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Abstract: Computed tomography (CT) is a widely utilized diagnostic imaging modality in medicine.
However, the potential risks associated with radiation exposure necessitate investigating CT exams
to minimize unnecessary radiation. The objective of this study is to evaluate how patient-related
parameters impact the CT dose indices for different CT exams. In this study, a dataset containing CT
dose information for a cohort of 333 patients categorized into four CT exams, chest, cardiac angiogram,
cardiac calcium score and abdomen/pelvis, was collected and retrospectively analyzed. Regression
analysis and Pearson correlation were applied to estimate the relationships between patient-related
factors, namely body mass index (BMI), weight and age as input variables, and CT dose indices,
namely the volume CT dose index (CTDIvol), dose length product (DLP), patient effective dose
(ED) and size-specific dose estimate (SSDE), as output variables. Moreover, the study investigated
the correlation between the different CT dose indices. Using linear regression models and Pearson
correlation, the study found that all CT dose indices correlate with BMI and weight in all CT exams
with varying degrees as opposed to age, which did not demonstrate any significant correlation
with any of the CT dose indices across all CT exams. Moreover, it was found that using multiple
regression models where multiple input variables are considered resulted in a higher correlation
with the output variables than when simple regression was used. Investigating the relationships
between the different dose indices, statistically significant relationships were found between all
dose indices. A stronger linear relationship was noticed between CTDIvol and DLP compared to the
relationships between each pair of the other dose indices. The findings of this study contribute to
understanding the relationships between patient-related parameters and CT dose indices, aiding in
the development of optimized CT exams that ensure patient safety while maintaining the diagnostic
efficacy of CT imaging.

Keywords: radiation dose; computed tomography; regression and correlation analysis

1. Introduction

X-rays, a form of energy similar to radio waves and light waves, have the ability to
penetrate bone, tissue and organs unlike light and radio waves [1,2]. This characteristic
allows X-rays to be used for medical imaging, including computed tomography (CT).
However, the absorbed radiation during a CT scan contributes to the patient’s radiation
dose, raising concerns about potential health risks [3,4]. The number of CT scans performed
annually in the United States was projected to increase from 75 million to 84 million by
2022 [5], highlighting the need to understand and mitigate radiation-related risks.
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Dose indices vary between various X-ray-based imaging modalities such as mammog-
raphy [6] and CT [7,8]. For instance, the volume CT dose index (CTDIvol) and dose length
product (DLP) are two commonly used dose indices in CT [7].

CTDIvol provides information about the dose intensity in a specific slice, while DLP
quantity accounts for the scan length coverage by roughly multiplying CTDIvol with the
scan length. In contrast, the effective dose (ED) integrates the dose contributions from vari-
ous exposed organs or tissues, providing a comprehensive measure of radiation impact [9].
ED is used to assess the radiation absorbed by the patient’s body. It is calculated as the
sum of the organ-equivalent doses multiplied by the organ-weighting factors proposed
by the International Commission on Radiological Protection (ICRP) [10]. ED takes into
account the varying sensitivities of different tissues and organs to radiation, recognizing
that the absorption during, for instance, an abdomen CT scan differs from that during a
head CT scan [11]. Clinical scientists, radiologists and CT technologists consider these
indices to optimize CT exams, striking a balance between dose and image quality while
minimizing risks [12]. The correlation between CTDIvol, DLP and ED depends on factors
such as scan acquisition parameters, patient characteristics and dosimetric models used
for calculation [12]. The SSDE index is another dose index that indicates that patient size
(i.e., weight) was taken into consideration, unlike the CT dose index of CTDIvol, resulting
generally in more accurate dose estimates [13]. For more detail, the reader is referred to
the American Association of Physicists in Medicine (AAPM) task group report no. 204 [14].
CTDIvol is affected by patient size and tissue composition; hence, high CTDIvol values
are associated with obese patients, body parts made of more dense material like the bone,
implemented metal and some types of pathologies [15].

While CT scans carry a potential risk that is associated with increasing cancer inci-
dence, their medical benefits outweigh these risks by aiding in disease diagnosis, guiding
procedures and evaluating injuries without invasive techniques [16]. Nonetheless, con-
cerns about public health necessitate understanding the correlation between radiation dose
indices and patient dose to develop strategies for dose optimization [17]. This study aims
to investigate the impact of patient-related parameters, namely body mass index (BMI),
weight and age as input variables, and reported CT dose indices, namely CTDIvol, DLP,
ED and SSDE as output variables, while considering different CT exams. Regression and
correlation are suitable methods to achieve the aim of this study. Moreover, regression and
correlation analysis are utilized in this work in accordance with similar studies found in
the literature that investigated the relationship between patient-related parameters and
different dose indices.

2. Materials and Methods

In this section, the study design is introduced in Section 2.1. A detailed description of
the dataset is provided in Section 2.2. Section 2.3 discusses the regression analysis approach
used in this work and the evaluation metrics.

2.1. Study Design

This study was performed retrospectively using CT data acquired from the University
Hospital Sharjah, UAE, investigating the use of CT and the factors affecting radiation
dose. This study was approved by the Ethics and Research Committee of the University
Hospital Sharjah on 19 June 2017 (Ref. UHS-HERC-030-07062017). From all of the CT
exams collected, the radiology team specified the images by the exam type and the patient
gender. Each CT exam contains a set of information regarding the CT modality technical
parameters, patient-related parameters and dose estimation parameters. From all of them,
we were interested in extracting the parameters of CTDIvol, DLP, ED, SSDE, BMI, weight
and age. These parameters comprise the dataset used. Patients with missing data or outliers
were excluded, which is a necessary step to make future results more reliable and robust.
After that, Pearson correlation and linear regression were implemented to investigate the
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relationships between patient-related parameters and the different CT dose indices, aiming
to answer the following research questions:

Q1. How much does each patient-related parameter impact each of the dose indices?
Q2. How do the relationships found in Q1 differ for different CT exams?

2.2. Dataset Description

The dataset consists of a total of 333 CT scans acquired from patients subjected to CT
chest, CT cardiac angiogram, CT cardiac calcium score and CT abdomen/pelvis between
June 2017 and April 2019. Seven pediatric cases were observed in the dataset and were
excluded, leaving us with 326 CT scans available for analysis. The dataset was divided into
4 groups based on the performed CT exam, with 68 of them in the group of chest, 91 in
the cardiac angiogram group, 94 in the cardiac calcium score group and the last 73 in the
abdomen/pelvis group. In the present study, we considered the CT exams that could benefit
from CT protocol optimization. Chest, abdomen and pelvis body part composition and
thickness considerably vary across patient cohorts, which calls for kV and mAs modulation,
i.e., CT protocol amendments. Table 1 lists the four groups of CT exams and provides
patient-related information such as the patients’ genders and their average (and range) age,
weight and BMI.

Table 1. Population statistics of the dataset according to the groups of protocols.

CT Exam No. of Patients
(Male, Female) Average Age (Range) Average Weight (Range) Average BMI (Range)

Chest 68 (37, 31) 65.3 (21–96) 66.4 (36–110) 25.5 (15.6–41.4)
Cardiac Angiogram 91 (49, 42) 55.7 (33–85) 83.8 (47–144) 31.2 (19.6–51.6)
Cardiac Calcium Score 94 (48, 46) 56.1 (33–85) 83.9 (52–144) 31.5 (19.6–51.6)
Abdomen/Pelvis 73 (31, 42) 48.4 (20–92) 72.9 (35–113) 27.4 (16–39.7)

2.3. Regression Analysis

The data in this study were analyzed using simple and multiple linear regression
models. Regression analysis models the relationship between one output (dependent)
variable and one or more input (independent) variable(s). Thus, linear regression is a
technique that finds a line that best fits a dataset [18]. Simple linear regression model has
one input feature as in (1):

ŷ = a + b1X1 (1)

where ŷ is the predicted output variable, X1 is the input variable, a is a scaler and b1 is the
slope of the line. Multiple linear regression model has multiple input variables X1 . . . Xm as
in (2):

ŷ = a + b1X1 + b2X2 + · · ·+ bmXm (2)

In this study, linear regression analysis was performed between each patient-related
parameter (BMI, weight and age) as input variables and each CT dose measure (CTDIvol,
DLP, ED and SSDE as output variables) for each of the four CT exams. In addition, multiple
linear regression analysis was performed on all input variables Xi altogether with each
output variable separately.

In the evaluation process, several evaluation metrics are used to evaluate the resulting
regression models, namely the coefficient of determination (R2), mean square error (MSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE). These metrics
give an intuition of how much the line of a model fits the data [19]. Moreover, the Pearson
correlation coefficient (r) and the two-tailed p-value are calculated to assess the strength
of the correlation between the input and output variables. The metrics R2, RMSE, MAE,
MAPE and r are calculated as in the following Formulas (3)–(7) [19]:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (3)
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RMSE =

√
∑n

i=1(yi − ŷi)
2

n
, (4)

MAE =
∑n

i=1|yi − ŷi|
n

, (5)

MAPE =
∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣
n

, (6)

where yi is the true value of the output variable, ŷi is the predicted value of the output
variable, y is the mean of yi values and n is the number of data points.

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2·∑n

i=1(yi − y)2
(7)

where xi is the input variable sample and x is the mean of xi values.

3. Experimental Results

This study investigates the relationship between patient-related parameters (BMI,
weight and age) and CT dose indices CTDIvol, DLP, ED and SSDE using regression and
correlation analysis. Table 2 displays the mean values and ranges within two standard
deviations of each of CTDIvol, DLP, ED and SSDE for each CT exam considered in the study.
The table also provides the number of statistical outlier cases, defined as cases outside two
standard deviations, with a maximum of seven outliers for each of the CT exams. The
variation in mean dose indices is primarily influenced by the CT exam parameters and the
relatively small size of the dataset.

Table 2. Dose indices’ parameter range for each CT exam.

CT Exam Statistics DLP
(in mGy.cm)

CTDIvol
(in mGy)

ED
(in mSv)

SSDE
(in mGy)

Chest

Mean 316.76 9.03 3.32 8.53

Range 69–1013 3.01–28.73 0.82–15.05 3.59–25.3

Std. 197.16 5.42 2.12 3.7

Number of Outliers 3 4 2 2

Cardiac Angiogram

Mean 654.1 37.1 - -

Range 222–1494 13.4–71.8 - -

Std. 241.1 11.5 - -

Number of Outliers 5 7 - -

Cardiac Calcium Score

Mean 44.5 2.93 - -

Range 16–121 1.1–7.8 - -

Std. 22.62 1.44 - -

Number of Outliers 5 7 - -

Abdomen/Pelvis

Mean 1156.4 27.5 11.53 22.71

Range 58–2750 2.96–65.51 2.7–32.72 9.9–43.72

Std. 660.5 14.39 6.23 7.2

Number of Outliers 3 1 3 5

In this study, linear regression and Pearson correlation analysis were utilized to analyze
the relationship between BMI, weight and age (as input variables) and each of CTDIvol,
DLP, ED and SSDE (as output variables). Additionally, multiple linear regression and
correlation analysis models were employed to examine the relationship between all patient
parameters as input variables and each of the dose indices. The evaluation results for
each of the dose indices CTDIvol, DLP, ED and SSDE are summarized in Sections 3.1–3.4,
respectively. Section 3.5 presents the plots for the linear regression models generated.
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Section 3.6 includes the regression and correlation analysis evaluation for each pair of the
dose indices.

It is worth mentioning that polynomial regression models were investigated. However,
it was found that the linear regression models outperformed the polynomial models. There-
fore, the results from the polynomial regression analysis were not included in this study.

3.1. Computed Tomography Dose Index Volume (CTDIvol) Correlations

The dataset includes CTDIvol values ranging from 1.1 mGy to 60.2 mGy. As shown
in Table 3, linear and multiple linear regression and the Pearson correlation analysis were
performed to analyze the relationship between CTDIvol and the patient parameters BMI,
weight and age after removing a maximum of seven outliers.

Table 3. Regression and correlation analysis between CTDIvol as output variable and BMI, weight
and age as input variables.

CTDIvol (mGy)

C
T

Ex
am

Ev
al

ua
ti

on
M

et
ri

c Linear Multiple Linear

X1: BMI X1: Weight X1: Age All Parameters
(X1: BMI, X2: Weight, X3: Age)

C
he

st

R2 0.19 0.20 0.01 0.23
RMSE 18.60 59.75 61.47 2.58
MAE 17.82 57.88 58.04 1.76

MAPE 70.13 93.81 86.87 23.57
Eq. ŷ = 0.87 X1 + 18.80 ŷ = 2.44 X1 + 47.13 ŷ = 0.52 X1 + 61.73 ŷ = 0.81 + 0.09 * X1 + 0.05 X2 + 0.01 X3

r 0.43 0.45 0.08 0.48
p-value 9.38 × 10−4 5.56 × 10−4 5.46 × 10−1 1.80 × 10−4

C
ar

di
ac

A
ng

io
gr

am

R2 0.49 0.33 0.00 0.49
RMSE 7.96 50.01 25.09 6.43
MAE 6.12 47.56 20.73 4.92

MAPE 19.99 56.65 34.55 14.09
Eq. ŷ = 0.46 X1 + 14.60 ŷ = 1.20 X1 + 40.30 ŷ = 0.00 X1 + 55.25 ŷ = −0.14 + 1 X1 + 0.02 X2 + 0.05 X3

r 0.70 0.58 0.00 0.70
p-value 1.70 × 10−13 9.08 × 10−9 9.78 × 10−1 1.27 × 10−13

C
ar

di
ac

C
al

ci
um

Sc
or

e

R2 0.58 0.41 0.01 0.59
RMSE 28.17 80.59 54.40 0.62
MAE 27.82 78.96 52.92 0.42

MAPE 91.56 96.81 94.98 15.12
Eq. ŷ = 0.15 X1 −1.80 ŷ = 0.04 X1 −0.43 ŷ = −0.01 X1 + 3.07 ŷ = −1.86 + 0.12 X1 + 0.01 X2 + 0 X3

r 0.76 0.64 −0.10 0.77
p-value 1.24 × 10−17 1.83 × 10−11 3.40 × 10−1 4.22 × 10−18

A
bd

om
en

/P
el

vi
s R2 0.10 0.13 0.00 0.17

RMSE 13.01 46.90 32.44 12.34
MAE 11.11 44.26 25.46 10.61

MAPE 42.22 60.79 46.18 37.92
Eq. ŷ = 0.12 X1 + 23.83 ŷ = 0.42 X1 + 60.38 ŷ = −0.02 X1 + 50.66 ŷ = −3.27 + −0.19 X1 + 0.4 X2 + 0.17 X3

r 0.32 0.36 −0.02 0.42
p-value 8.69 × 10−3 2.52 × 10−3 8.86 × 10−1 3.85 × 10−4

A significant correlation was seen between patient weight, BMI and CTDIvol across
all investigated CT exams. As can be seen in Table 3, there was a significant (p < 0.05)
strong linear relationship between CTDIvol and BMI and weight, especially in the cardiac
angiogram and cardiac calcium score exams, as indicated by the r and p-value. Age did not
demonstrate any linear relationship with CTDIvol across all CT exams.

Using multiple regression resulted in a higher correlation with the output variables than
when using simple regression in chest and abdomen/pelvis CT exams. This increase was
evident when comparing the R2, MAPE and r values of the multiple linear regression models
with their values in the best respective simple linear regression models. The multiple linear
regression models in cardiac angiogram and cardiac calcium score exams exhibited correlation
values similar to those of the best respective simple linear regression models.
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3.2. Dose Length Product (DLP) Correlations

The dataset includes DLP values ranging from 16 mGy.cm to 2498 mGy.cm. As
shown in Table 4, linear and multiple linear regression models were used to examine the
relationship between DLP as an output variable and BMI, weight and age as input variables
after excluding up to five outliers.

Table 4. Regression and correlation analysis between DLP as output variable and BMI, weight and
age as input variables.

DLP (mGy.cm)

C
T

Ex
am

Ev
al

ua
ti

on
M

et
ri

c Linear Multiple Linear

X1: BMI X1: Weight X1: Age All Parameters
(X1: BMI, X2: Weight, X3: Age)

C
he

st

R2 0.15 0.24 0.00 0.24
RMSE 278.74 241.19 261.54 115.94
MAE 246.12 205.70 219.17 82.71

MAPE 977.52 312.39 392.03 29.60
Eq. ŷ = 0.02 X1 + 20.74 ŷ = 0.06 X1 + 49.76 ŷ = 0.00 X1 + 64.59 ŷ = −2.48 −0.62 X1 + 4.11 X2 + 0.32 X3

r 0.39 0.49 0.03 0.49
p-value 3.27 × 10−3 1.48 × 10−4 8.22 × 10−1 1.22 × 10−4

C
ar

di
ac

A
ng

io
gr

am

R2 0.35 0.21 0.00 0.35
RMSE 605.98 554.89 583.90 138.45
MAE 582.00 529.96 557.57 108.57

MAPE 1895.46 653.77 1075.71 18.39
Eq. ŷ = 0.02 X1 + 18.26 ŷ = 0.05 X1 + 52.01 ŷ = 0.00 X1 + 57.64 ŷ = 114 + 19.48 X1 −0.91 X2 −0.46 X3

r 0.59 0.46 −0.06 0.59
p-value 1.86 × 10−9 7.33 × 10−6 6.08 × 10−1 1.53 × 10−9

C
ar

di
ac

C
al

ci
um

Sc
or

e

R2 0.68 0.48 0.00 0.68
RMSE 16.31 43.79 26.17 9.76
MAE 11.45 41.56 22.49 7.22

MAPE 34.04 51.21 77.52 17.26
Eq. ŷ = 2.42 X1 −33.91 ŷ = 0.67 X1 −14.26 ŷ = −0.05 X1 −33.91 ŷ = −37.36 + 2.19 X1 + 0.09 X2 + 0.05 X3

r 0.82 0.69 −0.04 0.83
p-value 3.39 × 10−23 5.01 × 10−14 7.26 × 10−1 2.28 × 10−23

A
bd

om
en

/P
el

vi
s R2 0.11 0.16 0.02 0.17

RMSE 1278.41 1236.02 1226.73 521.47
MAE 1143.78 1098.39 1074.49 420.42

MAPE 4200.92 1515.99 2551.55 36.68
Eq. ŷ = 0.00 X1 + 24.04 ŷ = 0.01 X1 + 60.48 ŷ = 0.00 X1 + 53.77 ŷ = −93.35 −9.31 X1 + 17.99 X2 + 4.3 X3

r 0.32 0.40 −0.13 0.41
p-value 7.76 × 10−3 9.25 × 10−4 2.92 × 10−1 5.49 × 10−4

As can be seen in Table 4, among the CT exams, the cardiac calcium score exam
exhibited a significant (p-value < 0.05) strong linear relationship between DLP and BMI.
The cardiac angiogram exam showed a significant moderate linear relationship between
DLP and BMI, while the other exams showed poor correlations. The patient’s weight seems
to have a significant (p-value < 0.05) relationship with DLP in all CT exams, especially in
the cardiac calcium score exam. Similarly, as observed before, the patient’s age did not
display any linear relationship with DLP across all four CT exams.

Using multiple regression resulted in a higher correlation with the output variables
than when using simple regression in the abdomen/pelvis exam. This enhancement was
evident when comparing the R2, MAPE and r values of the multiple linear regression
models with the highest values among the respective simple linear regression models. The
multiple linear regression models in the rest of the CT exams showed correlation values
similar to those of the best respective simple linear regression models.

3.3. Effective Dose (ED) Correlations

The dataset includes ED values ranging from 0.8 mSv to 24.7 mSv. As shown in Table 5,
linear and multiple linear regression models were used to investigate the relationship
between ED as an output variable and BMI, weight and age as input variables after
excluding up to three outliers.
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Table 5. Regression and correlation analysis between ED as output variable and BMI, weight and age
as input variables.

ED (mSv)

C
T

Ex
am

Ev
al

ua
ti

on
M

et
ri

c Linear Multiple Linear

X1: BMI X1: Weight X1: Age All Parameters
(X1: BMI, X2: Weight, X3: Age)

C
he

st

R2 0.28 0.17 0.01 0.30
RMSE 23.01 64.97 66.44 1.03
MAE 22.39 62.97 63.64 0.86

MAPE 88.14 95.35 94.90 28.79
Eq. ŷ = 2.51 X1 + 17.88 ŷ = 5.48 X1 + 49.58 ŷ = 1.85 X1 + 60.15 ŷ = 0.18 + 0.12 X1 − 0.01 X2 + 0 X3

r 0.52 0.41 0.12 0.54
p-value 3.28 × 10−5 1.70 × 10−3 3.40 × 10−1 1.48 × 10−5

A
bd

om
en

/P
el

vi
s R2 0.16 0.15 0.06 0.17

RMSE 16.90 62.76 44.54 4.90
MAE 16.01 60.97 39.32 3.82

MAPE 58.96 83.96 74.02 35.87
Eq. ŷ = 0.39 X1 + 22.79 ŷ = 1.15 X1 + 59.23 ŷ = −0.83 X1 + 59.59 ŷ = 1.17 + 0.32 X1 + 0.03 X2 −0.02 X3

r 0.40 0.38 −0.24 0.42
p-value 9.22 × 10−4 1.42 × 10−3 4.83 × 10−2 4.91 × 10−4

In terms of BMI, ED exhibited a positive linear relationship across the given exams
as indicated by the evaluation metrics (p-value less than 0.05). The relationship between
ED and weight mirrored that of BMI. As observed earlier, age did not show any linear
relationship with ED in any of the given exams.

Using multiple regression models resulted in a higher correlation with the output
variables than when using simple regression in both CT exams. This increase was demon-
strated by comparing the R2, MAPE and r values of the multiple linear regression models
with those of the respective best simple linear regression models.

3.4. Size-Specific Dose Estimate (SSDE) Correlations

In this section, linear and multiple linear regression is performed to investigate the re-
lationship between SSDE as an output variable and BMI, weight and age as input variables.
Table 6 shows the results of the regression and correlation analysis.

As can be seen in Table 6, for both BMI and weight, SSDE exhibited a positive linear re-
lationship across the given exams as indicated by the evaluation metrics (the p-value < 0.05).
As observed with the other dose indices, age did not show any linear relationship with
SSDE in any of the given exams.

Using multiple regression models resulted in a higher correlation with the output
variables than when using simple regression in both CT exams. This increase is noticed in
the resulting R2, MAPE and r values of the multiple linear regression models compared to
those of the respective best simple linear regression models.

Table 6. Regression and correlation analysis between SSDE as output variable and BMI, weight and
age as input variables.

SSDE (mGy)

C
T

Ex
am

Ev
al

ua
ti

on
M

et
ri

c Linear Multiple Linear

X1: BMI X1: Weight X1: Age All Parameters
(X1: BMI, X2: Weight, X3: Age)

C
he

st

R2 0.30 0.28 0.01 0.40
RMSE 18.02 59.88 60.94 1.92
MAE 17.32 57.91 57.36 1.63

MAPE 67.79 87.49 86.01 20.35
Eq. ŷ = 1.30 X1 + 14.87 ŷ = 3.55 X1 + 37.38 ŷ = 0.98 X1 + 57.49 ŷ = 0.7 + 0.12 X1 + 0.04 X2 + 0.02 X3

r 0.55 0.53 0.12 0.63
p-value 1.23 × 10−5 2.30 × 10−5 3.40 × 10−1 1.57 × 10−7
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Table 6. Cont.

SSDE (mGy)

C
T

Ex
am

Ev
al

ua
ti

on
M

et
ri

c Linear Multiple Linear

X1: BMI X1: Weight X1: Age All Parameters
(X1: BMI, X2: Weight, X3: Age)

A
bd

om
en

/P
el

vi
s R2 0.21 0.19 0.00 0.23

RMSE 7.28 51.07 34.05 4.99
MAE 5.76 49.25 27.83 3.98

MAPE 21.47 68.06 49.68 17.97
Eq. ŷ = 0.40 X1 + 18.04 ŷ = 1.15 X1 + 46.01 ŷ = −0.05 X1 + 50.71 ŷ = 6.25 + 0.32 X1 + 0.08 X2 + 0.03 X3

r 0.46 0.44 −0.01 0.48
p-value 1.33 × 10−4 3.20 × 10−4 9.04 × 10−1 5.23 × 10−5

3.5. Plots of Linear Regression Models

In this section, plots of linear regression models are provided for each exam, consid-
ering BMI, weight and age as input variables and each of CTDIvol, DLP, ED and SSDE as
output variables. Figure 1 presents the plots of linear regression models for (a) the chest CT
exam, (b) the cardiac angiogram CT exam, (c) the cardiac calcium score CT exam and (d)
the abdomen/pelvis CT exam. As can be seen in Figure 1, the plots reflect the relationships
found in Sections 3.1–3.4.
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3.6. Correlations between the CT Dose Indices

In addition, this study examined the relationship between the CT dose indices using
linear regression models. Table 7 provides a summary of the correlation results between
these indices.
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Table 7. Regression and correlation analysis between the different CT dose indices.

CTDIVol as Output Variable (ŷ) with DLP as Output Variable (ŷ) with ED as Output Variable (ŷ)
with

C
T

Ex
am

Ev
al

ua
ti

on
M

et
ri

c

X1: DLP X1: ED X1: SSDE X1: ED X1: SSDE X1: SSDE

C
he

st

R2 0.85 0.26 0.37 0.19 0.19 0.68
RMSE 294.94 5.47 2.44 300.25 295.55 5.17
MAE 268.43 4.83 1.94 273.25 268.32 4.94

MAPE 97.06 193.59 25.89 98.84 96.80 63.28

Eq. ŷ = 38.50 X1 −
22.14

ŷ = 0.21 X1 +
1.30

ŷ = 0.49 X1 +
4.08

ŷ = 45.05 X1 +
144.52

ŷ = 22.91 X1 +
96.15 ŷ = 1.61 X1 + 3.15

r 0.92 0.51 0.61 0.44 0.44 0.82
p-value 4.86 × 10−26 2.17 × 10−5 1.55 × 10−7 3.52 × 10−4 3.66 × 10−4 2.77 × 10−16

C
ar

di
ac

A
ng

io
gr

am

R2 0.74 - - - - -
RMSE 593.64 - - - - -
MAE 572.96 - - - - -

MAPE 94.13 - - - - -

Eq. ŷ = 0.04 X1 +
7.83 - - - - -

r 0.86 - - - - -
p-value 1.26 × 10−24 - - - - -

C
ar

di
ac

C
al

ci
um

Sc
or

e

R2 0.90 - - - - -

RMSE 39.48 - - - - -
MAE 36.77 - - - - -

MAPE 93.31 - - - - -

Eq. ŷ = 15.60 X1 −
1.03 - - - - -

r 0.95 - - - - -
p-value 3.07 × 10−44 - - - - -

A
bd

om
en

/P
el

vi
s R2 0.83 0.17 0.27 0.31 0.33 0.54

RMSE 1199.77 19.67 11.93 1217.96 1208.01 11.65
MAE 1070.05 16.24 10.18 1086.03 1074.99 11.04

MAPE 97.39 192.24 49.83 98.81 97.25 52.41

Eq. ŷ = 40.03 X1 +
32.66

ŷ = 0.16 X1 +
6.29

ŷ = 0.21 X1 +
15.95

ŷ = 62.26 X1 +
436.46

ŷ = 61.14 X1 −
226.39 ŷ = 0.77 X1 + 13.43

r 0.91 0.41 0.52 0.56 0.58 0.73
p-value 8.48 × 10−26 6.20 × 10−4 1.08 × 10−5 1.58 × 10−6 5.05 × 10−7 3.91 × 10−12

In all CT exams, statistically significant relationships were apparent between all dose
indices as indicated by the evaluation metrics (p-value < 0.05). The relationship between
CTDIvol and DLP was found to be the most significant (r > 0.85 in all exams) compared to
the relationships between each pair of the other dose indices. A relatively strong relation-
ship between ED and SSDE was also noticed in the chest and abdomen/pelvis CT exams
(r = 0.82 and r = 0.73, respectively).

4. Discussion

Several studies have investigated factors influencing CT radiation dose. Smith-
Bindman et al. [20] conducted a study to determine patient, vendor and institutional
factors that influence CT radiation dose. They employed linear regression and modified
Poisson regression to identify the parameters contributing to dose variability. The authors
found that CT dose varies within and across medical centers. Moreover, they found that pa-
tient size, institutional-specific protocols and multiphase scanning were the most important
predictors of dose followed by manufacturer and iterative reconstruction.

The relationship between CTDIvol and patient parameters has been explored in the
literature. Lange et al. [21] proposed a study to find associations between different CT dose
estimates, namely CTDIvol, DLP and SSDE, and patient age, BMI, scan length and technical
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parameters such as tube current, tube voltage, pitch, noise level and level of iterative
reconstruction. It was found all dose estimates in all imaging protocols were affected by
tube current. Garcia-Sanchez et al. [22] utilized machine learning techniques to predict CT
radiation dose and discovered a relationship between the diagnostic reference level (DRL)
and BMI, with increasing CTDIvol as BMI rises. As demonstrated in Section 3, it can be noted
that our results are in agreement with the results found in [22]. Additionally, Christner
et al. [23] conducted linear regression analysis on a dataset of 500 adult CT examinations
and found a linear increase in CTDIvol with patient size, while SSDE remained independent
of size.

With respect to DLP, McLaughlin et al. [24] investigated the relationship between
radiation exposure and compositions of the abdominal cavity. They found that abdom-
inal adipose tissue is the strongest contributor to DLP in abdominopelvic CT, followed
by muscle volume. In [25], multivariate logistic regression analysis was performed to
determine the factors affecting the radiation dose index (DLP) in pulmonary angiogram
CT examinations. It was found that patients with high BMI and intensive care unit (ICU)
referrals are associated with high CT radiation doses. These results are in agreement with
our results, where the patient’s BMI was found to correlate with the patient’s DLP.

Factors affecting patient ED have also been studied in the literature. Cooper et al. [26]
focused on factors increasing patient ED while undergoing CT exams, including gender,
age, obesity (higher BMI), and multiphase/repeat scanning using Spearman correlation
coefficients and penalized quantile regression on abdomen/pelvis CT scans of patients
under 16 years. It was found that older age, female gender, obesity, and multiphase or
repeat scanning are all associated with increased effective doses from abdomen/pelvis CT.
In another study by Lee et al. [27], Pearson correlation analysis was conducted to explore
the relationship between ED and the patient’s BMI and abdominal fat in liver CT scans. A
strong positive correlation between ED and both BMI (r = 0.715; p-value < 0.001) and TFA
was found (r = 0.792; p-value < 0.001). The results above are in agreement with our results
with respect to the patient’s BMI, which was found to correlate with the patient’s ED.

Several studies have explored the relationship between SSDE and patient parameters.
Boos et al. [17] investigated the relationship between SSDE and patient related parameters,
namely height, weight, effective diameter (Deff) and BMI, using linear regression models
on a dataset of 400 thoracoabdominal CT adult examinations. Significant correlations were
found between Deff, BMI and weight as surrogates for calculating SSDE. Their results are
in agreement with our results with respect to patient BMI and weight, which were found
to be correlated with the SSDE. Furthermore, O’Neill et al. [28] explored the potential of
using BMI as a size-related metric alternative to the mid-slice effective diameter to estimate
SSDE in abdominal CT using linear regression. It was found that there is a correlation
between patient BMI and mid-slice effective diameter; thus, patient BMI can be used to
accurately estimate mid-slice effective diameter, which is necessary for calculating SSDE for
abdominal CT. Moreover, Svahn et al. [29] evaluated the effect of patient size on absorbed
dose for ultra-low-dose and standard CT. They noted an inverse relationship between
patient size and ultra-low-dose CT, while SSDE increased with larger patient size due to
higher abdominal fatty tissue percentage. In [30], a study was proposed to analyze the
correlation between patient weight, BMI and water-equivalent diameter and SSDE for chest
and abdomen–pelvic CT examinations. Using linear regression analysis, it was found that
both patient weight and BMI can be used to calculate SSDE in the chest and abdomen–pelvis
CT exams. Similar results were found in [31], where higher BMI contributed to increased
radiation dose and SSDE in patients who had undergone chest or abdomen–pelvis CT
examination. The results of the aforementioned studies are in accordance with our results,
where patient BMI and weight were found to be correlated with SSDE.

The relationship between several dose indices has been studied in the literature. In a
study proposed by Binta et al. [12], the relationship between SSDE and both CTDIvol and
DLP in chest CT exams was investigated. It was found that the CTDIvol value depends
on the lateral diameter of the patient’s body. The CTDIvol value varied as the lateral body
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diameter of each patient varied, which also resulted in greater variation in SSDE. Moreover,
their results showed that different SSDE values were seen for patients with different BMI
values. Garcia-Sanchez et al. [22] observed a high linear correlation between CTDIvol and
SSDE. Similar results could be obtained using clustering algorithms [32] and numerical
methods [33]. Sebelego et al. [34] proposed a study aiming to determine the factors that
impact SSDE for chest–abdomen–pelvis and abdomen–pelvis CT exams. It was found that
SSDE increased as the CTDIvol and patient BMI increased, respectively. The results of the
aforementioned studies are in accordance with our findings, where statistically significant
relationships were found between each pair of the CT dose indices (p-value < 0.05).

As discussed in this section, several studies have explored the relationships between
patient parameters and CT dose indices and between the pair indices themselves. Other
studies have been proposed in the literature for other purposes related to CT dose esti-
mation and prediction. For example, the work in [35] explored deriving SSDE from BMI.
Moreover, artificial neural networks (ANNs) were used to estimate the DLP in chest CT
examinations [36], while convolutional neural networks (CNNs) were used to estimate
SSDE in CT medical examinations [37]. In [22], several regression predictive models were
used to predict the patient’s CT dose in various CT protocols.

All in all, this study found that all CT dose indices correlated with BMI and weight in
all CT exams with varying degrees. Age did not display any significant correlation with CT
dose indices across all CT exams. All of the CT exams considered in the present study were
either in the chest, abdomen, or pelvis area. Body thickness and composition in the body
part mentioned were not affected by age, unlike the brain body part, which is affected by
age, especially in the pediatric population. This explains the rationale behind the different
age band groups to establish the diagnostic reference levels (DRLs) for pediatric CT brains.
Our observation supports the recommendation of international commission on radiological
protection (ICRP) Report 135 [38], which suggests DRLs to be established using weight
criteria for both adult and pediatric populations.

The work presented in this paper investigated the correlation between different CT
dose indices and patient-related parameters. One of the limitations of this work is the
limited sample size. Moreover, the fact that the dataset was retrieved from a single CT
machine and from a single institute does not address the different protocol setups between
the different radiology departments. One cannot neglect the fact that CT detector configura-
tion also varies across vendors, which could also contribute to CT exposure. The pediatric
population is at more risk with the increased demand for requested CT. Our dataset was
exclusively investigating adults. As a future work, this study can be applied to a larger
dataset captured from a population with different age groups and collected from different
institutions using different CT machines with different configurations.

5. Conclusions

This study investigated the correlations between different CT dose indices, namely
CTDIvol, DLP, ED and SSDE as output variables, and patient-related parameters, namely
BMI, weight and age as input variables. Simple and multiple linear regression models and
statistical tests were utilized to explore potential correlations. The study also examined the
correlations between the CT dose indices themselves in different CT exams.

Using linear regression models, the study found that all CT dose indices correlated
with BMI and weight in all CT exams with varying degrees. Age did not display any
significant correlation with CT dose indices across all CT exams. Multiple linear regression
models exhibited good relationships between input and output variables at least as much as
the best respective simple linear regression models in all CT exams. Furthermore, the study
investigated the relationships between the different CT indices and found that a strong
linear relationship was apparent between CTDIvol and DLP compared to the relationships
between each pair of the other dose indices. However, all dose indices exhibited statistically
significant relationships. In conclusion, this study helps in better understanding how
patient-specific parameters impact the reported CT dose indices and individuals’ absorbed
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doses. Moreover, our observations are instrumental in the radiology field of medicine, as
every radiology department is dedicated to optimizing radiation exposure while obtaining
an adequate diagnosable image quality.
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