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* Correspondence: artur.tyliszczak@pcz.pl; Tel.: +48-3250-509

Abstract: The study presents the use of spatial imaging of the shape of the deformation formation
area occurring at the point of contact between the burnished tool and the processed material surface
in the burnishing process. In the analysis of changes in the shape of surfaces processed by ball
and disc pressure burnishing, an integrated measurement station was used to measure surface
stereometry (New Form Talysurf 2D/3D 120 by Taylor Hobson) and to carry out a series of axially
shifted roundness measurements (Talyrond 365 by Taylor Hobson). The geometric parameters of the
deformation zone determined in the direction of the circumference of the cylindrical surface (direction
of the main movement) and in the axial direction (in the feed plane) are presented. The data obtained
as a result of metrological measurements were analysed using specialized computer software.
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1. Introduction

Burnishing is one of the popular machinery industry finishing methods that allows
relatively easy control of the surface layer condition parameters determining its service
properties [1–3]. The process of forming the surface layer is carried out as a result of plastic
deformation of the material, occurring in the contact area between the burnishing tool and
the processed material [4,5]. Burnishing is carried out to achieve two basic technological
objectives: strengthening the material at the depth of the surface layer and improving the
stereometric condition of the machined surface [6–9] (Figure 1). Burnishing allows the
creation of compressive residual stresses in the top surface layer of metal and also increases
its strength as a result of work hardening, which increases the fatigue, friction and corrosion
resistance of the processed part. Due to its low costs, it is competitive with laser impact
strengthening. Its advantage is the lack of thermal stresses characteristic of thermal pro-
cessing. It is evident that both of these technological objectives are realized by selecting the
appropriate machining method and technological parameters for this process [10–14]. By
using tools of different shapes as burnishing elements—for example, a ball or a disc—under
the same technological conditions, or by changing the machining parameters, it is possi-
ble to achieve different degrees of deformation of irregularities [15–19]. Depending on
expectations, it is possible to achieve partial deformation of the irregularities, which occurs
when the burnishing element has too large a profile radius and is not able to generate the
unitary pressures necessary for the full deformation of the irregularities (the bottoms of the
irregularity notches remain on the surface after the pre-burnishing machining), neither their
complete deformation when the burnishing element exerts such large surface pressures
in the burnishing zone that the irregularities are completely deformed. The properties of
the resulting surface layers depend to a large extent on the set of phenomena occurring
during the formation of deformations in the contact zone of the burnishing tool with the
material [20–25].
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Figure 1. Surface profile: (a) before burnishing–turned zone (r = 0.4 mm, fturn = 0.410 mm/rev), (b) 
ball burnished zone (R = 5 mm, F = 5 kN, fburn = 0.410 mm/rev) (magn. 100×). 

During the burnishing process, after reaching a sufficiently high level of unit pressure 
in the deformation zone, a wave of material piled up by the burnishing tool is formed on 
the processed surface. This happens both in the axial and circumferential directions [26–
29]. According to many publications, the deformation zone obtained in this way has a 
three-dimensional shape characteristic of the ongoing processes resulting from its geo-
metric and kinematic parameters [27–31]. What is determined here is primarily the bur-
nishing force, as well as the characteristics of the tool used for processing (ball or disc). 

The analyses carried out allow us to conclude that the first type of deformation focus 
(I) occurs when the burnishing element is slightly recessed into the surface, less than the 
distance of the surface roughness vertices from the mean line. The surface irregularities 
are then only partially smoothed out due to the insufficient pressure force. Increasing the 
force leads to the second type of deformation focus (II), which is characterized by the ap-
pearance of a wave of material in front of the face of the pressing element, the apex of 
which, however, does not rise higher than the roughness vertices. A further increase in 
the force leads to an increase in the wave and the formation of a distortion focus of the 
third type (III). A characteristic feature of this type of focusing is that the material wave 
rises above the profile of the workpiece. The formation of a deformation centre of the third 
kind is a prerequisite for the optimum quality of the workpiece surface and the favourable 
operating characteristics of the surface layer obtained in the burnishing process [32,33]. A 
further increase in the force (IV) causes a further increase in the wave, to a significant level, 
which induces damage to the surface layer, manifested by rippling on the surface and 
tarnishing caused by peeling of the thin near-surface layer. The analysis results presented 
in this article concern the process of forming a spatial deformation zone during the bur-
nishing process carried out using various tools (balls and discs) and various technological 
parameters of the process (forces and feeds). The presented article is an in-depth review 
of computer-aided analysis of the surface layer after the burnishing process, resulting 
from many years of experience and research and many scientific articles. 

2. Analysis of the Stereometry of the Deformation Zone 
To numerically analyse the stereometry of the contact area of the burnishing tool with 

the processed material, a New Form Talysurf 2D/3D 120 Taylor Hobson profilographom-
eter was used with the software “Ultra Surface 5.16” and “TalyMap Platinium 5.1.1”. This 
instrument enables measurements of surface roughness and stereometry. A measuring 
head with a resolution of 3.2 nm was used for the tests. Reproducing the shape of the 
deformation area caused by burnishing required equipping the station with a measuring 
table enabling the displacement of the measured samples in a direction perpendicular to 
the direction of travel of the measuring tip (an area with given geometric dimensions de-
pending on the type of test performed). Measurements were performed on the burnished 
object. It was a cylinder (shaft) with a diameter of 50 mm made of C55 (1.0535), very pop-
ular in the machinery industry (Table 1). The burnishing tools were balls and discs made 

Figure 1. Surface profile: (a) before burnishing–turned zone (r = 0.4 mm, fturn = 0.410 mm/rev),
(b) ball burnished zone (R = 5 mm, F = 5 kN, fburn = 0.410 mm/rev) (magn. 100×).

During the burnishing process, after reaching a sufficiently high level of unit pressure
in the deformation zone, a wave of material piled up by the burnishing tool is formed on
the processed surface. This happens both in the axial and circumferential directions [26–29].
According to many publications, the deformation zone obtained in this way has a three-
dimensional shape characteristic of the ongoing processes resulting from its geometric and
kinematic parameters [27–31]. What is determined here is primarily the burnishing force,
as well as the characteristics of the tool used for processing (ball or disc).

The analyses carried out allow us to conclude that the first type of deformation focus
(I) occurs when the burnishing element is slightly recessed into the surface, less than the
distance of the surface roughness vertices from the mean line. The surface irregularities are
then only partially smoothed out due to the insufficient pressure force. Increasing the force
leads to the second type of deformation focus (II), which is characterized by the appearance
of a wave of material in front of the face of the pressing element, the apex of which, however,
does not rise higher than the roughness vertices. A further increase in the force leads to
an increase in the wave and the formation of a distortion focus of the third type (III). A
characteristic feature of this type of focusing is that the material wave rises above the
profile of the workpiece. The formation of a deformation centre of the third kind is a
prerequisite for the optimum quality of the workpiece surface and the favourable operating
characteristics of the surface layer obtained in the burnishing process [32,33]. A further
increase in the force (IV) causes a further increase in the wave, to a significant level, which
induces damage to the surface layer, manifested by rippling on the surface and tarnishing
caused by peeling of the thin near-surface layer. The analysis results presented in this article
concern the process of forming a spatial deformation zone during the burnishing process
carried out using various tools (balls and discs) and various technological parameters of the
process (forces and feeds). The presented article is an in-depth review of computer-aided
analysis of the surface layer after the burnishing process, resulting from many years of
experience and research and many scientific articles.

2. Analysis of the Stereometry of the Deformation Zone

To numerically analyse the stereometry of the contact area of the burnishing tool with
the processed material, a New Form Talysurf 2D/3D 120 Taylor Hobson profilographometer
was used with the software “Ultra Surface 5.16” and “TalyMap Platinium 5.1.1”. This
instrument enables measurements of surface roughness and stereometry. A measuring
head with a resolution of 3.2 nm was used for the tests. Reproducing the shape of the
deformation area caused by burnishing required equipping the station with a measuring
table enabling the displacement of the measured samples in a direction perpendicular
to the direction of travel of the measuring tip (an area with given geometric dimensions
depending on the type of test performed). Measurements were performed on the burnished
object. It was a cylinder (shaft) with a diameter of 50 mm made of C55 (1.0535), very
popular in the machinery industry (Table 1). The burnishing tools were balls and discs
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made of 100Cr6 [34] bearing steel. It was a typical, real machining on a CU-500 conventional
lathe. During the tests, the lowest possible spindle revolutions were used (18 rpm) due
to the need to stop the process to obtain the geometry of the formed deformation centre.
The analysis of the literature [3,4,32] allows us to conclude that due to the low rotational
speeds used during static pressure burnishing carried out using balls or discs, the linear
burnishing speed of several meters per minute is not a parameter that significantly affects
the machining process. The most important parameters controlling the process are the
tool geometry (radius of curvature) (R for ball and Rk for disc), burnishing force (F) and
feed (fburn). Therefore, during the described research, it was not a parameter analysed
as a parameter controlling the machining process. Only the most characteristic results of
the obtained tests are presented. As a rule, 10 repetitions of the surface examination were
carried out with the given parameters.

Table 1. Chemical characteristics of C55/1.0535 steel.

C Mn Si P S Cr Ni Mo

0.52–0.60 0.60–0.90 Max 0.40 Max 0.045 Max 0.045 Max 0.40 Max 0.40 Max 0.10

Burnishing is the last finishing treatment; therefore, any roughness remaining after
the previous machining process, e.g., turning or milling, is permanently deformed. As a
result, the geometric structure of the surface is completely changed. Its parameters are
the result of the processes occurring during its formation. The spacing of the formed
irregularities is close to the feed rate used during burnishing. The deformed material
gradually fills the original grooves of the surface irregularities remaining after the previous
machining. Optical observation (microscope) and computer-aided analysis show that
a wave of irregularities is formed in front of the moving burnishing tool. The wave
is shaped both in the axial direction—the direction of feed—and in the circumferential
direction—the direction of the main movement (Figure 2). Figure 3 illustrates cross-sections
of the deformation zone determined in the direction perpendicular and parallel to the
main movement. The burnishing process parameters and the selected tool determine the
machining results and the amount of surface strengthening. The software, which was
used during the scientific research, enables a way to analyse differences in the height and
distance of any indicated areas of the analysed zone. It becomes possible to determine the
most important geometric parameters of the deformation zone. The presented analysis is
therefore very important for the machinery industry because it enables the possibility of
optimization of the burnishing process.
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Figure 2. Ball burnishing: (a) planar (top view), (b) stereometric image of the contact zone of the 
burnishing tool. R = 5 mm, F = 5 kN; feeds: fturn = 0.410 mm/rev, fburn = 0.102 mm/rev (area after 
turning: Sz = 92.4 µm, Sa = 17.5 µm; area after burnishing: Sz = 72.2 µm, Sa = 9.6 µm). 

Figure 2. Ball burnishing: (a) planar (top view), (b) stereometric image of the contact zone of the
burnishing tool. R = 5 mm, F = 5 kN; feeds: fturn = 0.410 mm/rev, fburn = 0.102 mm/rev (area after
turning: Sz = 92.4 µm, Sa = 17.5 µm; area after burnishing: Sz = 72.2 µm, Sa = 9.6 µm).
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It can be concluded that, during the burnishing process using tools with larger radii 

(Figure 4c,d), the moment of transition from parameters leading to the formation of a de-
formation centre of type I, typical for small unit pressures, to parameters leading to the 
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forces [1,3,4,32]. However, the significance of the increase in the burnishing feed is not so 
clear. At small feed rates (0.05–0.2 mm/rev) (Figure 5), the course of deformation formation 
is to some extent similar to the phenomena characteristic of the process of forming a cir-
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Figure 3. Description of the geometric parameters of the deformation centre. Ball burnishing.
R = 5 mm, F = 2.75 kN, fturn = 0.410 mm/rev, fburn = 0.102 mm/rev (area after turning: Sz = 91.7 µm,
Sa = 18.9 µm; area after burnishing Sz = 21.2 µm, Sa = 2.4 µm): (a) main motion plane, (b) feed plane.

To describe the three-dimensional shape (Figure 2) of the deformation zone obtained
after the burnishing process, it was proposed to use parameters describing its shape both in
the axial section (in the feed plane)—the letters with parameter f—and in the circumferential
section (in the plane of the main movement)—the letters with parameter v:

• hf/hv: deformation wave height,
• hfo/hvo: tool cavity height relative to the surface of the raw material,
• L1/L2: initial deformation wavelength,
• a = a1 + a2/b = b1 + b2: length and width of the deformation centre,
• Lf/Lv: length and width of the deformation wave.

Additionally, the parameters describing forces, geometry and roughness were used:
• F—burnishing force [kN],
• R—radius of the ball-shaped tools [mm],
• Rk—radius of the disc-shaped tools [mm],
• fturn—feed used in turning [mm/rev],
• fburn—feed used in burnishing process [mm/rev],
• Sa—parameter, similar to Ra, characterizing the stereometric profile [µm]. The arith-

metic averages of roughness from the average plane within the sampling area—the
elementary square,

• Sz—parameter, similar to Rz, characterizing the stereometric profile [µm]. The ten-
point height of the surface irregularities—the average value of the absolute heights of
the five highest peaks and the five lowest depressions within the sampling area—the
elementary square.

It can be concluded that, during the burnishing process using tools with larger radii
(Figure 4c,d), the moment of transition from parameters leading to the formation of a
deformation centre of type I, typical for small unit pressures, to parameters leading to the
formation of a centre of deformation of type II and III can occur using greater burnishing
forces [1,3,4,32]. However, the significance of the increase in the burnishing feed is not
so clear. At small feed rates (0.05–0.2 mm/rev) (Figure 5), the course of deformation
formation is to some extent similar to the phenomena characteristic of the process of
forming a circumferential groove. For this reason, the mere increase in the feed rate
without a simultaneous increase in the burnishing force does not result in an increase in
the dimensions of the deformation area and the penetration of the burnishing ball into
the material (Figure 5). The obtained results made it possible to present the dependence
of selected parameters of the deformation zone on the feed and force used during ball
pressure burnishing (Figure 6).



Appl. Sci. 2024, 14, 1062 5 of 15

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 15 
 

of the deformation zone on the feed and force used during ball pressure burnishing (Fig-
ure 6). 

  
(a) (b) 

  
(c) (d) 

Figure 4. Ball burnishing—the impact of force on some parameters of the deformation centre (fburn = 
0.102 mm/rev) determined in (a,c) axial cross-section (hf, hfo, L1, a, Lf,), (b,d) cross-section peripheral 
(hv, hvo, L2, b, Lv), (a,b) ball radius R = 5 mm, (c,d) ball radius R = 13.5 mm. 

  
(a) (b) 
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deformation centre determined in: (a) axial section (hf, hfo, L1, a, Lf,), (b) circumferential section (hv, 
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Figure 4. Ball burnishing—the impact of force on some parameters of the deformation centre
(fburn = 0.102 mm/rev) determined in (a,c) axial cross-section (hf, hfo, L1, a, Lf,), (b,d) cross-section
peripheral (hv, hvo, L2, b, Lv), (a,b) ball radius R = 5 mm, (c,d) ball radius R = 13.5 mm.
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Figure 5. Ball burnishing (R = 5 mm, F = 2.75 kN)—the impact of feed on some parameters of the
deformation centre determined in: (a) axial section (hf, hfo, L1, a, Lf,), (b) circumferential section (hv,
hvo, L2, b, Lv).
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Figure 6. Ball burnishing (R = 5 mm)—computer-aided analysis of the dimensions of the axial and
circumferential wave of the material depending on the burnishing process parameters: (a) hf, (b) hfo,
(c) hv.
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During pressure burnishing with a disc, the material deformation process occurred in
a very similar way. The amount of force applied during the burnishing process determined
the shape and size of the resulting zone of deformed material (Figure 7). However, in accor-
dance with Figure 8, the influence of feed rate on changes in the geometric parameters of
the deformation wave—particularly for the circumferential section—was more pronounced
than for ball burnishing. For this machining method, the influence of the variation in feed
and burnishing force on selected geometry parameters of the deformation zone was also
determined (Figure 9).
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To fully describe the process occurring during burnishing, it is necessary to determine
the contact area of the burnishing tool with the processed surface. The actual shape and
size of this area depend on the adopted processing parameters, including, primarily, the
value of the burnishing force and, secondly, the values of the feed used in machining. The
selection of the optimal forces of the burnishing process necessary to completely deform
the irregularities and induce the expected changes in the state of the physical parameters
of the burnished surface layer is possible if the value of the unit pressures accompanying
the machining process is known. The proper selection of burnishing conditions, which
is the basis for the correct execution of the machining process in industrial conditions, is
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only possible using computational methods. However, they require knowledge, at least
approximate, of the size of the contact area between the tool and the processed material.
Meanwhile, according to the literature and research works using classic methods of metrol-
ogy and surface analysis, determining the actual shape and dimensions of the deformation
zone has not yet been fully feasible. The formulas known from the literature lead to ap-
proximate solutions, which makes them practically useless in practice. Research carried
out in industrial conditions confirmed this thesis. Only the use of modern, computer-aided
analysis techniques of the deformation zone, obtained as a result of image measurement
with microscopes and ultrafast cameras, allows the precise determination of the contact
area (Figure 10).
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area of the tool with the burnished material: (a) main motion plane, (b) feed plane.

The computer-aided measurement methodology presented in the study made it possi-
ble to link the actual size of the tool contact area with the processed surface depending on
the two basic parameters of the burnishing process—force and feed (Figure 11).

The software used in the research, the proposed measurement methodology and the
method of describing the deformation zone also enable spatial visualization of a selected
fragment of the analysed area of the actual contact zone of the tool with the burnished
material. This allows for a more detailed analysis of phenomena occurring in a selected
area, compared to classical metrology (Figures 11 and 12).
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area of contact between the tool and the burnished material.

3. Three-Dimensional Deformation Zone Imaging

The measurement results presented in the study were obtained using the Talyrond
365 roundness measurement station (with Ultra Roundness 5.17 control program) [35]. It
is equipped with a self-levelling, aerostatic measuring table, facilitating the measurement
process. The equipment enables comprehensive, three-dimensional analysis of the shape of
cylindrical surfaces with a resolution of 1.3 nm. During measurement, points located on the
circumference of the cylindrical surface are collected in the form of a digital point cloud in
the number of 3600 or 18,000 points (optionally) per 1 revolution of the table. The position-
ing resolution of the measuring table is 0.02 degrees. The methodology used in the research
consisted of performing a series of axially shifted measurements, allowing the creation of a
three-dimensional image of the deformation zone area for the entire circumference of the
analysed cylindrical surfaces. This makes it possible to perform three-dimensional imaging
of changes in the shape of the obtained burnished surfaces depending on the method and
technological parameters of the burnishing treatment performed (Figure 13). As a result,
thanks to the use of computer technology, i.e., digital processing of a cloud of measurement
points, it became possible to analyse the shape of the unevenness formation zone in selected
cross-sections perpendicular to the axis of the burnished cylindrical surface. It was possible
to recreate the shape of the material wave forming in front of the burnishing tool in the
direction of the main burnishing movement. The computer-aided measurement allowed
for the analysis of changes occurring in the geometry of the pressed surface, as well as the
initial turned surface after the preceding machining (Figures 13 and 14).
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Figure 14. Ball burnished surfaces—the three-dimensional image of the burnishing zone: (a)
(R = 5 mm, F = 2.75 kN, fturn = 0.410 mm/rev, fburn = 0.102 mm/rev), (b) (R = 5 mm, F = 2.75 kN,
fturn = 0.102 mm/rev, fburn = 0.186 mm/rev).

The analysis of the data obtained as a result of the measurements made it possible to
draw conclusions regarding the nature of changes taking place in the surface layer of the
processed material. The burnishing process leads to plastic deformation of the material
and, as a result, to the formation of a wave of piled-up material both in the circumferential
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(direction of the main movement of the tool) and axial (in the feed direction) directions. A
helical groove is created around the machined surface, with a helical pitch corresponding to
the feed value (Figures 13 and 14). In the area of the deformation zone, a displaced “fault”
is observed—a wave of the material formed in front of the tool. Shape deviations of the
pressed material are the result of processes occurring within the displaced deformation
zone. The geometry of the created deformation (width and depth of the groove, pitch of the
formed helix, geometry of the formed material wave) results from the material parameters
(mechanical properties, shape of the primary surface, initial roughness) and the adopted
technological parameters of the process (selected tool).

Figures 13 and 14 show images of the deformation zone for typical cases of burnishing
(ball or disc with different radii). The comparison of deformation zones obtained for the
minimum and close to the maximum burnishing forces that can be used in given conditions
illustrates the variability of the formed deformation wave caused by the increasing process-
ing force obtained for burnished surfaces characterized by different initial roughness values.
In the case of significant roughness, large radius of the burnishing ball and low burnishing
forces, the surface irregularities after the previous treatment were not fully deformed.

It should also be noted that the analysis of the charts (Figure 3) and drawings
(Figures 12–14) leads to the conclusion that plastic deformations are not permanent, and,
under the impact of elastic forces, the surface after burnishing partially returns to its
original geometric dimensions. For example, the wave height of the piled-up material is
approximately 1 mm, and the height difference after processing is approximately 0.01 mm
to 0.02 mm, which is smaller than after the previous processing.

The analysis of the impact of changing (increasing) the burnishing feed rate (fburn),
from 0.186 mm/rev to 0.410 rev/mm, on changes in the geometry of the deformation zone
during ball pressure burnishing allows us to conclude that the increase in feed, with other
burnishing parameters remaining unchanged, leads to a clear change in the shape of the
deformation zone. It is particularly visible in the case of pressure burnishing performed
with a disc tool (Figure 15). There is a large increase in the height of the axial wave
of material growing in front of the tool. Moreover, the shape and direction of material
deformation occurring within the tool–material contact zone also changes.
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Figure 15. Disc-burnished surfaces—the three-dimensional image of the burnishing zone: (a)
(Rk = 5 mm, F = 2.75 kN, fturn = 0.102 mm/rev, fburn = 0.186 mm/rev), (b) (Rk = 5 mm, F = 2.75 kN,
fturn = 0.102 mm/rev, fburn = 0.410 mm/rev).

4. The Use of a Digital Microscope to Examine the Deformation Area

The three-dimensional analyses of the area of deformation occurring during burnish-
ing presented in the article were supplemented with digital microscopic photographs
illustrating the changes occurring as a result of the burnishing process on the surface of the
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processed material (Figures 16–20). The KEYENCE VHX-7000, Japan, digital microscope
was used in the research.
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Figure 18. Ball burnishing zone (R = 5 mm, F = 2.75 kN, fburn = 0.41 mm/rev), mag.: (a) 100×;
(b) 200×.

The directional geometric structure of the surface resulting from the process preceding
the burnishing process—machining (turning)—was replaced by a structure obtained as
a result of the plastic deformation process carried out during burnishing. Microscopic
photographs taken at different magnifications (from 50× to 200×) show the deformation
zone caused by the burnishing process. A very characteristic feature is the occurrence of a
clear, strongly plastically deformed boundary (Figures 16 and 18) between the deformed
material and the area of the structure after the previous machining, which was already
observed using other imaging methods. A completely new geometric structure of the
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surface is formed on the treated surface, resulting from the deformation taking place during
ball pressure burnishing (Figures 16–18). The course of deformations occurring during the
rolling pressure burnishing process with a disc tool (Figures 19 and 20) is very similar. Due
to the high feed (0.41 mm/rev) used during burnishing, the surface irregularities formed
as a result of the kinematic mapping of the burnishing disc passage also become visible.
Microscopic photos taken with different magnifications also reveal changes in the structure
of the material.
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Figure 20. Disc burnishing zone (Rk = 5 mm, F = 2.75 kN, fburn = 0.41 mm/rev), mag.: (a) 50×;
(b) 200×.

From the point of view of the analysed process, observation of the phenomena occur-
ring at the deformation centre becomes the most important component. In the deformation
zone, the roughness remaining after turning is overformed. The process begins with a
boundary, shaped as a result of the kinematic reflection of the geometry of the burnishing
tool. The microscopic photos taken confirm previous analyses that show that the tops of
the irregularities are plastically deformed. As a result of the occurring deformation, the
entire area of contact between the tool and the material changes its character. Instead of the
longitudinally oriented traces of the transition of the cutting edges of the lathe tool, very
characteristic of the preceding turning process (Figure 1a and the left side in Figures 16–20),
a geometric structure of the material appeared on the surface, shaped as a result of the
plastic deformation taking place. In the area of the deformation zone (middle part in
Figures 16–20) located under the burnishing tool, traces of deformation of the plastically
deformed material were revealed, with intervals resulting from the distance of the rough-
ness of the preceding processing (turning). These traces, due to deformations occurring in
the area where the tool exited the machining zone, were no longer visible in the area of the
burnished surface (Figure 1b and the right side in Figures 16–20). At this point, complete
plastic deformation and over-forming of the irregularities occurring before burnishing have
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already occurred. A new geometric structure of the material was created. The analysis
of the deformation zones obtained for ball burnishing with varying burnishing feed rates
(Figures 16–18) allowed for the conclusion that the increase in feed rate causes a significant
increase in the geometric dimensions and depth of the deformation zone obtained as a
result of burnishing. The direction of movement of the material wave has changed. The
use of a disc as a burnishing tool (Figures 19 and 20) led to the formation of a deformation
zone with a shape that was different from the zones obtained in the ball burnishing process.
The deformation zone was noticeably longer, and its depth was smaller (Figures 18 and 19).
The increase in the feed resulted in a significant increase in the height and direction of
growth of the accumulated wave of material in front of the tool. Microscopic observations
described in this article completely confirmed both, the previously obtained measurement
results and the proposed methodology for analysing computer images.

5. Conclusions

The subject of the research was a computer-aided analysis of the focus of deformation
in the mechanical burnishing process. The topics resulted directly from the industry needs.
Burnishing is commonly used to change the properties of the surface layer, with particular
emphasis on its strengthening. As the research has shown, the geometric parameters of the
deformation centre are influenced by the conditions related to the processed material and
the surface roughness parameters prior to processing, as well as the shape (type of tool)
and technological parameters of the burnishing treatment process. The deformed material
is displaced both in the axial direction (in the direction of feed of the burnishing element
and in the direction opposite to it) and in the circumferential direction. In accordance with
computer-aided analyses, the most important factor for the final effects of the tested process
is the flow of the material in the axial direction, which determines the final stereometry
of the surface obtained as a result of burnishing. The measurement results showed that
the deformation process can occur in the part of the material covering only the roughness
peaks remaining after the previous processing (which leads only to partial smoothing
of the roughness peaks). When the burnishing forces are further increased, a material
wave appears and grows, which (after reaching a certain force value depending on the
material and burnishing parameters) exceeds the height of the roughness peaks remaining
after the previous processing. In these conditions, a typical deformation centre (so-called
type III deformation centre) for stable burnishing conditions, described in the literature, is
created [3,4,32]. Achieving this type of deformation focus is the most appropriate process
to obtain the correct properties of the surface layer obtained as a result of burnishing. This
is the most important goal of properly performed burnishing. A further increase in the
burnishing force and the associated increase in the growing wave of deformation leads
to damage to the formed surface layer and disruption of the degree and uniformity of
microhardness. Therefore, it should not be used in practice. Unfortunately, in industrial
conditions, the “trial and error” method is used to determine the correct technological
parameters of the burnishing process. The considerations presented in the article and the
use of computer technology will contribute to the optimization of machining.

The analysis of many images and charts obtained using several methods (profilo-
graphometer, microscope, roundness gauge) of the stereometry of the deformation centre
and machining burnished surfaces with various processing parameters allowed for tracing
the process of shaping the deformation zone. The research results clearly show that the
parameter that best describes the nature of the changes in the geometry of the deformation
zone is the height of the deformation wave (hf) determined in the axial cross-sectional
plane and the size of the tool cavity in relation to the surface of the raw material (hfo). These
parameters are relatively easy to determine in industrial conditions. Their determination is
even possible directly on the machine tool using portable roughness measuring equipment.
This allows not only the proper selection of burnishing parameters, which do not lead to
excessive shape errors of the obtained surfaces, but also, as a result, the elimination of the
“trial and error” method from the industry.
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The practical use of computer-aided measurement methods for the analysis of selected
stereometric parameters and the shapes of the deformation zone of burnished surfaces,
presented in the study, allows for a significant increase in the amount and transparency of
information that can be obtained. It becomes possible to precisely determine the area of
contact between the burnishing tool and the processed material. Thanks to this, the values
of actual contact stresses in the contact zone are known. It is also possible to trace the shape
changes occurring within the deformation formation zone, both in axial and circumferential
cross-sections. This enables the proper selection of burnishing parameters that eliminate
shape errors on the obtained surfaces and improve their microhardness characteristics.
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