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Abstract: Thanks to the availability of connectome data that map connectivity between multiple brain
areas, it is now possible to build models of whole-brain activity. At the same time, advances in mean-
field techniques have led to biologically based population models that integrate biophysical features
such as membrane conductances or synaptic conductances. In this paper, we show that this approach
can be used in brain-wide models of mice, macaques, and humans.We illustrate this approach by
showing the transition from wakefulness to sleep, simulated using multi-scale models, in the three
species. We compare the level of synchrony between the three species and find that the mouse brain
displays a higher overall synchrony of slow waves compared to monkey and human brains. We show
that these differences are due to the different delays in axonal signal propagation between regions
associated with brain size differences between the species. We also make the program code—which
provides a set of open-source tools for simulating large-scale activity in the cerebral cortex of mice,
monkeys, and humans—publicly available.

Keywords: cerebral cortex; asynchronous states; slow oscillations; sleep; computational models;
mean-field models

1. Introduction

Brain activity can display widely different states, ranging from the two extremes of
asynchronous activity, typical of the aroused brain, and slow and synchronized oscillatory
states, reminiscent of slow-wave sleep or anesthesia [1,2]. To model such “macroscopic”
states of brain activity, one should ideally take into account “microscopic” features that are
key to the genesis of brain states. Therefore, models that can account for the biophysical
features of brain states must be multi-scale. At the microscopic scale, the genesis of neural
activity depends on membrane conductances, such as those responsible for spike-frequency
adaptation, which regulate transitions between activity states in cortical slices [3]. The
macroscopic features of neural activity between brain states may also crucially depend on
recurrent connectivity between excitatory and inhibitory neuron types in the cerebral cortex.
Computational models have been successful at simulating such activity states, either the
asynchronous irregular state [3–6] or the slow-wave state with “Up” and “Down” state
dynamics [3,7,8]. Few models have been able to simulate both states, however, because their
transition depends on the presence of spike-frequency adaptation conductances. These
transitions can be modeled either by Hodgkin–Huxley type models [3] or by integrate-and-
fire type models that include spike-frequency adaptation, such as the adaptive exponential
(AdEx) model [8].

Although the genesis of asynchronous and slow oscillatory states can be well modeled
at the local network scale, as this is typically based on in vitro activity [9], it is less clear how
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such activity is organized at larger scales. Here, the activities generated at the local scale in
each brain area interact through long-range inter-areal connectivity. The precise pattern
of inter-areal connectivity is provided by the connectome, an area of interest on which
many open-access studies have been published for a number of species, such as mice [10],
macaque monkeys [11], and humans [12]. Thus, the information is available to construct
large-scale models that will include all brain areas and their connectivity. However, sim-
ulating such models at the cellular scale represents a huge investment of computational
resources and is out of reach for most researchers with no access to such resources.

An alternative approach is to simulate brain activity using population models, which
are much less demanding on computational resources. However, such models need to
contain enough biological realism to include the relevant biophysical mechanisms neces-
sary to generate brain states, as described above, such as membrane conductances and
synaptic receptor types. Here, we use an approach that was provided in a recent series of
papers [6,8,13,14]. A mean-field model was first derived for AdEx spiking networks [6,8]
and it successfully generated both asynchronous and synchronized slow-wave dynam-
ics, as well as their transitions, by controlling spike-frequency adaptation, as in previous
experiments. This AdEx mean-field model is much faster at simulation than the spiking net-
works. Next, such mean-field models were integrated into large-scale models of the human
brain [13,14] and could successfully simulate asynchronous states, similar to wakefulness,
and slow-wave oscillatory states, similar to slow-wave sleep, as well as their responsiveness
to external stimuli (for a similar approach using current-based models, see [15]).

In the present paper, we extend this approach to two species: mice and macaque
monkeys. We show the integration of the AdEx mean-field models into large-scale models
of the entire cerebral cortex, comparing three species: mice, monkeys, and humans. In
particular, we illustrate simulated brain dynamics for asynchronous and slow-wave activity
across the whole cerebral cortex.

2. Materials and Methods

As schematized in Figure 1, we used three types of models: a network of spiking neu-
rons, a mean-field model of this network, and a network of mean-field models implemented
in The Virtual Brain (TVB). In this section, we describe these models successively.

Network of 
spiking neurons

Mean-field 
model

AdEx mean-field (node 1)

W

RS FS

W

RS FS

AdEx mean-field (node 2)

W

RS FS
Integration into large-scale
brain model

RS

FS

Figure 1. Scheme of the bottom-up construction of large-scale brain models. Starting from a spiking
neuronal network (bottom left), a mean-field model (top right) is derived. This mean-field model
represents the activity of every node in a large-scale model (right), where the connectivity is specified
by the connectome (shown here for the human brain). Right panel, adapted from [14].
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2.1. Spiking Network Model

We considered networks of integrate-and-fire neuron models displaying spike-frequency
adaptation, based on two previous papers [6,16]. We used the Adaptive Exponential (AdEx)
integrate-and-fire model [17]. We considered a population of N = 104 neurons, randomly
connected with a connection probability of p = 5%. We considered excitatory and inhibitory
neurons, with 20% inhibitory neurons. The AdEx model allows us to define two cell types,
“regular-spiking” (RS) excitatory cells, displaying spike-frequency adaptation, and “fast
spiking” (FS) inhibitory cells, with no adaptation. The dynamics of these neurons is given
by the following equations:

cm
dvk
dt

= gL(EL − vk) + ∆ke
vk−vthr

∆k − wk + Isyn

τw
dwk
dt

= −wk + b ∑
tsp(k)

δ(t − tsp(k)) (1)

+a(vk − EL),

where cm = 200 pF is the membrane capacitance, vk is the voltage of neuron k, and
whenever vk > vthr = −50 mV (vthr being the voltage threshold for the action potential) at
time tsp(k) , vk is reset to the resting voltage vrest = −65 mV and fixed to that value for a
refractory period Tre f r = 5 ms. The leak term gL has a fixed conductance of gL = 10 nS and
the leakage reversal EL is −65 mV. The exponential term ∆k has a different strength for RS
and FS cells, i.e., ∆e = 2 mV (∆i = 0.5 mV) for excitatory (inhibitory) cells. Parameters a
and b describe the adaptation conductance and current increment, respectively. Inhibitory
neurons were modeled as fast-spiking FS neurons without adaptation (ai = bi = 0 for
all inhibitory neurons), whereas excitatory regular-spiking RS neurons had a lower level
of excitability due to the presence of adaptation (for the RS cells, parameter be varied in
our simulations, while we fixed ae = 4 nS and the adaptation time constant τw = 500 ms,
unless otherwise specified). The δ-function indicates that whenever a neuron fires at time
tsp(k), the adaptation current wk is incremented by an amount b. The synaptic current
Isyn received by neuron i is the result of the spiking activity of all neurons j ∈ pre(i) pre-
synaptic to neuron i. This current can be decomposed in the synaptic conductances evoked
by excitatory E and inhibitory I pre-synaptic spikes, as follows:

Isyn = Ge
syn(Ee − vk) + Gi

syn(Ei − vk),

where Ee = 0 mV (Ei = −80 mV) is the excitatory (inhibitory) reversal potential. Excitatory
synaptic conductances Ge

syn were modeled by a decaying exponential function that sharply
increases by a fixed amount Qe at each pre-synaptic spike, that is:

Ge
syn(t) = Qe ∑

exc.pre
Θ(t − te

sp(k)) e−(t−te
sp(k))/τe ,

where Θ is the Heaviside function, τe = τi = 5 ms is the characteristic decay time of
excitatory and inhibitory synaptic conductances, and Qe = 1 nS (Qi = 5 nS) is the excitatory
(inhibitory) quantal conductance. Inhibitory synaptic conductances are modeled using the
same equation with e → i. This network displays two different states according to the level
of adaptation be (hereafter indicated as b), with b = 5 pA for asynchronous irregular states,
and b = 60 pA for up–down states (Figure 2A; see [6] for details and Table 1 for a synopsis
of the model parameters).
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Table 1. Model parameters.

Parameter Name Symbol Value Unit

Cellular Properties
Leak conductance gL 10 nS

Leak reversal potential EL −65 mV
Membrane capacitance Cm 200 pF

Resting voltage vrest −65 mV
Action Potential

threshold vthr −50 mV

Refractory period Tre f r 5 ms
Adaptation

time constant τw 500 ms

Excitatory Neuron
Spike sharpness ∆e 2 mV

Adaptation current
increment be varies pA

Adaptation conductance ae 4 nS
Inhibitory Neuron

Spike sharpness ∆i 0.5 mV
Adaptation current

increment bi 0 pA

Adaptation conductance ai 0 ns

Synaptic Properties
Excitatory Neuron

Reversal potential Ee 0 mV
Quantal conductance Qe 1 nS

Decay time of
synaptic conductance τe 5 ms

Inhibitory Neuron
Reversal potential Ei −80 mV

Quantal conductance Qi 5 nS
Decay time of

synaptic conductance τi 5 ms

Network Properties
Total network size N 10,000

Connectivity probability p 0.05
Fraction of

inhibitory cells gei 0.2
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Figure 2. Asynchronous irregular and slow oscillatory states in AdEx networks and mean-field
models (A). Raster plots of excitatory RS (blue) and inhibitory FS (red) AdEx neurons in a network
during asynchronous irregular (AI) state (top), and slow oscillations with up–down states (bottom).
The two states differed from the values of adaptation parameter b (b = 1 pA for AI state, and 20 pA for
slow oscillations shown here) (B). Corresponding mean firing rates of the two populations (C). Mean-
field model of AdEx networks with adaptation (scheme in inset). The mean-field model reproduces
the two states and the corresponding firing rate variations (adaptation current W shown in yellow).
Adapted from [8,13].

2.2. Mean-Field Models

We considered a population model of a network of AdEx neurons, using a master
equation formalism originally developed for balanced networks of integrate-and-fire neu-
rons [18]. This model was adapted to AdEx networks of RS and FS neurons [6], and later
modified to include adaptation [8]. The latter version is used here, which corresponds to
the following equations:

T
∂νµ

∂t
= (Fµ − νµ) +

1
2

cλη
∂2Fµ

∂νλ∂νη

T
∂cλη

∂t
= δλη

Fλ(1/T − Fη)

Nλ
+ (Fλ − νλ)(Fη − νη)

+
∂Fλ

∂νµ
cηµ +

∂Fη

∂νµ
cλµ − 2cλη (2)

τw
∂W
∂t

= −W + bτwνe + a(µV(νe, νi, W)− EL),

where T is the time constant, µ = {e, i} is the population index (excitatory or inhibitory),
νµ is the population firing rate, and cλη is the covariance between populations λ and η.
W is a population adaptation variable [8]. δλη = 1 if λ = η and zero otherwise. The
function Fµ={e,i} = Fµ={e,i}(νe, νi, W) is the transfer function, which describes the firing rate
of population µ as a function of excitatory and inhibitory inputs (with rates νe and νi) and
adaptation level W. These functions were estimated previously for RS and FS cells and in
the presence of adaptation [8].

At the first order, i.e., neglecting the dynamics of the covariance terms cλη , this model
can be written simply as follows:

T
dνµ

dt
= (Fµ − νµ), (3)

together with Equation (3). This system is equivalent to the well-known Wilson–Cowan
model [19], with the specificity that the functions F need to be obtained according to



Appl. Sci. 2024, 14, 1063 6 of 13

the specific single-neuron model under consideration. These functions were obtained
previously for AdEx models of RS and FS cells [6,8] and the same are used here.

For a cortical volume modeled as two populations of excitatory and inhibitory neurons,
the equations (at first order) can be written as follows:

T
dνe

dt
= Fe(νe + νa f f + νdrive, νi)− νe

T
dνi
dt

= Fi(νe + νa f f , νi)− νi (4)

τw
dW
dt

= −W + bτwνe + a(µV(νe, νi, W)− EL),

where νa f f is the afferent thalamic input to the population of excitatory and inhibitory
neurons and νdrive is an external noisy drive. The function µV is the average membrane
potential of the population and is given by the following equation:

µV =
µGeEe + µGiEi + gLEL − W

µGe + µGi + gL
,

where the mean excitatory conductance is µGe = νeKeτeQe. Similar to inhibition Ke =
(1 − gei)Np, gei is the fraction of inhibitory neurons in the network, N is the total size of
the network, and p is the probability of connection.

This system describes the population dynamics of a single isolated cortical column
and was shown to closely match the dynamics of the spiking network (Figure 2; [8]).

2.3. Networks of Mean-Field Models

Extending our previous work at the mesoscale [6] to model large brain regions, we
define networks of mean-field models, representing interconnected cortical columns (each
described by a mean-field model). For simplicity, we considered only excitatory inter-
actions between cortical columns, while inhibitory connections remained local to each
column. The equations of such a network, expanding the two-population mean-field model
(Equation (4)), are given in the following equation:

T
dνe(k)

dt
= Fe

[
ν

input
e (k) + νa f f (k), νi(k)

]
− νe(k)

T
dνi(k)

dt
= Fi

[
ν

input
e (k) + νa f f (k), νi(k)

]
− νi(k)

τw
dW(k)

dt
= −W(k) + bτwνe(k) (5)

+a(µV(νe(k), νi(k), W(k))− EL),

where νe(k) and νi(k) are the excitatory and inhibitory population firing rates at site k,
respectively, W(k) is the level of adaptation of the population, and ν

input
e (k) is the excitatory

synaptic input. The latter is given as follows:

ν
input
e (k) = νdrive(k) + ∑

j
Cjk νe(j, t − ∥j − k∥/vc) (6)

where the sum runs over all nodes j sending excitatory connections to node k, and Cjk is
the strength of the connection from j to k (and is equal to 1 for j = k). Note that νe(j, t −
∥j − k∥/vc) is the activity of the excitatory population at node k at time t − ∥j − k∥/vc to
account for the delay of axonal propagation. Here, ∥j − k∥ is the distance between nodes j
and k and vc is the axonal propagation speed.

As detailed in a previous study [14], the spike-frequency adaptation parameter in the
model can be linked to the neuromodulatory drive. From a biological perspective, during
wakefulness, increased concentrations of neuromodulators—such as acetylcholine, NE,
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and 5HT—diminish spike-frequency adaptation by down-regulating various K+ channels,
which results in a prolonged depolarization of the neurons and enables the emergence of
asynchronous and irregular firing [20]. On the contrary, during unconsciousness, the lower
concentrations of neuromodulators leave K+ channels open. The adaptation build-up and
its subsequent decay results in synchronous hyperpolarization and depolarization of the
neuron’s membrane potential, which, in turn, leads to the generation of slow-wave dynam-
ics. b controls the strength of spike-frequency adaptation, so that augmenting b corresponds
to a reduced neuromodulatory drive and switches the activity from asynchronous to slow
waves (see details in [8,13,14]).

2.4. Connectomes for the Three Species

The mouse connectome used here is a parcellation comprising 98 regions. The connec-
tivity matrix was created using the Allen Connectivity Builder, which uses high-resolution
anterogade tract-tracing data provided by the Allen Institute of Brain Science. The experi-
ments concern source regions only in the right hemisphere; therefore, the left hemisphere is
built as a mirror image of the right (data are available at https://zenodo.org/records/8331
301, accessed on 17 January 2023; for more information, see [21]).

The macaque structural connectivity matrix consists of 82 nodes and was generated
through a synthesis of axonal tract-tracing and diffusion-weighted imaging data, resulting
in a directed and weighted whole-cortex macaque connectome (data available at https://
zenodo.org/records/7011292, accessed on 17 January 2023; for more information, see [22]).

The human connectome includes 68 nodes, for which the connection was based on
human tractography methods from the Berlin empirical data processing pipeline [23].
Diffusion-weighted imaging does not provide information on fiber tract directionality, but
this information can be derived from tracer studies on macaques and subsequently mapped
on the human brain (data available at https://zenodo.org/records/4263723, accessed on
17 January 2023).

2.5. Integration in The Virtual Brain

The integration of networks of mean-field models was done for each species using
The Virtual Brain (TVB) simulator (https://www.thevirtualbrain.org/tvb, accessed on 17
January 2023). For the mouse brain, we used “The Virtual Mouse Brain” [21]; the monkey
brain model was provided by the macaque TVB [22]; and the TVB model of the human brain
was from [24]. These publications should be consulted for details about the connectivity
used. The particular implementation of the human TVB model was that given in [14],
where more details can be obtained.

2.6. Analysis

To quantify the amount of synchrony in the TVB model, we computed the phase-lag
index (PLI) for each pair of nodes, averaged over the simulation time. The Hilbert transform
is first computed to extract the phase ψ(t) of the time series. From there, the PLI is given
as follows:

PLI ≡ |< sign(ψi(t)− ψj(t)) >|, (7)

where < · > denotes averaging over time for nodes i and j [25]. Note that the PLI takes
values between 0 (random phase relations or perfect asynchrony) and 1 (perfect phase
locking). In this work, we report the mean PLI over all time epochs for the excitatory and
inhibitory firing rates of each region pair for each adaptation value.

3. Results

We start by showing the behavior of the mean-field model, then we show its integration
in brain-wide models of mouse, monkey, and human cerebral cortexes.

Figure 2 shows the spiking network model of AdEx neurons, comprising RS (blue) and
FS (red) cells, as detailed in previous studies [6,8]. This network can generate asynchronous
irregular (AI) activity states (Figure 2A, top), as well as slow synchronized activity in

https://zenodo.org/records/8331301
https://zenodo.org/records/8331301
https://zenodo.org/records/7011292
https://zenodo.org/records/7011292
https://zenodo.org/records/4263723
https://www.thevirtualbrain.org/tvb
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the form of up–down states (Figure 2A, bottom). The transition from these two states
is obtained by the strengthening or weakening of the spike-frequency adaptation in RS
cells (parameter b in the model). The mean rates of activity of these two states are shown
in Figure 2B. The mean-field model of this AdEx network was derived in two previous
publications [6,8] and is shown for these two states in Figure 2C.

As shown previously [13,14], the AdEx mean-field model was implemented in The
Virtual Brain (TVB) platform. This platform consists of a Python-based simulation en-
vironment [24] that allows the user to create a network of mean-field models (or, more
generally, neural mass models) constrained by connectivity data extracted from a given
connectome. The TVB environment can also generate a number of neural signals and be
linked to neuro-imaging [26]. Integrating the AdEx mean-field model in TVB, leading to the
“TVB-AdEx” model [13], has a double advantage. First, the mean-field model is biologically
informed, so it has physically interpretable parameters (such as conductances and synaptic
receptor kinetics) that can be changed and directly compared to experiments. Second, the
AdEx mean-field model can generate states of activity that can be asynchronous or synchro-
nized (see Figure 2), which is not the case with other neural mass models. This behavior is
remarkably robust within the large parameter space of the model, as investigated in detail
previously [27] and illustrated in Figure 3.
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Figure 3. Robustness of asynchronous and synchronized slow oscillatory states in the human TVB-
AdEx model. The 3D graph represents the TVB model’s behavior in a space spanned by three
parameters: the connection strength S, the level of adaptation b, and the time scale T. The color
indicates the duration of the up states Dup (large durations indicate that the dynamics are sustained
and asynchronous). Adapted from [27].

The behavior of the TVB-AdEx model is illustrated in Figure 4 for mouse, monkey,
and human brains. In all three species, the asynchronous activity of the mean-field model
leads to global dynamics that are also asynchronous (Figure 4, middle panels). While
there were some variations in the absolute amplitudes of the firing rates, the three models
displayed consistent asynchronous dynamics. For higher levels of adaptation, the three
models displayed slow-wave activity, as in the mean-field model. However, in this case,
the individual nodes synchronized their slow oscillation, which generated globally syn-
chronized slow-wave activity across large brain regions. In the case of the human brain, a
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grid scan of parameters showed that the level of synchrony depends on the parameters
and, in particular, on the strength of the long-range connectivity [14].

A

B

C

Figure 4. Emergent asynchronous and synchronized slow-wave dynamics in mouse, macaque, and
human brain models. (A) Mouse brain, (B) macaque brain, and (C) human brain. In each case,
the middle panels show the asynchronous activity resulting from low levels of spike-frequency
adaptation (b = 5 pA), while the right panels show the slow-wave dynamics obtained for higher
levels of spike-frequency adaptation (b = 60 pA). The color code is blue for excitatory firing rates, red
for inhibitory firing rates, and yellow for mean adaptation. Panel C was adapted from [14].

A comparison of the two states across the models of the three species is further
shown in Figure 5. The transition from asynchronous to slow-wave dynamics occurs at
about the same value of adaptation parameter b (Figure 5A). Interestingly, the duration
of the down states is predicted to be similar between species. One can also see that the
down state duration increases with b, and thus the slow-wave frequency also decreases
proportionally to the level of adaptation. The level of synchrony of the activities is shown
in Figure 5B,C, as measured by the phase-lag index (PLI), for excitatory and inhibitory
population activities, respectively. The synchrony increases for excitatory cells as a function
of adaptation parameter b (Figure 5B). Interestingly, one can see that the level of synchrony



Appl. Sci. 2024, 14, 1063 10 of 13

is systematically higher for the mouse brain, intermediate for the human brain, and lower
for the monkey brain. Because the mouse brain is considerably smaller, the axonal delays
are also smaller than in the other two models. To test its effect on synchrony, we matched
the delay distributions of the three species. The axonal propagation speed of the mouse
and macaque brains was decreased, resulting in increased delays in these two species that
they are similar to the delay distribution in humans. In this case, as shown in Figure 5C, the
level of synchrony of the mouse brain diminishes and roughly matches that of the human
brain. However, the macaque brain still displays a lower level of synchrony, which may be
due to sparser connectivity. This prediction of the model should be tested by conducting
appropriate experiments.

A

B

C

Figure 5. Comparison of the asynchronous and synchronized slow-wave dynamics in mouse,
macaque, and human brain models. (A) Transition between asynchronous and slow-wave dynamics
measured by the mean duration of down states. (B) Mean phase-lag index (PLI) for excitatory neuron
activities for the three species. (C) Same as B, but with the connection delays matched between the
three connectomes.

4. Discussion

In this paper, we present the integration of AdEx mean-field models into whole-
cortex simulations for three species: mice, monkeys, and humans. The chosen model is
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a second-order mean-field model, grounded in biophysically plausible spiking models,
built using a bottom-up approach. The model is able to reproduce the asynchronous
and slow oscillatory states of neural networks and therefore permits us to evaluate the
emergence of synchronized slow waves at the whole-brain level across three distinct species.
For each species, the simulations exhibit the main features of the TVB-AdEx model, as
found earlier [13,14]. In particular, the three models exhibit the same emerging property
found in human brain simulations, namely that when the individual AdEx nodes are
set to asynchronous mode, the ensemble of nodes remains asynchronous. This mode of
activity is consistent with the “desynchronized” activity classically found in the awake
human brain [1,2]; this is also seen in both human and monkey brains in microelectrode
recordings, which also display asynchronous irregular states [28]. Similarly, when the
AdEx nodes are in the up–down state, the activity across the whole cortex synchronizes
into a slow oscillatory mode. Moreover, this slow oscillatory mode corresponds to the
up–down states seen in single units in microelectrode recordings of humans and monkeys
during slow-wave sleep [28,29]. Microelectrode recordings in mice also display the same
two states—asynchronous irregular dynamics during wakefulness and up–down state
dynamics during slow-wave sleep [30]; the same can be seen in cats [31].

We believe that the simulations explored here, and in those for which we provide
Python code [32], constitute a very useful tool for the community of computational neuro-
scientists interested in simulating whole-brain dynamics in mice, monkeys, and humans.
We must note here that the codes we provide are run within the TVB environment [24]. In
addition, we have also implemented versions of these models that can be run online, on
the EBRAINS platform. This will allow users to run the models and change the parameters
without even installing TVB, which may also be a useful tool.

Finally, we would like to mention a few possible limitations and extensions to the
models explored here. The connectomes used in our study have been derived from
different experimental methods (axonal tract-tracing, diffusion weighted images, or a
combination of both) and they may exhibit discrepancies in terms of spatial resolution,
sensitivity, and accuracy due to inherent differences in the underlying data acquisition
and processing procedures. As a direct implication, the connectomes lack consistent
directionality (since diffusion-weighted imaging does not provide this information), which
may have an effect on the connectivity patterns and their emergent dynamics. It is also
important to keep in mind that these are purely cortical models, ignoring the contribution
of subcortical structures in the generation of slow-wave activity, with rather coarse brain
parcellations that include less than a hundred regions for each species.

A first suggested extension to this study is thus to complete the present model, which
is only cortical, by including other regions, such as the thalamus, hippocampus, basal
ganglia, or cerebellum. Integrating these regions will require the design of mean-field
models specific to each brain region, which was achieved recently for the cerebellum [33]
and thalamus [34], and is in progress for other brain regions. The models would also
benefit from the use of high-resolution parcellations that take into consideration local
circuits and dynamics. A second extension is to study other states and other transitions
than the ones explored here. For example, oscillatory states (such as beta or gamma) may
occur as responses to sensory stimulation, slow-wave states occurring under anesthesia,
or pathological states such as coma or minimal consciousness. To model such states,
the procedure is the same as that outlined here: start with a spiking network model
displaying these new states, then design a mean-field model that can capture this effect,
and—finally—integrate the mean-field model on a large scale in TVB. We believe that these
are interesting directions to explore and that the models proposed here will provide useful
tools for this exploration.
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