses
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are considered at different heating pulses and dynamic heat capacity parameters. Finally,
the local distribution of the cooling rate −R(t, r) and its influence on the microstructuring
processes of glasses is discussed.

2. Heat Equation with Dynamic Heat Capacity

Since the pioneering work of Birge and Nagel [65], the dynamic heat capacity cdyn(t) of
glass-forming materials as a function of frequency (or time t) has been intensively studied.
For such studies, heat capacity spectroscopy can be used [66,67]. The time dispersion of the
dynamic heat capacity cdyn(t) can be described within the framework of linear response
theory [72], which is similar to the time dispersion of the dielectric constant [73]. Then, heat
transfer in the glass-forming material can be described using an integro-differential heat
equation [68,69]. In the case of spherical geometry and zero initial conditions, this heat
equation can be represented in the following form [68,69]:

∂

∂t

∫ t

0
ρcdyn(t − τ)T′(τ, r)dτ − λ∆T(t, r) = Φ(t, r), (1)

where Φ(t, r) is the volumetric heat flux density, T′(t, r) = ∂
∂t T(t, r), ∆ is the Laplacian,

and λ and ρ are the thermal conductivity and density of the material. Equation (1) has an
analytical solution for homogeneous boundary conditions; see below.

2.1. Dynamic Heat Capacity of Glass-Forming Materials

The dynamic heat capacity cdyn(t) as a function of time can be represented as a
continuous sum of exponential decays, since cdyn(t) is a monotonically relaxing function of
time [68,69,74]:

cdyn(t) = c0 − (c0 − cin)
∫ ∞

0
H(τ0)exp(− t/τ0)dτ0, (2)

where cin and c0 are the initial and final (equilibrium) heat capacities. cdyn(t) → cin as t → 0
and cdyn(t) → c0 as t → ∞. In fact, cin = cS and c0 = cL if the material is heated from a
solid glassy state to a liquid one. The distribution function H(τ0) of relaxation times τ0 can
be found using broadband heat capacity spectroscopy [67]; for details, see [68,69,71]. The
dynamic heat capacity cdyn(t) is usually described using the Kohlrausch–Williams–Watts
stretched exponent exp

(
−(t/τK)

β
)

for 0 < β ≤ 1, where the Kohlrausch relaxation time τK
and constant β characterize the relaxation time spectrum of the material [44,75,76]. In this
case,

cdyn(t) = c0

[
1 − ε0exp

(
−(t/τK)

β
)]

, (3)

where ε0 = (c0 − cin)/c0. Usually, ε0 is about 0.3–0.5 [67,77]. For example, if β = 0.5,
then H(τ0) = exp(−τ0/4τK)√

4πτKτ0
[75,76]. Thus, cdyn(t) can be approximately represented by

Equation (4) for a sufficiently large finite interval [τmin, τmax]:

cdyn(t, τK) ≈ c0

[
1 − ε0

∫ τmax

τmin

exp(−τ0/4τK)√
4πτKτ0

exp(− t/τ0)dτ0

]
, (4)

where τK is a function of temperature. The function τK(T) can be obtained from the
Vogel–Fulcher–Tammann–Hesse (VFTH) relation measured using broadband heat capacity
spectroscopy [67]:

fmax = f0exp[−B/(T − T0)], (5)

where fmax is the frequency corresponding to the maximum value of the temperature
dependence of the imaginary part of the dynamic heat capacity cdyn(ω); ω = 2π f is
the temperature modulation frequence; and f0, B, and T0 are the VFTH parameters. In
fact, τKω is about 1. More precisely, τK for different T can be obtained from the relation
τK = 0.737

2π f max
[68]. However, the shape of the distribution function H(τ0) has insignificant

effect on T(t, r), since the effect due to the time dispersion of the dynamic heat capacity
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reaches saturation with increasing τ0; see below. Thus, it is sufficient to consider the
dynamic heat capacity with the Debye relaxation law (see Equation (6)) for sufficiently
large τ0. Below, we will show that this result practically coincides with the result obtained
after averaging over the distribution function H(τ0). In the case of the Debye relaxation
law, cdyn(t) is equal to

cdyn(t) = c0[1 − ε0exp(− t/τ0)]. (6)

In this case, the integro-differential heat equation, Equation (1), is transformed into Equation
(7), which can be solved analytically. After this, solutions for different τ0 can be averaged
using the distribution function H(τ0).

2.2. Analytical Solution of the Heat Equation with Dynamic Heat Capacity

Let us consider the temperature distribution T(t, r) after a single laser pulse in a
micron-sized focal zone. A relatively small change in the thermal conductivity of the glass
matrix around the hot focal zone does not affect the dynamics of the temperature distribu-
tion in the hot focal zone. In fact, for the glass-forming materials under consideration, λ
varies insignificantly with temperature and is about 1 W/m2K over a wide temperature
range [64,78,79]. Thus, it is assumed that the thermal conductivity λ of the glass matrix
does not depend on temperature. However, the change in dynamic heat capacity cdyn(t)
from cS to cL during heating is significant.

As a first step, we consider the Debye relaxation law; see Equation (6). Thus, for
spherical geometry, from Equation (1), we obtain Equation (7):

∂

∂t
T(t, r)− D0∆T(t, r) =

Φ(t, r)
ρc0

+ ε0
∂

∂t

∫ t

0
exp

(
− t − τ

τ0

)
T′(t, r)dτ, (7)

where D0 = λ/ρc0 and the spherically symmetric heat source Φ(t, r) = Φ(r)F(t) is dis-
tributed in a spherical volume of radius r0. The decomposition of Φ(t, r) into the product
Φ(r)F(t) is common for laser heating. Furthermore, after the end of the heating pulse, the
temperature distribution T(t, r) does not depend on the shape of F(t); see below. In this
article, we are interested in the dynamics of the temperature distribution T(t, r) after the
heating pulse, when the shape of the heating pulse does not matter.

Consider Equation (7) under the initial conditions Φ(t, r) = 0 and T(t, r) = Tin for
t ≤ 0, where Tin is the initial temperature in the glass matrix. Let T(t, r) be a bounded
function and T(t, R0) = Tin for R0 ≫ r0. Since we are considering a single heating pulse, it
does not matter how large the parameter R0 is, as long as R0 ≫ r0. Indeed, the temperature
change is localized in a hot zone about a few micrometers in size; see below. The solution
to this boundary value problem can be represented in the form of the following series (for
details, see Appendix A):

T(t, r) = Tin + ∑n=1 ψn(t)
sin(πnr/R0)

r
, (8)

where the functions ψn(t) are determined by Equation (9).

ψ′
n(t) +

ψn(t)
τn

=
ΦnF(t)

ρc0
+ ε0

∂

∂t

∫ t

0
exp

(
− t − τ

τ0

)
ψ′

n(τ)dτ, (9)

where Φn = 2
R0

∫ R0
0 rΦ(r)sin(πnr/R0)dr and τ−1

n = D0(πn/R0)
2. The functions ψn(t)

satisfying Equation (9) are presented in Appendix A.
The spatial distribution Φ(r) of the heating power Φ(t, r) can be arbitrary. For example,

we consider a heat source uniformly distributed in a volume of radius r0 with volumetric
density Φ0 (in W/m3); then,

Φn = 2R0Φ0
sin(πnr0/R0)− (πnr0/R0) · cos(πnr0/R0)

(πn)2 . (10)
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In fact, the distribution of the intensity of light radiation in the spot of a focused
laser beam, depending on the distance r from the center of the spot, can have a Gaussian
bell-shaped character; see Figure 2. However, the intensity sufficient to induce nonlinear
processes; for example, multiphoton absorption is located close to the center of the laser
beam spot [5]. Thus, the model of a heat source uniformly distributed in a volume of
radius r0 with a sharp drop at the periphery is more realistic than the bell-shaped Gaussian
distribution.
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Figure 2. Schematic diagram of the distribution of the intensity of light radiation in a spot of a focused
laser beam depending on the distance r from the center of the spot (dashed line) and the intensity
distribution sufficient to induce nonlinear processes such as multiphoton absorption in a spot with
radius r0 (solid line).

The shape of the change in heating power over time can be bell-shaped or more
complex. However, this shape is not significant for the temperature distribution T(t, r) at
t > τp; see below. For model calculations, we will use a heating pulse of a half-sinusoidal
shape, which is slightly different from the bell-shaped one. Thus, F(t) = sin(πt/τp) for
0 ≤ t ≤ τp and F(t) = 0 for t > τp.

3. Temperature Distribution T(t, r) in Glasses under Local Thermal Perturbations

For example, let us consider the two most common types of silicate glasses: sodium-
lime-silicate glasses (Na2O-CaO-SiO2), as the most widely used of all industrial glasses,
known for their low cost and availability, and borosilicate glasses (B2O3-SiO2), which
are widely used due to their low coefficient of thermal expansion and high resistance to
chemical attack. Sodium-lime-silicate glass with the composition Na2O·2CaO·3SiO2 and
borosilicate glass of the Pyrex type were chosen as model systems due to the availability
of the necessary parameters [56,57,60–64]. The thermal parameters of these glasses are
collected in Table 1.

Table 1. Thermal parameters of silicate glasses used for model calculations.

Substance

Density in Solid
State

ρ
g/cm3

Specific Heat
Capacity in the

Solid State
cp

J/g·K

Volumetric Heat
Capacity in Solid

State
cS

J/m3K

Volumetric Heat
Capacity in Liquid

State
cL

J/m3K

Dynamic Heat
Capacity Parameter

ε0=
(cL−cS)/cL

Thermal
Conductivity

λ
W/mK

Sodium-lime-
silicate glass 2.8 1.14 3.2·106 4.4·106 0.273 1

Borosilicate glass 2.23 1.1 2.45·106 3.8·106 0.355 1

3.1. Influence of the Shape and Duration of Heating Pulses on T(t, r)

Thus, for model calculations, we use a heating pulse with a power density Φ0sin(πt/τp),
acting during the time interval τp in a spherical region with a radius r0 = 1 µm. Let us com-
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pare the results for heating pulses with F(t) with half-sinusoidal and rectangular shapes; see
Figures 3 and 4. Let the initial temperature Tin = 300 K, τp = 300 ps, Ep = 15 nJ, and the vol-
ume of the spherical heating zone V0 = 4π

3 r3
0. Thus, Φ0 is equal to π

2 Ep/τpV0 and Ep/τpV0 for
half-sinusoidal and rectangular heating pulses, respectively. In this case, the energy of these pulses
is the same and equal to Ep. The temperature distribution T(t, r) can be calculated according to
Equations (8) and (9) at various τ0.
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Figure 3. Temperature distribution 푇(푡 , 푟) in the hot zone depending on the distance 푟 at 푡 = 10 
ns (a) and 푡 = 100 ns (b) for heating pulses of half-sinusoidal shape (filled symbols) and rectangu-
lar shape (open symbols) in sodium-lime-silicate glass at 푟 = 1 µm, 휏 = 300 ps, 퐸 = 15 nJ, and 
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Figure 3. Temperature distribution T(t1, r) in the hot zone depending on the distance r at t1 = 10 ns (a) and
t1 = 100 ns (b) for heating pulses of half-sinusoidal shape (filled symbols) and rectangular shape (open
symbols) in sodium-lime-silicate glass at r0 = 1 µm, τp = 300 ps, Ep = 15 nJ, and Tin = 300 K (τ0 = 0,
0.1 µs, and 10 µs—squares, circles, and triangles, respectively).
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Figure 4. Time dependence of T(t, 0) in the center of the hot zone during (a) and after (b) the heating
pulses of half-sinusoidal shape (filled symbols) and rectangular shape (open symbols) at the same
parameters as in Figure 3 (τ0 = 0, 0.1 µs, and 10 µs—squares, circles, and triangles, respectively).
Inset (a) shows pulse power as a function of time.

For example, for sodium-lime-silicate glass (see Table 1), T(t, r) at τ0 = 0, 0.1 µs, and
10 µs is represented in Figures 3 and 4. The temperature distribution T(t, r) is calculated at
R0 ≫ r0 (for example, at R0 = 30 µm). It follows from direct calculations that the result
does not depend on R0, at least on the time scale t < R0

2/4D0, where R0
2/4D0 for the

glasses under consideration is about 3–4 ms. However, we are interested in changes in
the temperature distribution T(t, r) on a time scale of microseconds and less when the
temperature changes are localized within a few micrometers; see Figure 3.

The influence of the time dispersion of the dynamic heat capacity cdyn(t) is significant;
see Figures 3 and 4. The difference between equilibrium (τ0 = 0) and non-equilibrium
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(τ0 ̸= 0) solutions T(t, r) increases with the growth of τ0. The shape of the change in heating
power over time is significant only during the time interval (0, τp); see Figure 4a. However,
this shape is not significant at t > τp; see Figures 3 and 4b.

The duration of the heating pulses is also not significant for the temperature distribution
T(t, r) at t > τp; see Figure 5. For example, compare T(t, r) for pulses with τp = 10 ps and
300 ps and the same parameters as in Figure 3. The duration of heating pulses is significant
only during the time interval (0, τp); see Figure 5a. However, this duration is not significant at
t > τp; see Figure 5b.
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Figure 5. Time dependence of T(t, 0) in the center of the hot zone during (a) and after (b) the heating
pulse of half-sinusoidal shape at τp = 10 ps and 300 ps, represented by filled and open symbols,
respectively, at the same parameters as in Figure 3 (τ0 = 0, 0.1 µs, 1 µs, and 10 µs—squares, circles,
triangles up, and triangles down, respectively). Inset (b) shows the pulse power as a function of time
for short and long pulses, represented by dotted and solid lines, respectively.

Thus, the temperature T(t, 0) at the center of the hot zone increases very quickly over the
time interval (0, τp) from Tin to the maximum value Tmax and then relaxes relatively slowly
on a microsecond time scale; see Figures 4 and 5. The influence of the time dispersion of
dynamic heat capacity is significant on time scales of several hundred nanoseconds or less. The
solution associated with the dynamic heat capacity (at τ0 ̸= 0) tends to the classical solution
(corresponding to τ0 = 0) when t reaches approximately 1 µs; see Figures 4b and 5b.

3.2. Comparison with the Fundamental Solution of the Classical Problem

It is often believed that the hot focal spot should spread and cool down according to
the law that r ∼ (D0t)1/2 and T ∼ t−3/2, respectively [19,46,80,81]. This assumption is
based on the fundamental solution of the Fourier heat equation, which can be represented
by the following function [82]:

G
(

t,
→
r
)
= θ(t) exp

(
−
∣∣∣∣→r ∣∣∣2/4D0t

)
/(4πD0t)3/2, (11)

where θ(t) is the Heaviside unit step function and r is the distance from the instantaneous
point heat source. However, for a non-point heat source, the approximation of T(t, r)
by this function is not satisfactory. The real dependence T(t, r) differs significantly from
Equation (11) [45]. As expected, the temperature perturbation δT(t) = T(t, 0)− Tin in the
center of the heating zone relaxes in a time of the order of r2

0/D0. However, δT(t) remains
near the maximum value δT

(
τp
)

at t < 0.1 µs (see Figure 6), and only then does δT(t)
relax over a time period on the order of r2

0/D0. In contrast to the estimate based on the
fundamental solution of the Fourier heat equation, the temperature perturbation δT(t)
relaxes approximately as T ∼ t−1 and not as T ∼ t−3/2; see Figure 6. In order to obtain
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the correct temperature distribution T(t, r) using the fundamental solution, it is necessary
to integrate the thermal response over the time interval (0, τp) and the volume of the
heating zone. In fact, the solution of the generalized Cauchy problem for the classical heat
equation with the heat source function Φ(t, r) under zero initial conditions is expressed
by the classical Poisson formula (see Equation (12)), where G

(
t,
→
r
)

is the fundamental
solution of the classical heat equation [82]. This fundamental solution is represented by
Equation (11).

Thus, for the heat source Φ(t, r) considered above, distributed in a volume with radius
r0 and acting on the time interval (0, τp), we obtain the temperature distribution TFS(t, r);
see Equation (12).

TFS(t, r) =
∫ r0

0

∫ τp

0

∫ π

0

Φ0F(τ)
ρc0

G
(

t − τ,
→
r −

→
ξ

)
2πsin(θ)ξ2dξdτdθ, (12)

where (
→
r −

→
ξ )

2
= r2 + ξ2 − 2rξcos(θ). Integration in Equation (12) was carried out using

standard mathematical engineering software Mathcad 15.0. Integration over the variables ξ
and θ was carried out directly using Mathcad software. However, to avoid singularity, time
integration was replaced with a discrete sum so that the difference between t and τ was
at least 0.3 ps. In fact, a sum of 30 terms was enough to obtain good accuracy with a sum
normalization factor of 0.969 required to normalize the total energy of the heating pulse.
In addition, the integration over all variables can be carried out directly using Mathcad
software for t > 2τp, which is far from the singularity of the fundamental solution.

As expected, the solution TFS(t, r) completely coincides with the temperature distribu-
tion T(t, r), calculated using Equations (8) and (9) at τ0 = 0; see Figure 6. In contrast, the
simplified estimate T (t, r) = Ncor

Φ0
ρc0

G
(

t,
→
r
)

τpV0 is far from the correct TFS(t, r) even for
any correction factor Ncor, see Figure 6.
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(b) shows the initial fragments of TFS(t, 0) and T(t, 0) at τ0 = 0.

Thus, the correct calculation of the temperature distribution T(t, r) using the fundamental
solution of the classical heat equation (without time dispersion) gives the same result as the
calculation using Equations (8) and (9) at τ0 = 0. However, using Equations (8) and (9), it
is possible to calculate the temperature distribution T(t, r) for materials with dynamic heat
capacity (at τ0 ̸= 0). It turns out that T(t, r) obtained at τ0 ̸= 0 increases with τ0 and tends to
saturation at τ0 about 10 µs; see Figure 6. For this reason, the shape of the distribution function
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H(τ0) has an insignificant effect on T(t, r). Next, we consider the influence of this distribution
on T(t, r); see Figures 7 and 8.

3.3. Dependence of T(t, r) on the Distribution of Relaxation Times

The influence of the time dispersion of the dynamic heat capacity is most pronounced
at the beginning of the heating process on a nanosecond time scale; see Figure 6b. This effect
is significant already at τ0 about 0.1 µs, increases with increasing τ0, and it reaches saturation
at τ0 above r0

2/D0, where r0
2/D0 is about 4 µs at r0 = 1 µm and D0 = 2.6·10−7 m2/s for

borosilicate glass. In fact, in glasses, the relaxation times τ0 are distributed over a wide
range. The parameters of the VFTH relationship (see Equation (5)) can be obtained from
measurements of glass transition processes depending on the cooling rate. For example, we
use these parameters for borosilicate glass [63], sodium-lime-magnesium-silicate glass [83],
and sodium-silicate glass [84]. The relaxation parameters of these silicate glasses used for
model calculations are collected in Table 2.
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[63] at 푇 = 700 K and 1000 K, which are represented by diamonds and stars, respectively. 
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Figure 7. T(t1, r) depending on the distance r at t1 = 100 ns (a) and time dependence T(t, 0) in
the center of the hot zone (b) at the same parameters as in Figure 3 (τ0 = 0 and 10 µs—squares
and circles). The temperature distribution TAV(t, r) is averaged using the distribution function
H(τK(Tint)) obtained from [84] at Tint = 700 K and 1000 K—diamonds and stars, as well as from [83]
at Tint = 700 K and 1000 K, which are represented by triangles facing up and triangles facing down,
respectively.
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Figure 8. T(t1, r) depending on the distance r at t1 = 100 ns (a) and time dependence T(t, 0) in the
center of the hot zone (b) for borosilicate glass at r0 = 1 µm, τp = 10 ps, and Ep = 15 nJ Tin = 300 K
(τ0 = 0, 0.1 µs, 1 µs, 10 µs, and 100 µs—squares, circles, triangles up, triangles down, and crosses).
The solution TAV(t, r) averaged using the distribution function H(τK(Tint)) obtained from [63] at
Tint = 700 K and 1000 K, which are represented by diamonds and stars, respectively.
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Table 2. Relaxation parameters of silicate glasses used for model calculations.

Substance f0
Hz

B
K

T0
K

Borosilicate glass 5·1017 1.9·104 392

Sodium-lime-magnesium-
silicate glass 1·1014 1.1·104 480

Sodium-silicate glass 1.24·1014 1.29·104 407

The dynamic heat capacity cdyn(t) can be modeled using Equation (4), where τK(T) =
0.737

2π f max
can be obtained from fmax (see Equation (5)) using the relaxation parameters; see Table 2.

Thus, we obtain the temperature distribution TAV(t, r) averaged using the distribution function
H(τK(Tint)), where τK(Tint) is obtained at several intermediate temperatures between Tin and
Tmax (where Tmax is the maximum value of the temperature T(t, 0) at the center of the hot
zone). For example, set Tint = 700 K and 1000 K and consider the relaxation parameters for
borosilicate glass [63], sodium-lime-magnesium-silicate glass [83], and sodium-silicate glass [84],
see Table 2. The results are presented in Figures 7 and 8. The difference between T(t, r),
obtained for sufficiently large τ0 ≥ 10 µs, and TAV(t, r), obtained for τK(700 K) and τK(1000 K),
is insignificant; see Figures 7 and 8. Since the influence of the time dispersion of the dynamic
heat capacity reaches saturation at τ0 about 10 µs, the shape of the distribution function H(τ0)
has little effect on the temperature distribution. Thus, the influence of the time dispersion of
the dynamic heat capacity on the temperature distribution T(t, r) can be calculated for a fixed,
sufficiently large τ0.

The influence of time dispersion of dynamic heat capacity is significant in both borosil-
icate and sodium-silicate glasses. Now, let us consider the influence of the size of the
heating zone r0 on the temperature distribution T(t, r).

3.4. Dependence of T(t, r) on the Size of the Heating Zone

For example, let us compare the temperature distributions T(t, r) at r0 = 1 and
r0 = 2 µm for borosilicate glass; see Table 1. To obtain the same thermal response
value, let us set Ep = 120 nJ at r0 = 2 µm, increasing the energy in proportion to the volume
of the heating zone. Thus, in both cases, we obtain the same amplitudes of the temperature
response to heating pulses; see Figures 8 and 9. As expected, the temperature T(t, 0) in
the center of the heating zone relaxes in a time period of the order of r2

0/D0, which for
borosilicate glass is about 15 µs at r0 = 2 µm and D0 = 2.6·10−7 m2/s. For comparison,
T(t, 0) relaxes four times faster at r0 = 1 µm than at r0 = 2 µm; see Figures 8b and 9b. As
the size of the heating zone increases, the saturation of the influence of the time dispersion
of the dynamic heat capacity on T(t, r) shifts towards larger values of τ0. For example,
compare T(t, r) at τ0 = 1 µs for r0 = 1 and r0 = 2 µm; see Figures 8 and 9.
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Figure 9. 푇(푡 , 푟) depending on the distance 푟 at 푡 = 300 ns (a) and time dependence of 푇(푡, 0) 
in the center of the hot zone (b) for borosilicate glass at 푟 = 2 µm, 휏 = 300 ps, 퐸 = 120 nJ, 푇 = 
300 K (휏 = 0, 0.3 µs, 1 µs, 10 µs, and 100 µs—squares, circles, triangles facing up, triangles facing 
down, and diamonds). 

4. Cooling Rate Distribution −퓡(풕, 풓) and Its Influence on Microstructuring Processes 
of Glasses 

Now consider the spatial distribution of the rate of temperature change ℛ(푡, 푟). Due 
to thermal expansion, the size of the heating zone changes with temperature by about 10 
nm or less. We neglect these changes with respect to 푟  . Let us consider the rate of 

Figure 9. T(t1, r) depending on the distance r at t1 = 300 ns (a) and time dependence of T(t, 0) in the
center of the hot zone (b) for borosilicate glass at r0 = 2 µm, τp = 300 ps, Ep = 120 nJ, Tin = 300 K
(τ0 = 0, 0.3 µs, 1 µs, 10 µs, and 100 µs—squares, circles, triangles facing up, triangles facing down,
and diamonds).

4. Cooling Rate Distribution −R(t, r) and Its Influence on Microstructuring Processes
of Glasses

Now consider the spatial distribution of the rate of temperature change R(t, r). Due
to thermal expansion, the size of the heating zone changes with temperature by about
10 nm or less. We neglect these changes with respect to r0. Let us consider the rate of
temperature change R(t, r) = ∂T(t,r)

∂t due to thermal diffusion. This temperature change
affects the physical properties of the material. We will focus on very fast (about 109 K/s
or more) local temperature changes that have the greatest impact on the microstructuring
process and will study the effect associated with the time dispersion of the dynamic heat
capacity. It is worth noting that this effect is significant even well above the glass transition
temperature Tg.

For example, the rate of temperature change R(t, r) for borosilicate glass at r0 = 2 µm,
τp = 300 ps, Ep = 120 nJ and various τ0 values is presented in Figures 10 and 11. Note that
the rate of temperature change R(t, r) is greatest near the periphery of the hot zone; see
Figure 10a. The cooling rate −R(t, r) is about 600 GK/s at r1 = 1.98 µm and t1 = 0.36 ns;
see Figure 11a. However, in the center of the heating zone, the cooling rate −R(t, 0) does
not exceed 0.6 GK/s; i.e., −R(t, 0) is three orders of magnitude less than the cooling rate at
the periphery—see Figure 11. Therefore, the local structure of glass in the center of the hot
zone should differ significantly from the structure at the periphery of the heating zone after
laser modification. This conclusion is consistent with experiments [19,33,35,39,45,48–52].
However, the effect associated with dynamic heat capacity (at τ0 ̸= 0) is significant both in
the center and at the periphery of the heating zone. Indeed, the maximum cooling rate is
approximately 2.5 times greater at τ0 ̸= 0 than at τ0 = 0 both at the periphery and in the
center of the heating zone; see Figure 11.
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Figure 10. Rate of temperature change ℛ(푡 , 푟) depending on the distance 푟 at the periphery of the 
hot zone at 푡 = 0.5 ns (a) and time dependence of 푇(푡, 푟 ) at 푟 = 1.98 µm (b) at the same param-
eters as in Figure 9 (휏 = 0, 0.3 µs, 1 µs, 10 µs, and 100 µs—squares, circles, triangles up, triangles 
down, and diamonds). Inset (a) shows ℛ(푡 , 푟) as a function of distance 푟 at 푡 = 100 ns for differ-
ent 휏 . 

Figure 10. Rate of temperature change R(t1, r) depending on the distance r at the periphery of the
hot zone at t1 = 0.5 ns (a) and time dependence of T(t, r1) at r1 = 1.98 µm (b) at the same parameters
as in Figure 9 (τ0 = 0, 0.3 µs, 1 µs, 10 µs, and 100 µs—squares, circles, triangles up, triangles down,
and diamonds). Inset (a) shows R(t1, r) as a function of distance r at t1 = 100 ns for different τ0.
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Figure 11. Time dependence of the cooling rate −R(t, r1) at r1 = 1.98 µm (a) and r1 = 0 (b) at the
same parameters as in Figures 9 and 10 (τ0 = 0, 10 µs, and 100 µs—squares, circles, and triangles).

Let us consider the cooling rate −R(t, r) in a thin shell in the region from 0.95r0
to 0.99r0. As we have established for borosilicate and sodium-lime-silicate glasses, ul-
trafast cooling of the material occurs in this region at a rate of more than 1011 K/s; see
Figures 10–13. It is noteworthy that at the beginning of the cooling process (during the
first few nanoseconds), the rate of temperature change R(t, r) is the same for small and
large relaxation times τ0; see Figures 10a and 12a. This means that at the beginning of the
cooling process at the periphery of the hot zone, the shape of the distribution function
H(τ0) does not affect the cooling rate −R(t, r). Therefore, in this case, even at very small
relaxation times τ0, the influence of the time dispersion of the dynamic heat capacity is
significant.
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and 푡 = 100 ns (b) for sodium-lime-silicate glass at the same parameters as in Figure 3 (휏 = 0 µs, 
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Figure 13. R(t1, r) depending on the distance r at the periphery of the hot zone at τ0 = 0.1 µs (a)
and τ0 = 10 µs (b) at the same parameters as in Figure 3 (t1 = 0.5 ns, 1 ns, 5 ns, and 10 ns—squares,
circles, triangles up, and triangles down).

The cooling rate −R(t1, r) reaches a maximum at rmax for a given t1; see Figures 10 and 12.
The rate −R(t, rmax) decreases over time, and the distance rmax at which the rate −R(t, rmax)
is maximum shifts slightly toward the center of the heating zone. However, −R(t, rmax) still
exceeds 2–3 GK/s at t1 = 100 ns; see Figures 10a and 12b. The change in cooling rate−R(t, rmax)
over time for sodium-lime-silicate glass at r0 = 1 µm, τ0 = 10 µs and the same conditions as in
Figure 3 is presented in Table 3. The rate R(t1, r) depending on the distance r at the periphery
of the hot zone for different t1 is shown in Figure 13.
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Table 3. Cooling rate −R(t, r) for sodium-lime-silicate glass at r0 = 1 µm.

Time
t1
ns

Distance
rmax
µm

Cooling Rate
−R(t1,rmax)

GK/s

0.5 0.985 410
1 0.98 170
5 0.94 31
10 0.92 16
50 0.80 4

100 0.70 2.3

Thus, since the local structure of the material strongly depends on the local cooling
rate −R(t, r), the local structure of the material at the periphery of the hot zone changes
significantly relative to the original glass matrix. This modification of glass practically stops
as soon as the local region is cooled below the glass transition temperature Tg. Thus, the
modification process occurs until the temperature T(t, r1) in the local region at r = r1 drops
below Tg. For example, consider the cooling curves calculated at the periphery of the hot
zone for borosilicate (Tg = 900 K [62]) and sodium-lime-silicate glasses (Tg = 840 K [56]);
see Figures 10b and 14, respectively. It should be noted that the effect associated with the
time dispersion of the dynamic heat capacity is significant well above the glass transition
temperature Tg. Indeed, in the case of r0 = 1 µm, the modification process occurs within
approximately 80 ns at r1 = 0.95 µm and τ0 ≥ 1 µs; see Figure 14a. However, without
taking into account the time dispersion of the dynamic heat capacity (at τ0 = 0), this process
occurs in less than 20 ns; see Figure 14a. In the case of r0 = 2 µm, the modification process
occurs during a longer period of about 300 ns at r1 = 1.98 µm and τ0 > 1 µs; see Figure 10b.
However, without taking into account the time dispersion of the dynamic heat capacity (at
τ0 = 0), this process occurs in less than 50 ns; see Figure 10b.
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Figure 14. Time dependence of T(t, r1) at the periphery of the hot zone at r1 = 0.95µm (a) and r1 = 0.98µm
(b) at the same parameters as in Figure 3 (τ0 = 0, 0.1 µs, 1 µs, 10 µs, and 100 µs—squares, circles, triangles
up, triangles down, and diamonds). Inset (a) shows the time dependence of T(t, 0) in the center of heating
zone (at τ0 = 10 µs).

To summarize, we can conclude that the maximum cooling rate exists in the outer
regions of the heating zone in the shell of about (0.97 ± 0.02)r0. The cooling rate reaches
several hundred GK/s in the first nanosecond after the laser pulse. Then, the cooling rate
decreases. However, even 100 ns after the laser pulse, −R(t, r) in the outer shell of the
hot zone still exceeds 1 GK/s. It is noteworthy that in the center of the heating zone, the
cooling rate is three orders of magnitude less than −R(t, r) at the periphery. Since regions
quenched at different cooling rates have different physical properties, strong gradients
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of physical properties should exist in the material predominantly at a distance of about
0.9r0 from the center of the heating zone. This effect is significantly enhanced by the time
dispersion of the dynamic heat capacity.

In conclusion, let us briefly discuss laser microprocessing in the cumulative heating
mode. Typically, cumulative heating is achieved at a laser pulse repetition rate of hundreds
of kHz or more. Usually, this mode operates at frequencies from 200 kHz to 10 MHz [3].
Indeed, the temperature T(t, 0) in the center of the hot zone relaxes in a time of the
order of r2

0/D0, which for the glasses under consideration is about 4 µs at r0 = 1 µm;
see inset in Figure 14a. Thus, in this case, the cumulative effect can be achieved at a
frequency of about 250 kHz or more. Note that the cumulative effect leads to stable average
heating of the material in the heating zone. Thus, the effect of laser pulse repetition can be
approximately simulated by shifting the local temperature distribution T(t, r) upward by
a certain temperature difference ∆T, which increases with the increasing pulse repetition
frequency. It is clear that with increasing ∆T, the modification process will occur over
a longer time interval—see Figure 14—where T(t, r1) should be shifted upward by the
amount ∆T. Then, T(t, r1) in the local region at r = r1 will fall below Tg at a cooling
rate lower than at zero repetition frequency (at ∆T = 0). Consequently, local gradients in
the physical properties of locally modified glass will be smoothed out due to cumulative
heating. The effect of the repetition rate will be discussed in more detail in a separate
article.

5. Discussion

The local temperature distribution T(t, r) and the local cooling rate −R(t, r) deter-
mine the local structure of the glass matrix during laser-induced microstructuring. Thus,
knowledge of the dynamics of the local temperature distribution T(t, r) is very important
for applications associated with local laser heating, for example, for the femtosecond laser
microstructuring of glasses. However, as shown in this article, the dynamics of the local
temperature distribution T(t, r) significantly depends on the time dispersion of the dynamic
heat capacity cdyn(t) of the glass matrix. This work proposes a method for the analytical
calculation of T(t, r) and R(t, r) for glass-forming materials under local fast laser excita-
tions. It is shown that the dynamics of the local temperature distribution T(t, r) caused by a
laser pulse can be described by the heat equation with dynamic heat capacity cdyn(t). This
equation has an analytical solution for a spherically symmetric boundary value problem.
Using this analytical solution, we obtained the temperature distribution T(t, r) and local
cooling rate −R(t, r) for the thermal parameters of borosilicate and sodium-lime-silicate
glasses. In fact, this analytical solution depends on the following relaxation parameters of
the dynamic heat capacity cdyn(t) of the material: relaxation time τ0 and the distribution
function H(τ0), which can be obtained from broadband heat capacity spectroscopy. How-
ever, as shown in this article, the shape of the distribution function H(τ0) has little effect
on T(t, r) and R(t, r), since with increasing τ0, the influence of the time dispersion of the
dynamic heat capacity cdyn(t) reaches saturation. It should be noted that the influence of
the time dispersion of the dynamic heat capacity is most pronounced at the beginning of the
process, when t changes on a nanosecond time scale. We found that this effect is significant
already at a τ0 of about 0.1 µs, increases with increasing τ0, and reaches saturation at τ0
above r0

2/D0. Thus, the influence of the time dispersion of dynamic heat capacity on the
temperature distribution T(t, r) can be calculated for a fixed, sufficiently large τ0 (in fact,
for τ0 on the order of ten or several tens of microseconds, depending on the radius of the
heating zone r0). As expected, the results obtained are very similar for different r0 values.
However, as the size of the heating zone increases, the laser pulse energy Ep must increase
in proportion to the volume V0 of the heating zone in order to obtain the same amplitude
of the local thermal response.

It has been established that the temperature distribution T(t, r) and local cooling rate
−R(t, r) are not affected by the heating pulse duration τp or the shape of the heating pulse.
It should be noted that the temperature perturbation δT(t) = T(t, 0)− Tin in the center of
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the heating zone does not relax as δT ∼ t−3/2, in contrast to the often-used estimate based
on the fundamental solution of the Fourier heat equation. In fact, the heating pulse cannot
be considered as an instantaneous point source of heat. Thus, it is necessary to integrate
the thermal response over the time interval (0, τp) and the volume of the heating zone,
and then the resulting correct solution TFS(t, r) completely coincides with the temperature
distribution T(t, r) found in this article for τ0 = 0. In addition, the solution found in this
article can be used for materials with dynamic heat capacity cdyn(t) at τ0 ̸= 0.

We found that the rate of temperature change R(t, r) is greatest near the periphery of
the hot zone. The cooling rate reaches a maximum of −R(t, rmax) when rmax is slightly less
than r0. It turns out that ultrafast cooling of the material occurs at a rate of more than 1011

K/s in a thin shell in the region from 0.95r0 to 0.99r0. However, in the center of the heating
zone, the cooling rate is three orders of magnitude lower than at the periphery. Thus, the
local structure of glass after laser modification in the center of the hot zone should differ
significantly from the structure at the periphery in a thin shell ∆r of about 0.05 µm, which is
consistent with experiments [19,33,35,39,45,48–52,85]. In fact, the experimentally observed
thin shell at the periphery of the laser beam focus is visually about ∆r/r0 ≈ 10%; i.e., ∆r
is about 0.5 µm at r0 ≈ 5 µm [19,33,35]. Of course, the visual size ∆r is smoothed out due
to the diffraction limit of optical images of laser-induced microbeads. Indeed, for such
laser-induced microbeads, the shell size ∆r is about 0.05 µm in high-resolution scanning
electron microscopy images [49,85]. In addition, the shell size ∆r is smoothed due to the
high-frequency repetition of laser pulses during laser processing in the cumulative heating
mode.

The rate −R ≈ 1011 K/s of ultrafast cooling of the material in a thin shell at the
periphery of the heating zone is sufficient to freeze the liquid structure corresponding to
a temperature Tf that is significantly higher than the initial temperature Tin. In fact, the
difference ∆T = Tf − Tin can be on the order of several hundred K. Indeed, the material
at the periphery of the heating zone is locally quenched-in within a time interval ∆t of
about 10–100 ns; see Figure 14. In this case, the liquid structure of the material should
remain frozen, since the distance

√
∆tDSD of self-diffusion of glass molecules does not

exceed the order of several nanometers with the self-diffusion coefficient DSD of the order
of 10−9 m2/s [64]. Suppose the material is locally heated and then rapidly cooled to the
initial temperature of Tin of the matrix material. Thus, if a rapidly cooled material has
a locally frozen density ρ

(
Tf

)
corresponding to a certain temperature Tf = Tin + ∆T,

then the local density change ∆ρ/ρ is about αV∆T, where αV is the volumetric thermal
expansion coefficient. For example, for borosilicate glasses, ∆ρ/ρ is about 0.2% at ∆T = 200
K, αV = 3α, and linear thermal expansion α = 3.3·10−6 1/K [60]. Then, the local stress can
reach the order of KBαV∆T (about 65 MPa) with a bulk modulus KB = 33 GPa [60,61]. For
sodium-lime-silicate glass, ∆ρ/ρ is about 0.5% at ∆T = 200 K, αV = 3α, and linear thermal
expansion α = 7.7·10−6 1/K [59]. Then, the local stress can reach about KBαV∆T ≈ 250 MPa
with a bulk modulus KB = 55 GPa [55,58]. This local stress can cause a change in the local
birefringence on the order of several percent [86]. A similar change in the local refractive
index, proportional to ∆ρ/ρ, can be caused by a change in the local density [13]. This
estimate is consistent with femtosecond laser anisotropic nanostructuring in transparent
materials for optical data storage [3]. Of course, the stress caused by the laser pulse then
relaxes over time to some residual value. This residual stress may be the subject of a
separate study. In this work, we focus on the unique capability of femtosecond laser
microstructuring deep inside transparent glasses. This possibility can be used for optical
data storage. In fact, changes in the refractive index with changes in local density ∆ρ/ρ
and changes in the birefringence due to local stress are sufficient for data storage [13]. The
locally frozen density ρ

(
Tf

)
depends on the local cooling rate −R(t, r) near the laser beam

focus. The gradients of the local cooling rate −R(t, r) calculated in this work lead to the
gradients of the locally frozen density and optical properties of the material. Such gradients
have been observed at the periphery of the laser beam focus [19,33,35,39,45,48–52,85]. Thus,
we have good agreement with the experiment. However, such experiments were usually
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carried out at different laser pulse repetition rates. In this case, these gradients of physical
properties should be smoothed relative to the case of the single laser pulse considered in
this work. A future direction of research may be the influence of laser pulse repetition rate
on local gradients of locally frozen density and other physical properties.

It is noteworthy that the effect associated with the time dispersion of the dynamic heat
capacity is very significant both in the center and at the periphery of the heating zone. In
fact, the maximum cooling rate is approximately 2.5 times greater at τ0 ̸= 0 than at τ0 = 0
both at the periphery and in the center of the heating zone; see Figure 11.

It is worth noting that at the beginning of the cooling process at the periphery of
the hot zone, the shape of the distribution function H(τ0) does not affect the cooling rate
−R(t, r). In fact, even at a very short relaxation time τ0, the influence of the time dispersion
of the dynamic heat capacity is very significant at the beginning of the cooling process.
The cooling rate decreases over time t; however, in the outer regions of the heating zone,
the cooling rate −R(t, r) still exceeds 2–3 GK/s at t about 100 ns. Regions quenched at
different cooling rates have different physical properties. Thus, strong gradients of physical
properties should exist in the material, mainly at a distance of about 0.9r0 from the center
of the heating zone. It is worth noting that the time dispersion of the dynamic heat capacity
significantly enhances this effect. In addition, the effect associated with the time dispersion
of the dynamic heat capacity is significant even well above the glass transition temperature
Tg. It turns out that the duration of the modification process strongly depends on the
relaxation time τ0 of the dynamic heat capacity cdyn(t). Thus, the rate of local cooling and
gradients of physical properties of locally modified glass strongly depend on the relaxation
time of the dynamic heat capacity cdyn(t). Finally, it is worth noting that the gradients
of physical properties in areas quenched at different cooling rates are smoothed out by
cumulative heating when processed in the cumulative heating mode.

In this article, we solved a problem for spherical geometry, which is closely related
to data storage technologies. There are a number of future directions that are worth
developing. A future research direction could be the problem with cylindrical geometry,
which is closely related to laser waveguide technologies. The cumulative heating mode at
different laser pulse repetition rates and laser beam scanning speeds also deserves to be
studied.

6. Conclusions

To summarize, it can be emphasized that during the laser microstructuring of glass-
forming materials, the local temperature distribution T(t, r) and the local cooling rate
significantly depend on the time dispersion of the dynamic heat capacity cdyn(t) of the
glass matrix. The rate of temperature change R(t, r) is at a maximum near the periphery of
the heating zone. However, the effect associated with the time dispersion of the dynamic
heat capacity is very significant both in the center and at the periphery of the heating zone.
The effect associated with the time dispersion of the dynamic heat capacity is significant
even well above the glass transition temperature Tg. It turns out that in the thin shell of the
heating zone, the ultrafast cooling of the material occurs at a rate of more than 1011 K/s,
and strong gradients of physical properties must exist in the material, mainly in a thin shell
around the heating zone. The time dispersion of the dynamic heat capacity significantly
enhances this effect. However, these gradients in physical properties should be smoothed
out when processed in the cumulative heating mode. Further directions of research may
be related to the consideration of the cumulative heating regime for various geometries.
The results of this work can be useful for a better understanding and optimization of
technologies associated with laser-induced microstructuring of glasses.
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Nomenclature

Latin Symbols
B and T0 Parameters of the VFTH equation (K)
cS Heat capacity of the solid material (J·kg−1·K−1)
cL Heat capacity of the liquid material (J·kg−1·K−1)
cin, c0 Initial and equilibrium heat capacities (J·kg−1·K−1)
cdyn(t) Dynamic heat capacity (J·kg−1·K−1)
D0 Thermal diffusivity λ/ρc0 (m2·s−1)
Ep Energy of laser pulse (nJ)
f0 Parameter of the VFTH equation (Hz)
F(t) Time dependence of the pulse power (dimensionless)

G
(

t,
→
r
)

Fundamental solution of the Fourier heat equation (m−3)

H(τ0) Distribution function (s−1)
KB Bulk modulus (GPa)
R(t, r) Rate of temperature change R(t, r) = ∂T(t, r)/∂t (K·s−1)
−R(t, r) Cooling rate (K·s−1)
R0 Parameter of the boundary value problem (µm)
r0 Heating zone radius (µm)
r Distance from the center of the hot zone (µm)
t Time (s)
TFS(t, r) Temperature distribution obtained from fundamental solution (K)
T(t, r) Local temperature distribution (K)
TAV(t, r) Temperature distribution averaged using H(τ0) (K)
Tg Glass transition temperature (K)
Tin Initial temperature (K)
Tint Intermediate temperature (K)
Tmax Maximum value of T(t, r) (K)
V0 Heating zone volume (m3)
V Specific volume (m3·kg−1)
VL Longitudinal speed of sound (m·s−1)
Greek Symbols
α Linear thermal expansion (K−1)
αV Volumetric thermal expansion coefficient (K−1)
β Parameter of the Kohlrausch relaxation law (dimensionless)
γn Relaxation parameter (dimensionless)
ε0 Coefficient ε0 = (c0 − cin)/c0 (dimensionless)
λ Thermal conductivity (W·m−1·K−1)
µn Relaxation parameter (dimensionless)



Appl. Sci. 2024, 14, 1076 21 of 25

ρ Density (kg·m−3)
τ0 Debye relaxation time (µs)
τK Kohlrausch relaxation time (µs)
τlaser Duration of laser pulse (fs)
τn nth relaxation time (µs)
τp Duration of heating pulse (ps)
Φ(t, r) Volumetric heat flux density (W·m−3)
Φ0 Volumetric heat flux density (W·m−3)
Φn nth Fourier component (W·m−2)
ψn(t) nth Fourier component (K·m)
ω Temperature modulation frequency (rad·s−1)

Appendix A

Equation (7) can be converted into Equation (A1) by replacing r(T(t, r)− Tin) with
U(t, r):

U′(t, r)− D0∂2U/∂r2 =
rΦ(r)F(t)

ρc0
+ ε0

∂

∂t

∫ t

0
exp

(
− t − τ

τ0

)
U′(τ, r)dτ, (A1)

Thus, we obtain a one-dimensional problem with uniform boundary and initial condi-
tions: U(t, 0) = 0, U(t, R0) = 0, and U(t, r) = 0 at t ≤ 0.

This boundary value problem is satisfied by the following series:

U(t, r) = ∑n=1 ψn(t)sin(πnr/R0), (A2)

where the functions ψn(t) are the solutions of Equation (9) [69]. Thus, for a heat source
uniformly distributed in a volume of radius r0 with power density Φ0, and for the heat-
ing pulse Φ0sin(πt/τp), acting during the time interval τp, we obtain solutions ψn(t) to
Equation (9) represented by Equations (A3) and (A4) for 0 ≤ t ≤ τp and τp < t, respectively.

ψn(t) = Φn
ρc0

τnγnµn
(γn−µn)

[
(γnτ0−1)

[
γnsin(πt/τp)+

π
τp (exp(−γnt)−cos(πt/τp))

]
(γn)

2+
(

π
τp

)2 +
(1−µnτ0)

[
µnsin(πt/τp)+

π
τp (exp(−µnt)−cos(πt/τp))

]
(µn)

2+
(

π
τp

)2

]
, (A3)

ψn(t) = Φn
ρc0

πτnγnµn
τp(γn−µn)

[
(γnτ0−1)

[
exp(−γnt)+exp(γn(τp−t))

]
(γn)

2+
(

π
τp

)2 +
(1−µnτ0)

[
exp(−µnt)+exp(µn(τp−t))

]
(µn)

2+
(

π
τp

)2

]
, (A4)

where −γn and −µn are the roots of the polynomial (1 − ε0)p2 + p
(

τ−1
n + τ−1

0

)
+ τ−1

n τ−1
0 .

The parameters γn and µn are real, positive, and (γn − µn) ̸= 0 for 0 < ε0 < 1 and 0 < τn,
τ0. The series in Equation (8) converges as 1/n2 for τp < t. In fact, it is enough to calculate
the sum in Equation (8) to about a thousand terms to obtain a result with an error of less
than 1%.

Similarly, for a heating pulse of a square shape with power density Φ0, acting on a
time interval τp, we obtain ψn(t) = ϕn(t) and ψn(t) =

[
ϕn(t)− ϕn(τp − t)

]
for τp < t and

0 ≤ t ≤ τp, respectively, where ϕn(t) are represented by Equation (A5):

ϕn(t) = Φn
ρc0

τn

[
1 + τ0γnµn(exp(−µnt)−exp(−γnt))

(γn−µn)
+ µnexp(−γnt)−γnexp(−µnt)

(γn−µn)

]
. (A5)

Note that the solutions ϕn(t) continuously transform into solutions of the classical
Fourier heat equation: ϕn(t) → Φn

ρc0
τn[1 − exp(− t/τn)] as ε0 → 0 or/and τ0 → 0.

Similarly, the functions ψn(t) represented by Equations (A3) and (A4) continuously
transform into solutions of the classical Fourier heat equation as ε0 → 0 or/and τ0 → 0—see
Equations (A6) and (A7)—for 0 ≤ t ≤ τp and τp < t, respectively.

ψn(t) =
Φn

ρc0

1
τn

sin(πt/τp) +
π
τp

[
exp(− t/τn)− cos(πt/τp)

]
(

1
τn

)2
+

(
π
τp

)2 , (A6)
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ψn(t) =
Φn

ρc0

π

τp

[
exp(− t/τn) + exp((τp − t)/τn))

](
1
τn

)2
+

(
π
τp

)2 . (A7)
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