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Abstract: Sulforaphane, a phytochemical found in cruciferous vegetables and various nutraceutical
foods, plays a crucial role in promoting well-being and combating various diseases. Its remarkable
effects are due to its intricate interactions with a wide range of proteins, some of which remain
unidentified. In this study, taking advantage of bioinformatics tools for protein target prediction,
we identified 11 proteins as potential targets of sulforaphane. Due to its biological relevance and
their correlation with transcriptomic changes observed in sulforaphane-treated cells, the possible
interaction between sulforaphane and nicotinamide phosphoribosyltransferase (NAMPT) was further
investigated. A docking analysis suggested that sulforaphane is strategically positioned at the
entrance of the channel through which substrates enter, thus bypassing the active site of the enzyme.
By forming hydrogen bonds with residues K189, R349, and S275, sulforaphane establishes a linkage
with NAMPT. Dynamic molecular analyses further corroborated these observations, illustrating that
these bonds allow sulforaphane to associate with NAMPT, mimicking the behavior of a NAMPT
activator (NAT), a known activating compound of this enzyme. This collective evidence suggests
that sulforaphane may activate NAMPT, providing valuable insights into a possible mechanism
underlying its diverse biological effects.
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1. Introduction

Sulforaphane (1-isothiocyanate-4-(methylsulfinyl)butane), a naturally occurring isoth-
iocyanate found in cruciferous vegetables such as cabbage, cauliflower and kale, is espe-
cially abundant in broccoli sprouts [1]. This compound exhibits two optical isomers (R
[Rectus → Latin = Right] and S [Sinister → Latin = Left]) (Figure 1A,B) due to its asymmet-
ric sulfur atom, both of which are present in broccoli sprouts [2]. In particular, the research
highlights the superior biological activities exhibited by the R-enantiomer of sulforaphane
in comparison to the S-enantiomer [3,4].

Within plant structures, sulforaphane exists as an inactive precursor known as glu-
coraphanin (Figure 1C), which undergoes rapid conversion to its active form by the plant
enzyme myrosinase [5]. This transformation takes place when vegetables are bitten and
chewed, resulting in the release of glucoraphanin and myrosinase. However, it is crucial
to recognize that myrosinase is susceptible to destruction during cooking, steaming, or
microwaving, resulting in decreased sulforaphane levels in cooked vegetables [6,7]. After
ingestion, sulforaphane undergoes metabolic transformation via the mercapturic acid path-
way, involving its conjugation with glutathione. This initial conjugation paves the way for
further biotransformation processes, leading to the generation of various metabolites such
as sulforaphane-cysteine and sulforaphane-N-acetylcysteine [1,8]. Sulforaphane elimina-
tion is characterized by a prolonged terminal phase. For example, in humans, the maximum
plasma concentration was recorded at 3 h after administration of 200 µM sulforaphane,
with an elimination half-life of 1.9 ± 0.4 h [9].
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Figure 1. Chemical structures of the sulforaphane enantiomers (A,B) and its precursor, glu-
coraphanin (C). 

Sulforaphane has been the subject of much research, attracting considerable atten-
tion in the medical field due to its various health benefits [1]. The therapeutic potential 
of sulforaphane is underscored by the participation of nearly 100 clinical trials, each at 
different stages, that systematically explore its potential health benefits in a variety of 
conditions. These trials cover areas such as autism, schizophrenia, depressive disorders, 
aging and specific types of cancer [8]. Notably, numerous studies are dedicated to un-
raveling the intricate mechanisms through which sulforaphane exerts its therapeutic ef-
fects [10–13]. The reported effects of sulforaphane span a spectrum of physiological and 
biochemical alterations, including its influence on oxidative stress, enhancement of anti-
oxidant capacity, elimination of cancer cells and reduction of neuroinflammation [1,8]. 
These multifaceted actions are attributed to the modulation of various proteins by sul-
foraphane. Significantly, activation of the NRF2 (nuclear factor erythroid 2-related factor 
2) pathway has garnered substantial attention as the fundamental mechanism through 
which sulforaphane exerts its effects [14]. However, it is noteworthy that sulforaphane 
extends its influence beyond this pathway, affecting other signaling pathways [15,16], 
metabolic pathways [17] and gene transcription processes [18,19]. 

Despite notable advances, the complete catalog of sulforaphane-interacting proteins 
remains elusive. Moreover, it is crucial to recognize that the effects of this compound are 
dose dependent, suggesting an affinity-dependent binding to target proteins [20]. This 
dose-dependent nature adds complexity to the understanding of sulforaphane’s actions, 
emphasizing the nuanced interaction between the compound and its molecular targets. 

In the last decade, bioinformatics has undergone significant advances, transforming 
our ability to predict molecular targets for new drugs and repurpose existing com-
pounds for new therapeutic applications [21,22]. This transformation involves the inte-
gration of high-throughput data and machine learning techniques, enabling the retro-
spective identification of key proteins implicated in drug-induced transcriptomic and 
proteomic changes [23,24]. Furthermore, approaches based on protein–protein interac-
tion networks, drug–target networks, and disease–gene networks have contributed to 
improving our understanding of protein–protein interaction mechanisms [25–27]. 

The intricate interaction between sulforaphane and its target proteins is a captivat-
ing field of research with potential for revolutionary discoveries. The integration of bio-
informatics tools is of great help to significantly advance this field, facilitating the more 
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Sulforaphane has been the subject of much research, attracting considerable attention
in the medical field due to its various health benefits [1]. The therapeutic potential of sul-
foraphane is underscored by the participation of nearly 100 clinical trials, each at different
stages, that systematically explore its potential health benefits in a variety of conditions.
These trials cover areas such as autism, schizophrenia, depressive disorders, aging and
specific types of cancer [8]. Notably, numerous studies are dedicated to unraveling the
intricate mechanisms through which sulforaphane exerts its therapeutic effects [10–13].
The reported effects of sulforaphane span a spectrum of physiological and biochemical
alterations, including its influence on oxidative stress, enhancement of antioxidant capacity,
elimination of cancer cells and reduction of neuroinflammation [1,8]. These multifaceted
actions are attributed to the modulation of various proteins by sulforaphane. Significantly,
activation of the NRF2 (nuclear factor erythroid 2-related factor 2) pathway has garnered
substantial attention as the fundamental mechanism through which sulforaphane exerts
its effects [14]. However, it is noteworthy that sulforaphane extends its influence beyond
this pathway, affecting other signaling pathways [15,16], metabolic pathways [17] and gene
transcription processes [18,19].

Despite notable advances, the complete catalog of sulforaphane-interacting proteins
remains elusive. Moreover, it is crucial to recognize that the effects of this compound are
dose dependent, suggesting an affinity-dependent binding to target proteins [20]. This
dose-dependent nature adds complexity to the understanding of sulforaphane’s actions,
emphasizing the nuanced interaction between the compound and its molecular targets.

In the last decade, bioinformatics has undergone significant advances, transforming
our ability to predict molecular targets for new drugs and repurpose existing compounds
for new therapeutic applications [21,22]. This transformation involves the integration
of high-throughput data and machine learning techniques, enabling the retrospective
identification of key proteins implicated in drug-induced transcriptomic and proteomic
changes [23,24]. Furthermore, approaches based on protein–protein interaction networks,
drug–target networks, and disease–gene networks have contributed to improving our
understanding of protein–protein interaction mechanisms [25–27].

The intricate interaction between sulforaphane and its target proteins is a captivating
field of research with potential for revolutionary discoveries. The integration of bioin-
formatics tools is of great help to significantly advance this field, facilitating the more
efficient and accurate screening of candidate proteins. Therefore, the main objective of this
work was to identify new potential protein targets of sulforaphane in order to deepen our
understanding of its biological functions and therapeutic potential.
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2. Materials and Methods
2.1. Prediction of Protein Targets

The identification of potential sulforaphane protein targets was conducted utilizing
SwissTargetPrediction [28], SuperPred [29] and TargetNet [30], employing default parame-
ters across all platforms. Only proteins that exhibited predictions on all three servers were
considered for further analysis.

2.2. RNA Sequence Analysis

Publicly available sequencing data from the Gene Expression Omnibus (GEO) database [31],
specifically GEO accession number GSE141740 [14], were used. The data were from WT
9–12 cells subjected to treatment with 0.1% DMSO or 10 µM sulforaphane for 24 h, followed
by sequencing on the Illumina NovaSeq 6000 platform. WT 9–12 cells are epithelial cell
lines that have been immortalized with SV40 large T antigen. The quality of the raw reads
was assessed using the FastQC toolkit, and subsequent removal of low-quality reads and
adapters was performed with Trimmomatic [32]. To align the raw reads to the GRCh38.p5
reference genome (Ensembl version 84), HISAT2 [33] was employed. Expression levels
of each gene were quantified using featureCounts [34] based on Ensembl annotation
version 84. Poorly expressed genes, defined as those with no more than one count per
million reads (1CPM) in at least two samples within each dataset, were excluded from
further analysis. The raw counts were then normalized and used to perform differential
expression analysis with Limma [35]. In addition, edgeR [36] was used to validate the
results obtained with Limma. Only genes that showed consensus of overexpression or
underexpression across both software packages were considered. Genes with a log2 fold
change (log2fc) greater than 1.0 and an adjusted p-value (padj) less than 0.05 were classified
as upregulated, whereas those with a log2fc less than 1.0 and a padj less than 0.05 were
considered downregulated.

2.3. Functional Enrichment Analysis

Based on the consensus of genes identified as upregulated and downregulated with
sulforaphane in the RNA-seq analysis; an analysis was performed to identify enriched
biological pathways and processes. This analysis was performed using the g:Profiler
server [37] with predefined parameters. Furthermore, the investigation was extended by
exploring possible sulforaphane-modified functional associations by delving into the genes
identified as overexpressed or underexpressed in the RNA-seq analysis. This exploration
was carried out using the STRING database [38,39], applying predetermined parameters.

2.4. Docking Analysis

The crystallized structure of NAMPT (2E5B) [40] was obtained from the Protein Data
Bank (PDB) [41], while the structure of sulforaphane (ZINC3875035) was obtained from the
ZINC20 database (https://zinc20.docking.org) (accessed on 15 December 2023) [42]. Dock-
ing studies were performed using SwissDock [43] with default parameters. To facilitate
comparisons, the NAMPT structure bound to the NAMPT activator (NAT) (7ENQ) [44]
was used. Figure 2 shows the chemical structure of NAT.
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2.5. Molecular Dynamics (MD) Simulation

MD simulations were conducted using the s [45]. Hydrogen atoms for proteins
were incorporated with the tleap module based on the ff14SB force field [46]. Force field
parameters for all candidates were generated using the Antechamber module using the
AM1-BCC loading model [47]. The systems were immersed in TIP3P water [48] and chloride
ions were introduced for neutralization. Energetic minimization involved 4000 maximum
descent steps followed by 1000 conjugate gradient steps. The systems were subjected to
heating in the NPT ensemble, moving from 0 to 300 ◦K with weak restraints (simulations
were performed with a time step of 2 femtoseconds (fs) for all systems, using a strength
parameter κ = 10) within the proteins for a period of 30 picoseconds (ps). Subsequently,
100 ns MD simulations were performed on the NVT array, maintaining a temperature of
300 ◦K. Temperature control was achieved with the Langevin thermostat, and pressure
was regulated using the anisotropic Berendsen barostat. Root mean square deviations
(RMSD) and root mean square fluctuations (RMSF) were calculated with respect to the
initial conformation. To determine the binding free energies (∆GBinding), 100 snapshots
were extracted every 100 ps from the last stable MD trajectory of 10 ns, and the analysis
was performed with MM-PBSA.py [49].

3. Results
3.1. Predicted Targets of Sulforaphane

To identify new protein targets of sulforaphane, three bioinformatics platforms (Swis-
sTargetPrediction, SuperPred and TargetNet) were used, each using different algorithms
to predict the most likely targets of this compound. The SwissTargetPrediction search
identified 102 targets, SuperPred generated 115 targets and TargetNet revealed 623 targets.
Through a comprehensive analysis of the candidate proteins, 11 proteins were consis-
tently present in all three lists, establishing them as the most likely targets of sulforaphane
(Table 1).

Table 1. Consensus sulforaphane targets predicted using SwissTargetPrediction, SuperPred and
TargetNet.

Target Gene Uniprot ID ChEMBL ID Target Class

Macrophage migration
inhibitory factor MIF P14174 CHEMBL2085 Tautomerase

Cytochrome P450 19A1 CYP19A1 P11511 CHEMBL1978 Aromatase
Nicotinamide

phosphoribosyltransferase NAMPT P43490 CHEMBL1744525 Transferase

Poly [ADP-ribose]
polymerase-1 PARP1 P09874 CHEMBL3105 Transferase

P2X purinoceptor 7 P2RX7 Q99572 CHEMBL4805 Ligand-gated ion channel
Glycogen synthase kinase-3 β GSK3B P49841 CHEMBL262 Kinase

Cyclin-dependent kinase 2 CDK2 P24941 CHEMBL301 Kinase
Cathepsin L CTSL P07711 CHEMBL3837 Protease

Adenosine A1 receptor ADORA1 P30542 CHEMBL226 Family A G
protein-coupled receptor

Adenosine A2a receptor ADORA2A P29274 CHEMBL251 Family A G
protein-coupled receptor

Monoamine oxidase A MAOA P21397 CHEMBL1951 Oxidoreductase

Among the 11 proteins identified, previous evidence of interaction with sulforaphane
exists for MIF (Macrophage migration inhibitory factor) [50], CDK2 (Cyclin-dependent ki-
nase 2) [51], GSK3β (Glycogen synthase kinase-3β) [52–55] and PARP1 (Poly [ADP-ribose]
polymerase 1) [56,57]. However, no previous evidence of interaction with sulforaphane
was found for the remaining seven proteins (CYP19A1 [Cytochrome P450 19A1], NAMPT
[Nicotinamide phosphoribosyltransferase], P2RX7 [P2X purinoceptor 7], CTSL [Procathep-
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sin L], ADORA1 [Adenosine receptor A1], ADORA2A [Adenosine receptor A2A], and
MAOA [Monoamine oxidase A]).

3.2. Changes in Transcriptomic Profile Caused by Sulforaphane

To deepen the knowledge of possible new protein targets of sulforaphane, RNA se-
quencing data (RNA-seq) obtained from cells treated with this compound were analyzed.
Sequences were obtained from public databases and a comprehensive differential expres-
sion analysis was performed using the bioinformatics packages Limma and edgeR. Only
genes consistently identified as overexpressed or underexpressed by both packages were
considered. This rigorous approach yielded a total of 188 overexpressed and 207 underex-
pressed genes (Figure 3A and Supplementary Data). Notably, Table 2 shows the list of the
10 upregulated and downregulated genes.
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Figure 3. RNA-seq and functional enrichment analysis of sulforaphane-treated cells. Volcano plot
of RNA-seq analysis showing overexpressed and underexpressed genes in sulforaphane-treated
cells (A). Functional enrichment analysis performed with overexpressed (B) and underexpressed (C)
genes identified in RNA-seq analysis.

This integrative analysis of RNA-seq data provides a more comprehensive view of
the cellular response to sulforaphane treatment. The identified genes, which show altered
expression levels, present potential candidates for molecular targets of sulforaphane, pro-
viding a basis for further exploration and validation in elucidating the biological effects of
the compound. Significantly, NAMPT, identified as a potential target of sulforaphane in this
study, was shown to be overexpressed (1.03-fold increase, padj = 0.042). No other proteins
predicted as potential targets of sulforaphane showed significant over- or underexpression.
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Table 2. Top 10 most upregulated and downregulated genes with sulforaphane.

Upregulated

Gene logFC AveExpr t p Value adj.P.Val B

LINC00536 7.64755127 −3.0149304 21.9961465 0.00024888 0.03788923 0.36312489
IL1R2 7.05727373 −3.3119119 38.9200915 2.15 × 10−5 0.0314058 1.11208622
BBOX1-AS1 5.82578022 −3.9274667 32.9561069 3.65 × 10−5 0.0314058 0.96501409
PLEKHS1 5.70468219 −3.9959986 13.8792101 0.00094197 0.04820704 −0.1886544
AC105177.1 5.62076293 −4.0337932 28.649169 5.71 × 10−5 0.0314058 0.88104941
LAMC3 5.49154119 −4.1016187 15.2901064 0.00069452 0.04291078 −0.0618761
TNIP3 5.4717553 −4.1066281 35.425051 2.90 × 10−5 0.0314058 0.95355416
AC020571.1 5.30127359 −4.1922612 32.8798182 3.68 × 10−5 0.0314058 0.90642193
AKR1C3 5.09234014 5.97048189 18.5451872 0.00040802 0.04045807 0.71525274
LINC00565 4.88357902 −4.402276 25.9281408 7.85 × 10−5 0.03315288 0.73875417

Downregulated

Gene logFC AveExpr t p Value adj.P.Val B

DCN −5.9219991 −3.5794442 −13.758792 0.00096589 0.04824652 −0.1635847
MARCOL −5.2456221 −3.9144047 −30.897349 4.49 × 10−5 0.0314058 0.94001916
NKX6-1 −4.9009606 −4.0843505 −26.237668 7.56 × 10−5 0.03284137 0.82265699
TRPC6 −4.3352769 −4.3671491 −23.63015 0.00010555 0.03426141 0.69136095
AC138866.2 −4.2150679 −4.4272963 −23.013573 0.00011483 0.03426141 0.65751575
LINC02208 −4.2045923 −4.4300338 −14.309786 0.00062259 0.04291078 0.0378538
AC016026.1 −4.1467169 −4.4601074 −17.831801 0.0002586 0.03811126 0.43408431
AC106738.1 −4.0685678 −4.5062475 −13.933678 0.00066005 0.04291078 0.0053519
AC008687.6 −3.8557043 −4.6052296 −16.118801 0.00035632 0.03919762 0.28826772
AL121761.2 −3.8557043 −4.6052296 −16.118801 0.00035632 0.03919762 0.28826772

3.3. Functional Enrichment Analysis

Following RNA-seq analysis, a comprehensive functional enrichment analysis was per-
formed using the g:Profiler server. For overexpressed genes, enriched categories included
response to stimuli (GO:0050896, padj = 5.210 × 10−10), cellular response to chemical stimuli
(GO:0070887, padj = 1.173 × 10−7), alditol:NADP+ 1-oxidoreductase activity (GO:0004032,
padj = 4.895 × 10−6), ketosteroid monooxygenase activity (GO:0047086, padj = 4.956 × 10−6),
daunorubicin metabolic process (GO:0044597, padj = 1.551× 10−6), cellular response to jasmonic
acid stimulus (GO:0071395, padj = 2.154 × 10−6), polyketide metabolic process (GO:0030638,
padj = 3.088 × 10−6), oxidative stress response (GO:0006979, padj = 7.294 × 10−5), photody-
namic therapy-induced NFE2L2 (NRF2) survival signaling (WP:WP3612, padj = 1.406 × 10−5),
and ferroptosis (WP:WP4313, padj = 4.043 × 10−5) (Figure 3B). Conversely, underexpressed
genes targeted epithelial development (GO:0060429, padj = 1.552 × 10−9), morphogenesis of
anatomical structures (GO:0009653, padj = 1.776 × 10−9), cell differentiation (GO:0030154,
padj = 4.236 × 10−5), cell periphery (GO:0071944, padj = 4.558 × 10−7), extracellular ma-
trix (GO:0031012, padj = 2.898 × 10−5) and external encapsulating structure (GO:0030312,
padj = 2.976 × 10−5) (Figure 3C).

To further the analysis, a protein–protein interaction network functional enrichment
analysis was carried out. The results of this analysis resulted in the construction of a
network that agrees well with the functional enrichment results (Figures 4 and 5).

In particular, annotated keywords associated with overexpressed genes in the network
prominently include NADP (strength 0.92, false discovery rate 0.00038), whereas protein
domains are predominantly linked to the NADP-dependent oxidoreductase domain super-
family (strength 1.62, false discovery rate 0.00067). Furthermore, a substantial portion of
the overexpressed genes were observed to play a regulatory role in cytokine signaling in
the immune system (strength 0.35, false discovery rate 0.0109). In contrast, protein–protein
interaction network functional enrichment analysis for sulforaphane-underexpressed genes
revealed dysregulation in extracellular matrix organization, intracellular signaling by sec-
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ond messengers (strength 0.25, false discovery rate 0.0098) and cell differentiation (strength
0.55, false discovery rate 2.07 × 10−6).
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Given these results, NAMPT was considered to be the main candidate that could
interact with sulforaphane and be associated with these transcriptional changes. Thus,
subsequent sections of this work focused on a detailed exploration of this protein.
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3.4. Docking Analysis Predicts That Sulforaphane Interacts with NAMPT

The crystallized structure of NAMPT, resolved at a resolution of 2.00 Å, provided the
foundation for this investigation. On this structural basis, a meticulous docking analysis
was performed to examine the interaction dynamics between NAMPT and sulforaphane.
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Interestingly, like NAT (Figure 4A,B), a known activating compound of this enzyme,
sulforaphane exhibited positioning at one end of the channel responsible for substrate entry,
strategically distanced from the active site (Figure 6C,D).
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This strategic placement ensures that the presence of sulforaphane does not disrupt
either the substrates or the enzyme product. Notably, sulforaphane binding did not induce
any significant architectural changes in the enzyme, underscoring the non-disruptive nature
of this interaction. Sulforaphane was predicted to establish hydrogen bonds between its
sulfinyl group, a potent electron-extracting entity, and the electron-donating amino groups
of residues K189 and R349 of NAMPT. In addition, it is possible for it to form a hydrogen
bond with a water molecule which, in turn, is hydrogen bonded to the hydroxyl group of
residue S275 of NAMPT.

The ∆GBinding calculated for the sulforaphane-NAMPT complex (−29.96 kcal/mol)
was found to be higher than that for the NAT-NAMPT complex (−53.69 kcal/mol), in-
dicating a lower affinity for NAMPT in the case of sulforaphane. Molecular dynamics
simulations were used to evaluate the interaction between sulforaphane and NAMPT over
a period of 100 ns. The stability of both NAT and sulforaphane within the NAMPT channel
was evident throughout the simulation period (Figure 6E). The RMSD plot shows mean
deviations ranging from 1.0 to 1.5 Å, with the sulforaphane complex showing slightly
higher values. Although the NAT complex reached equilibrium earlier, settling in the
initial 50 ns, as is typical for this type of analysis, both complexes demonstrated stability.
RMSF analysis revealed comparable fluctuations in both complexes, although more pro-
nounced differences were observed in the sulforaphane-NAMPT complex compared to
NAT-NAMPT and ligand-free NAMPT, suggesting greater flexibility (Figure 6F). These ob-
servations collectively propose the potential of sulforaphane to act as an allosteric activator
of NAMPT, warranting experimental validation of these results.

4. Discussion

Sulforaphane, found in abundance in cruciferous vegetables, is emerging as a versatile
compound with numerous health benefits when incorporated into the diet. Rigorous
research has revealed its promising potential to treat a variety of diseases. In particular,
sulforaphane has demonstrated its ability to reverse leptin and insulin resistance, making
it a valuable ally in the fight against diabetes and obesity [16,58]. Beyond metabolic
health, sulforaphane also shows promise in the treatment of neurodegenerative conditions
such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis [59]. Moreover,
the anticancer properties of sulforaphane have captured great attention in the scientific
community [60]. Ongoing studies are delving into the intricate mechanisms through which
sulforaphane may contribute to cancer prevention and treatment, shedding light on its
potential as a natural compound with profound implications for human health.

Most of the benefits attributed to sulforaphane arise from its activation of the NRF2-
mediated antioxidant response [14,60]. However, evidence suggests that this compound
interacts with several target proteins, broadening the spectrum of its effects [61,62]. The
aim of this study was to identify other target proteins of sulforaphane to better understand
its diverse beneficial effects. Taking advantage of target prediction servers with different
algorithms, 11 potential sulforaphane-interacting proteins were identified. Evidence of
interaction was found for four of them, showing inhibitory effects of sulforaphane on MIF
tautomerase activity [50], reduction of CDK2 expression [51], modulation of the GSK3β
signaling pathway [53–55], and inhibition of PARP1 activity [56].

After considering the remaining seven proteins for further analysis (CYP19A1, NAMPT,
P2RX7, CTSL, ADORA1, ADORA2A and MAOA), attention was given to the NAMPT pro-
tein due to its metabolic relevance and correlation with the functional enrichment analysis
of overexpressed genes in sulforaphane-treated cells. The analysis highlighted its asso-
ciation with NADP+ 1-oxidoreductase activity, ketosteroid monooxygenase activity and
oxidative stress response. These processes are closely related to nicotinamide adenine dinu-
cleotide (NAD+) metabolism [63]. NAMPT catalyzes the limiting step in the mammalian
NAD+ salvage pathway, converting nicotinamide and 5′-phosphoribosyl-1-pyrophosphate
to nicotinamide mononucleotide (NMN). Subsequently, NMN together with ATP is con-
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verted to NAD+ by NMNAT1-3 (nicotinamide/nicotinic acid mononucleotide adenylyl
adenylyl-transferases) [64].

In addition to upregulating NAD+, NAMPT also elevates NADP+ and NADPH
levels, stimulating oxidative stress systems such as glutathione and thioredoxin [65,66].
This intricate interplay between NAD+ metabolism and cellular redox balance positions
NAMPT as a crucial player in the regulation of oxidative stress [66]. The interaction of
sulforaphane with NAMPT reveals a potential pathway for modulating cellular redox
dynamics, warranting further investigation into its implications for health and disease.

NAT functions as an allosteric activator of NAMPT, strategically positioning itself
near the active site of the enzyme. The hydroxyl end of NAT aligns closely with the amide
groups of NAM and NMN, resulting in a subtle adjustment of the enzyme’s substrate
binding affinity for NAM. Specifically, the oxygen atom of the hydroxyl of NAT forms
a hydrogen bond with a water molecule and binds to the side chain of residue S275 of
NAMPT. In addition, the interaction involves the central amide nitrogen of NAT and Y188
and H191, facilitated by another water molecule [44]. In the docking analysis, sulforaphane
was observed to interact with NAMPT by forming hydrogen bonds. Specifically, the sulfinyl
group of sulforaphane established hydrogen bonds with the amino groups of residues K189
and R349 of NAMPT. In addition, sulforaphane formed a hydrogen bond with a water
molecule, which, in turn, was hydrogen bonded to the hydroxyl group of residue S275
of NAMPT. These interactions closely resemble the crucial role played by residue K189
in driving NAMPT activity, as had already been noted for NAT [44]. Thus, sulforaphane
appears to share a similar mechanism of action with NAT in modulating NAMPT function.
Notably, the ∆GBinding value of sulforaphane is higher than that of NAT, indicating a lower
affinity. This suggests that although sulforaphane exhibits a comparable mode of action,
further research is needed to understand the nuances of its interaction with NAMPT and
its potential implications on cellular processes.

5. Limitations of the Study

The present study provides exclusively bioinformatically generated data, so it is
necessary to emphasize the predictive nature of the results presented. As reiterated in other
sections, experimental validation in future studies is imperative. Indeed, these findings
could serve as a motivation for research groups around the world, inspiring them to
experimentally validate our results and further investigate the mechanisms underlying the
beneficial effects induced by sulforaphane.

6. Conclusions

The results revealed in this study have allowed us to identify possible protein targets
of sulforaphane, with remarkable prediction indicating its ability to activate NAMPT. How-
ever, it is crucial to underline that these results require rigorous experimental validation to
corroborate their reliability. The completion of these experimental validations will not only
validate the computational predictions, but will also provide valuable insights into the intri-
cate molecular mechanisms underlying the interaction between sulforaphane and NAMPT,
providing a solid foundation for future studies exploring the therapeutic implications of
this interaction.
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