
Citation: Najafi Mohsenabad, H.; Tut,

M.A. Optimizing Cybersecurity

Attack Detection in Computer

Networks: A Comparative Analysis of

Bio-Inspired Optimization Algorithms

Using the CSE-CIC-IDS 2018 Dataset.

Appl. Sci. 2024, 14, 1044. https://

doi.org/10.3390/app14031044

Academic Editors: Chinyang Henry

Tseng and Hsing-Chung Chen

Received: 18 December 2023

Revised: 12 January 2024

Accepted: 22 January 2024

Published: 25 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Optimizing Cybersecurity Attack Detection in Computer
Networks: A Comparative Analysis of Bio-Inspired
Optimization Algorithms Using the CSE-CIC-IDS 2018 Dataset
Hadi Najafi Mohsenabad * and Mehmet Ali Tut

Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Via Mersin 10,
Famagusta 99628, North Cyprus, Turkey; mehmet.tut@emu.edu.tr
* Correspondence: hadi.najafi@emu.edu.tr; Tel.: +90-539-105-5767

Abstract: In computer network security, the escalating use of computer networks and the correspond-
ing increase in cyberattacks have propelled Intrusion Detection Systems (IDSs) to the forefront of
research in computer science. IDSs are a crucial security technology that diligently monitor network
traffic and host activities to identify unauthorized or malicious behavior. This study develops highly
accurate models for detecting a diverse range of cyberattacks using the fewest possible features,
achieved via a meticulous selection of features. We chose 5, 9, and 10 features, respectively, using
the Artificial Bee Colony (ABC), Flower Pollination Algorithm (FPA), and Ant Colony Optimization
(ACO) feature-selection techniques. We successfully constructed different models with a remarkable
detection accuracy of over 98.8% (approximately 99.0%) with Ant Colony Optimization (ACO), an
accuracy of 98.7% with the Flower Pollination Algorithm (FPA), and an accuracy of 98.6% with the
Artificial Bee Colony (ABC). Another achievement of this study is the minimum model building
time achieved in intrusion detection, which was equal to 1 s using the Flower Pollination Algorithm
(FPA), 2 s using the Artificial Bee Colony (ABC), and 3 s using Ant Colony Optimization (ACO).
Our research leverages the comprehensive and up-to-date CSE-CIC-IDS2018 dataset and uses the
preprocessing Discretize technique to discretize data. Furthermore, our research provides valuable
recommendations to network administrators, aiding them in selecting appropriate machine learning
algorithms tailored to specific requirements.

Keywords: machine learning; network security; feature selection; Intrusion Detection Systems; deep
learning; cyberattack; computer science

1. Introduction

Large-scale local area networks use anomaly detection as a primary technique for
solving security issues. However, it can be challenging to extract accurate traffic data
for anomaly identification [1]. Intrusion detection in computer networks is crucial as it
affects communication and security; yet, finding network intrusions remains a challenge [1].
Network intrusion detection is complicated due to the need for significant data for training
advanced machine learning models [1].

The emergence of new threats that older systems cannot detect presents significant
difficulties in network intrusion detection [2]. Therefore, this paper aimed to compare mul-
tiple techniques to develop an effective network Intrusion Detection System. The increasing
complexity and volume of real-time traffic, driven by the rapid development and adoption
of technologies such as 5G, IoT, and Cloud Computing, have led to more sophisticated
and varied cyberattacks, posing significant challenges to cyberspace security [3]. Network
Intrusion Detection Systems (NIDSs), which serve as the firewall’s backup line of defense,
function to develop strategies, provide real-time monitoring, swiftly identify malicious
network attacks, and implement dynamic security measures [3].

Appl. Sci. 2024, 14, 1044. https://doi.org/10.3390/app14031044 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031044
https://doi.org/10.3390/app14031044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14031044
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031044?type=check_update&version=3

Appl. Sci. 2024, 14, 1044 2 of 25

Cybersecurity research has become essential given how much networks are used in the
modern world [4]. Current Intrusion Detection Systems (IDSs) have failed to identify new
attacks, improve detection accuracy, and lower false alarm rates despite years of research.
To solve these issues, many scholars have concentrated on developing IDSs with machine
learning methods [4]. Machine learning offers accurate and automatic identification of
differences between normal and abnormal data, including recognizing unidentified attacks,
while providing excellent generalizability [4].

Feature Selection (FS) techniques play a crucial role in data preprocessing by enabling
effective data reduction and supporting the identification of precise data models [5]. Al-
though extensive searching for the ideal feature subset is often impractical, the literature
offers numerous search algorithms for overcoming this difficulty [5]. Four widely used
techniques employed in feature selection for effective network intrusion detection are the
filter, wrapper, embedding, and hybrid methods [5].

The dataset KDD CUP’99 challenge results demonstrated the superiority of Long Short-
Term Memory (LSTM) classifiers over other static classifiers, underscoring the significance
of LSTM networks for intrusion detection [6]. LSTM networks can learn from past data and
establish connections between connection records, making them compelling in intrusion
detection [6]. Hyperparameters govern the learning process and model quality in almost all
machine learning algorithms. Adjusting these hyperparameters can lead to the generation
of infinite models with varying performance levels and learning rates, depending on the
specific techniques used for machine learning [7].

Exponential data growth in recent times has posed significant challenges in the clas-
sification process [8]. Feature selection solves this problem, improving data classification
accuracy while reducing data complexity [8] because many time-consuming features play a
role in the detection process.

In order to increase the efficacy of Network Intrusion Detection Systems (NIDSs),
feature selection is essential [9]. The feature selection approach influences the time needed
to observe traffic behavior and the degree of accuracy improvement. The four approaches
to feature selection include wrapper, hybrid techniques, filtering, and embedding [9].

This paper’s primary contribution is its attempt to pinpoint a subset of features that are
most effective at distinguishing between various attacks and regular network traffic while
maintaining the fewest overall features possible. We used a variety of search techniques to
perform feature selection using Ant Colony Optimization (ACO), the Artificial Bee Colony
(ABC), and Flower Pollination Algorithms (FPAs) in order to accomplish this goal.

As a result, during the feature selection process, subsets of 5, 9, and 10 features were
chosen from a pool of 67 features. During the data-cleaning phase, 13 features out of
the initial 80 were removed, which is noteworthy. Figure 1 visually depicts the Intrusion
Detection System approach covered in this work using a flowchart.

Figure 2 depicts the network-based Intrusion Detection System following the rephrased
active voice.

Appl. Sci. 2024, 14, 1044 3 of 25
Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 25

Figure 1. The Intrusion Detection System.

Figure 2. Network-Based Intrusion Detection System.

2. Related Works

In the comparison, the Generative Adversarial Network (GAN) algorithm outper-

formed the Artificial Neural Network (ANN), Multilayer Perceptron (MLP), K-Nearest

Neighbor (KNN), Decision Tree (DT), Convolutional Neural Networks (CNNs), and Auto

Encoder techniques. The Generative Adversarial Network (GAN) method previously

achieved a 99.34 percent classification accuracy [10]. The research described in [11] used

machine learning and data mining techniques to combat network intrusion. The focus was

on improving the intrusion detection rate while reducing false alarms. The paper [11] ex-

plores rule learning using RIPPER on imbalanced intrusion datasets and proposes a com-

bination of oversampling, under-sampling, and clustering-based approaches to address

the data imbalance. The evaluation of real-world intrusion datasets showed that over-

sampling through synthetic generation outperforms replication, and the clustering-based

approach enhanced intrusion detection beyond synthetic generation alone. As the afore-

mentioned article describes, an Intrusion Detection System (IDS) is a network security

technology that monitors hostile activity on computers or networks. However, due to the

Figure 1. The Intrusion Detection System.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 25

Figure 1. The Intrusion Detection System.

Figure 2. Network-Based Intrusion Detection System.

2. Related Works

In the comparison, the Generative Adversarial Network (GAN) algorithm outper-

formed the Artificial Neural Network (ANN), Multilayer Perceptron (MLP), K-Nearest

Neighbor (KNN), Decision Tree (DT), Convolutional Neural Networks (CNNs), and Auto

Encoder techniques. The Generative Adversarial Network (GAN) method previously

achieved a 99.34 percent classification accuracy [10]. The research described in [11] used

machine learning and data mining techniques to combat network intrusion. The focus was

on improving the intrusion detection rate while reducing false alarms. The paper [11] ex-

plores rule learning using RIPPER on imbalanced intrusion datasets and proposes a com-

bination of oversampling, under-sampling, and clustering-based approaches to address

the data imbalance. The evaluation of real-world intrusion datasets showed that over-

sampling through synthetic generation outperforms replication, and the clustering-based

approach enhanced intrusion detection beyond synthetic generation alone. As the afore-

mentioned article describes, an Intrusion Detection System (IDS) is a network security

technology that monitors hostile activity on computers or networks. However, due to the

Figure 2. Network-Based Intrusion Detection System.

2. Related Works

In the comparison, the Generative Adversarial Network (GAN) algorithm outper-
formed the Artificial Neural Network (ANN), Multilayer Perceptron (MLP), K-Nearest
Neighbor (KNN), Decision Tree (DT), Convolutional Neural Networks (CNNs), and Auto
Encoder techniques. The Generative Adversarial Network (GAN) method previously
achieved a 99.34 percent classification accuracy [10]. The research described in [11] used
machine learning and data mining techniques to combat network intrusion. The focus
was on improving the intrusion detection rate while reducing false alarms. The paper [11]
explores rule learning using RIPPER on imbalanced intrusion datasets and proposes a com-
bination of oversampling, under-sampling, and clustering-based approaches to address the
data imbalance. The evaluation of real-world intrusion datasets showed that oversampling
through synthetic generation outperforms replication, and the clustering-based approach
enhanced intrusion detection beyond synthetic generation alone. As the aforementioned
article describes, an Intrusion Detection System (IDS) is a network security technology
that monitors hostile activity on computers or networks. However, due to the dynamic

Appl. Sci. 2024, 14, 1044 4 of 25

and complicated nature of cyberattacks, typical IDS techniques require assistance. As
a result, Ref. [11] proposes that effective adaptive methods, including machine learning
approaches, can result in reduced false alarms, increased detection rates, and affordable
computational costs.

The performances of several methods based on conventional Artificial Intelligence (AI)
and Computational Intelligence (CI) have previously been compared and reviewed. This
has highlighted how the characteristics of CI techniques can be utilized to build effective
IDSs [12].

Pervez, M.S., Farid, D.M. [13] reviewed the classification accuracy of various classi-
fiers using different dimensional features. Liu, H. and Hussain, F. [14] proposed a novel
approach that combines classification and techniques for the multiclass NSL-KDD Cup99
dataset. The proposed method utilizes Support Vector Machines (SVMs). Shapoorifard, H.,
Shamsinejad, P. [14] researched novel technologies to enhance the classification accuracy of
Center and Nearest Neighbors (CANN) Intrusion Detection Systems. They evaluated the
effectiveness of these technologies using the NSLKDD Cup99 dataset.

In ref. [15], the authors discuss the hazards of hostile assaults on the network due to
widespread internet use. They emphasize how crucial effective Intrusion Detection Systems
are for categorizing and foreseeing cyberattacks. According to [15], a hybrid model that
combines a firefly-based machine learning technique with Principal Component Analysis
(PCA) can be used to categorize Intrusion Detection System (IDS) datasets. The XGBoost
method uses hybrid PCA–firefly for dimensionality reduction in the model and classifica-
tion and alters the dataset with One-Hot encoding. The proposed model outperformed the
most advanced machine learning methods based on the experimental data.

In ref. [16], the authors selected 55 features out of an initial 80, achieving a final
accuracy of 95% by using the Deep Neural Network (DNN) and Binary Particle Swarm
Optimization (BPSO) approaches and the classification method.

Lava, A., Savant, P. [17] describe a machine learning-based NIDS model for binary clas-
sification of the CSECIC-IDS2018 using the AWS dataset. The abuse detection techniques of
logistic regression, random forest, and gradient boosting were all implemented. However,
we discovered that gradient boosting outperformed the others. The model’s performance
on the test dataset demonstrated its generalizability. Created using gradient boosting, the
estimator exhibited a recall and precision of 0.98, making it suitable for practical applica-
tions. Applying synthetic minority oversampling to categorize minority classes of assaults
more accurately in the future and running more tests on new data from various network
environments using the CIC-IDS-2017 dataset are two potential enhancements [17].

In a survey, Kwon, D., Kim, H. et al. [18] investigated deep learning approaches in
anomaly-based network intrusion detection. The authors presented a comprehensive out-
line of anomaly detection techniques, encompassing data reduction, dimension reduction,
classification, and deep learning approaches. The survey [18] covered prior research on
deep learning techniques for network anomaly detection, emphasizing its advantages and
possible drawbacks. Additionally, the authors conducted local experiments and discovered
encouraging outcomes when analyzing network traffic using a Fully Convolutional Net-
work (FCN) model. Regarding anomaly detection accuracy, the FCN model outperformed
traditional machine learning methods like Support Vector Machine (SVM), Random Forest,
and Adaboosting. Intrusion Detection Systems, or IDSs, are crucial for computer security
because they identify and halt malicious activity in computer networks.

An enhanced IDS that incorporates two-level classifier ensembles and hybrid feature
selection is presented in [19]. The hybrid feature selection method uses the Ant Colony
Algorithm, Genetic Algorithm, and Particle Swarm Optimization to minimize the feature
size of training datasets (UNSW-NB15 and NSL-KDD). They selected features based on
how well a Reduced Error Pruning Tree (REPT) classifier performs in classification. REPT
is a two-level classifier ensemble that uses bagging meta-learners and rotation forests. The
suggested classifier outperformed recently developed classification algorithms, displaying
85.8% accuracy, 86.8% sensitivity, and an 88.0% detection rate on the NSL-KDD dataset. The

Appl. Sci. 2024, 14, 1044 5 of 25

UNSW-NB15 dataset showed similar improvements. We further validated the experimental
results using a two-step statistical significance test, which improved the usefulness of the
suggested classifier in the ongoing IDS study.

The intelligent Intrusion Detection System described in [20] dramatically enhanced
detection performance using an Artificial Neural Network (ANN) model. The ANN-based
classifier showed 100% sensitivity on the test dataset with high precision in minimizing
false positives. The authors [20] integrated an offline method with a current dataset to
find patterns in web application attacks. Aims for future studies include applying this
method to the most recent dataset from the Canadian Institute for Cybersecurity (CI-RA-
CIC-DoHBrw-2020), implementing further real-time optimizations, and integrating it into
an online Intrusion Detection System for testing with real-time network data.

The performance of machine learning techniques, such as Board Learning System
(BLS), Radial Basis Function Network (RBF-BLS), and BLS with cascades of mapped features
and enhancement nodes, was assessed. The scrutiny encompassed an in-depth examination
of malicious intrusions and anomalies within communication networks. The studies used
subsets of the CICIDS 2017 and CSECIC-IDS 2018 datasets containing DoS attacks. Even
with fewer pertinent features, the models’ performances were comparable, as shown
in [21]. Most models attained accuracies and F-Scores above 90%, even though more
significant numbers of mapped features and enhancement nodes increased memory needs
and training times. Compared to non-incremental BLS, incremental BLS had a noticeably
reduced training time [21].

In [22], a thorough examination of deep learning techniques for intrusion detection
was performed. Seven deep learning models—deep neural networks, convolutional neural
networks, restricted Boltzmann machines, recurrent neural networks, deep belief networks,
deep Boltzmann machines, and deep Auto Encoders—were evaluated for their binary and
multiclass classification performances. The CSE-CIC-IDS 2018 and Tensorflow systems
were used as the software library and benchmark dataset, respectively.

The evaluation relied upon critical performance indicators such as accuracy, detec-
tion, and false alarm rates [23], comprehensively assessing the system’s capabilities. The
outcomes indicate that deep neural networks can detect intrusion in software-defined
networks. This approach demonstrated good results on the latest network attack datasets,
leveraging the specific characteristics of Software Defined Network (SDN), such as using
the network as a sensor through OpenFlow. Utilizing machine learning techniques for
traffic analysis in SDN can enhance the efficiency of network resource allocation. Future
work will focus on further analysis of intrusion detection methods and developing an
Intrusion Detection System (IDS) using machine learning methods [23].

In ref. [24], the authors developed an ID system using Spark. Moreover, the Con-
volutional Autoencoder (Conv-AE) deep learning approach efficiently learned feature
representations from the CICIDS 2018 dataset. The proposed system outperformed tra-
ditional security approaches regarding attack detection rate, accuracy, and computation
complexity. The research suggests [24] that this approach can be extended to other fields,
such as real-time anomaly and network misuse detection, using deep learning as an at-
tribute extraction tool.

In order to detect network threats, Ref. [25] suggested the use of three models (LSTM,
Apache et al., and Random Forest) that use the random forest approach to reduce dimen-
sionality. The application of oversampling and undersampling strategies stemmed from
the dataset’s inherent imbalance. Apache Spark had the fastest training time across all
classes compared to DL models. Future work could involve semisupervised learning and
expand beyond signature-based Intrusion Detection Systems.

One study reported that the Long Short-Term Memory (LSTM) algorithm attained a
maximum accuracy of 99 percent [26].

Appl. Sci. 2024, 14, 1044 6 of 25

Modern cybersecurity requires detecting network breaches, and researchers have
used machine learning to detect and stop attacks [27]. In network intrusion detection,
more attention has recently been drawn to deep learning. However, present evaluations
utilizing outdated datasets must address class imbalance issues, which may produce biased
conclusions. In [27], the authors offer insightful information by resolving this imbalance and
assessing Deep Neural Networks, Convolutional Neural Networks, and Long Short-Term
Memory Networks on a balanced dataset. With the lowest False Alarm Rate (2.615%), F1-
Score (83.799%), and excellent accuracy (84.312%), the Deep Neural Network demonstrated
the most outstanding performance [27].

Network Intrusion Detection Systems rely on efficient algorithms and methods for real-
time assault detection [28]. One study proposed a preprocessing technique that significantly
reduced traffic analysis time and achieved high success rates. Experimental results showed
that the ExtraTree algorithm obtained a 99.0% detection rate for binary classification and
an 82.96% reduction in processing time per sample. With a 64.43% decrease in processing
time per sample, the Random Forest method produced a 98.5% identification rate in the
multiclass detection scenario. These results indicate similar categorization rates to previous
research, albeit with much shorter test durations [28].

Excellent accuracies have been obtained in the mentioned studies. However, the main
problem of these studies is that, to obtain excellent accuracies for detecting intrusion in
computer networks, a large number of features are used, or if the number of features is
small, excellent accuracies have yet to be obtained. The other issue is that in cases where
good accuracies have been obtained, either the model-building times—which is an essential
criterion in the case of intrusion detection—have yet to be mentioned or the model-building
times are too high. Moreover, in this research, both criteria, i.e., intrusion detection with
very high accuracy with the least number of features and building the model in the shortest
possible time, have been examined. We demonstrated excellent accuracies of approximately
99% with both the least number of features and the least time taken to build the model.

3. Theoretical Background

Everyday events rely on monitored input data. The IDS generates accurate alarms as
informative output, reflecting the events under surveillance. Its primary function involves
analyzing the input data [29,30].

Alerts are generated and streamed to show whether intrusions are present. The
categorization of every input data stream unit as either standard or invasive represents
a random variable X. A low value (X = 0) indicates regular and non-intrusive traffic. In
contrast, a high value (X = 1) indicates an incursion. Similarly, a random variable Y
represents the output information from the IDS, with Y = 1 denoting an intrusion warning
and Y = 0 denoting no signal [29,30].

Intrusion detection can be patterned using a binary symmetric channel, which in-
corporates information theory and provides a framework for understanding intrusion
detection. The base rate, or prior probability (B), denotes the chance of intrusions in the
input data that the Intrusion Detection System (IDS) has detected. Denoted as γ, the false
negative rate (FN) indicates the likelihood of an intrusion event being categorized as usual
(p(Y = 0 | X = 1)); on the other hand, the false positive rate (FP), represented by α, is the like-
lihood that a typical event will mistakenly be classified as an incursion (p(Y = 1 | X = 0)).
In this instance, X stands for the IDS input’s random variable. For IDS output, Y stands for
the random variable. It is, therefore, feasible to characterize intrusion detection capabilities
accurately [29,30]. Figure 3 illustrates the application of Binary Symmetry in an Intrusion
Detection Model.

Appl. Sci. 2024, 14, 1044 7 of 25
Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 25

Figure 3. An Intrusion Detection Model with Binary Symmetry.

We suggest a new metric called Intrusion Detection Capability, or CID. It is the sim-

ple ratio of the input’s entropy to the mutual information between the IDS’s input and

output.

Entropy and mutual information are related—H(X) = I(X; Y) + H(XjY), for instance.

The entropy H(Y) is significantly greater than H(X) on the right. This represents a

plausible IDS scenario in which H(X) is almost zero due to a minimal base rate that is

almost zero. However, the IDS may generate a lot of false positives. Therefore, H(Y) may

be greater than H(X).

Let X and Y be the random variables representing the IDS input and output, respec-

tively. The definition of Intrusion Detection Capability is Equation (1):

 C
I X ; Y
H X

 (1)

Equation (2) allows us to articulate the idea of 𝐶 (Conditional Intrusion Detection)

based on our knowledge of mutual information and information theory:

 C
H X H X 𝗅 Y

H X
 (2)

When considering this, we quantify the decrease in ambiguity about the Intrusion

Detection System input using mutual information.

Equation (2) illustrates that the 𝐶 represents the proportion of uncertainty reduc-

tion in the Intrusion Detection System input due to the Intrusion Detection System output.

Practically speaking, the 𝐶 value is between 0 and 1. An increased 𝐶 value indicates

an improved ability of the Intrusion Detection System to classify events [29,30].

The mutual information H(X) formula (Equation (3)) defines the mutual information

of an event [14].

H (X|Y) is expressed in Equation (4):

H X ∑ p x log p x B log B 1 B log 1 B (3)

H X 𝗅Y
 ∑ ∑ 𝗅 𝗅

 = −B (1 − γ) log PPV − Bγ (4)

log (1 − NPV) − (1 − B)(1 − 𝛼) log NPV − (1 − B) 𝛼 log (1 − PPV)

Equation (5) is obtained by substituting the equations and is the expression for 𝐶 :

C

 (5)

The Intrusion Detection Capability (CID) formula, which gauges how well a system

detects intrusions, is shown in Equation (5). This equation defines several parameters: the

symbols for base rate (B), false negative (FN) rate (γ), false positive (FP) rate (α), positive

predictive value (PPV), and negative predictive value (NPV), which are as follows [1]:

Figure 3. An Intrusion Detection Model with Binary Symmetry.

We suggest a new metric called Intrusion Detection Capability, or CID. It is the simple
ratio of the input’s entropy to the mutual information between the IDS’s input and output.

Entropy and mutual information are related—H(X) = I(X; Y) + H(XjY), for instance.
The entropy H(Y) is significantly greater than H(X) on the right. This represents a

plausible IDS scenario in which H(X) is almost zero due to a minimal base rate that is
almost zero. However, the IDS may generate a lot of false positives. Therefore, H(Y) may
be greater than H(X).

Let X and Y be the random variables representing the IDS input and output, respec-
tively. The definition of Intrusion Detection Capability is Equation (1):

CID =
I (X ; Y)
H (X)

(1)

Equation (2) allows us to articulate the idea of CID (Conditional Intrusion Detection)
based on our knowledge of mutual information and information theory:

CID =
H (X)− H (X l Y)

H (X)
(2)

When considering this, we quantify the decrease in ambiguity about the Intrusion
Detection System input using mutual information.

Equation (2) illustrates that the CID represents the proportion of uncertainty reduction
in the Intrusion Detection System input due to the Intrusion Detection System output.
Practically speaking, the CID value is between 0 and 1. An increased CID value indicates
an improved ability of the Intrusion Detection System to classify events [29,30].

The mutual information H(X) formula (Equation (3)) defines the mutual information
of an event [14].

H (X|Y) is expressed in Equation (4):

H(X) = −∑X p(x)log p(x) = −Blog B − (1 − B)log(1 − B) (3)

H(XlY) =
−∑x ∑y p(x)p(ylx)log[p(x)p(ylx)]

p(y)
= −B (1 − γ) log PPV − Bγ (4)

log (1 − NPV) − (1 − B)(1 − α) log NPV − (1 − B) α log (1 − PPV)

Equation (5) is obtained by substituting the equations and is the expression for CID:

CID =
−BlogB−(1−B)log(1−B)

−B(1 − γ)logPPV − Bγlog(1 − NPV)− (1 − B)(1 − α) log NPV − (1 − B)αlog(1 − PPV)
(5)

The Intrusion Detection Capability (CID) formula, which gauges how well a system
detects intrusions, is shown in Equation (5). This equation defines several parameters: the

Appl. Sci. 2024, 14, 1044 8 of 25

symbols for base rate (B), false negative (FN) rate (γ), false positive (FP) rate (α), positive
predictive value (PPV), and negative predictive value (NPV), which are as follows [1]:

The base rate (B) characterizes the Intrusion Detection System’s (IDS) operational
environment. A value of B = 0 or B = 1 indicates that the input solely consists of regular
or intrusive events, respectively. On the other hand, figuring out or managing the base
rate in practice could be difficult for practitioners. This challenge stems from the fact
that they frequently utilize base rate as an operational metric to assess the IDS environ-
ment. References [30,31] provide a detailed discussion on estimating base rate B and prior
probabilities.

The probability that an alert would sound without an intrusion is an Intrusion Detec-
tion System’s false positive (FP) rate (IDS).

The false negative (FN) rate represents the likelihood that the Intrusion Detection
System fails to raise the alarm when an intrusion occurs [30,31].

When the IDS raises an alarm, the positive predictive value (PPV) measures the
likelihood that an intrusion is present. It shows the percentage of IDS alarms that are
related to real incursions. The PPV can be expressed mathematically as Equation (6):

PPV =
B(1 − γ)

B(1 − γ) + (1 − B)α
(6)

A negative predictive value (NPV) shows the probability of no incursion when the
Intrusion Detection System (IDS) does not sound an alarm. Put otherwise, it quantifies the
probability that the absence of Intrusion Detection System (IDS) alerts accurately implies the
absence of invasions. Equation (7) provides the mathematical expression for NPV [32–35]:

NPV =
(1 − B)(1 − α)

(1 − B)(1 − α) + Bγ
(7)

4. Methodology
4.1. Data Cleaning

We implemented several steps to preprocess the CSE-CIC-IDS2018 dataset during
the data-cleansing stage. Firstly, we removed specific fields that were deemed redundant
or irrelevant. We eliminated the protocol column since each destination port’s Dst_Port
(Destination Port) field previously provided equivalent protocol values.

Additionally, we removed the Timestamp parameter to ensure unbiased learning and
avoid time-based distinctions, allowing learners to differentiate between high-volume and
covert attacks accurately. Removing the timestamp field also facilitated convenient dataset
combinations or divisions for our experimental frameworks.

Furthermore, we identified and removed 59 record header row duplicates by fil-
tering the data using an empty list of acceptable label values. Among the downloaded
files, ‘Tuesday-20-02-2018_TrafficForML_CICFlowMeter.csv’ (https://www.kaggle.com/
datasets/solarmainframe/ids-intrusion-csv accessed on 20 October 2023) stood out as
distinct from the other nine files. From this file, we excluded four additional fields:
FlowID, Source Internet Protocol (SrcIP), Source Port (SrcPort), and Destination Inter-
net Protocol (DstIP). Moreover, we eliminated all occurrences of negative values in the
Fwd_Header_Length, Flow_Duration, and Flow-IAT-Min fields, as these values were con-
sistent with their respective fields. Negative values in the fwd_Header_Length field that
correspond with extreme values in other fields can distort outlier-prone statistics. Addi-
tionally, we removed records where the values in eight specific fields were zero. Table 1
provides the complete list of removed fields before feature selection.

https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv

Appl. Sci. 2024, 14, 1044 9 of 25

Table 1. List of fields removed prior to feature selection.

No Feature

1 Bwd_Avg_Bulk_Rate

2 Fwd_Avg_Bytes_Bulk

3 Bwd_Avg_Packets_Bulk

4 Fwd_Avg_Bulk_Rate

5 Bwd_PSH_Flags

6 Fwd_Avg_Packets_Bulk

7 Bwd_Avg_Bytes_Bulk

8 Bwd_URG_Flags

We did not include the Init_Win_bytes_backward and Init_Win_bytes_forward fields
due to approximately 50 percent having negative numbers corresponding to these variables.

Similarly, we chose not to utilize the Flow_Duration fields because some values were
unreasonably low or zero. Less than 0.6 percent of entries in the Flow Packets/s and Flow
Bytes/s columns included “NaN” or “Infinity” values. We eliminated cases when the flow
bytes or packets per second had such values.

After completing the data cleaning stage and before feature selection, we applied an
unsupervised approach and the discretize filter method to filter our data; this involved
using an instance filter called “Discrete” to convert various numerical properties of the
dataset into nominal attributes.

The CSE-CIC-IDS2018 dataset consists of 10 files collected over consecutive days. The
resulting dataset contained 16,232,943 records and 80 features upon merging these files.
Following the data cleaning process, 16,137,168 records and 67 features remained in the
dataset. For the data filtering step, we utilized this enhanced dataset. Of the entire amount
of records collected (16,137,168), we reserved 3,227,433 records (20 percent) for system
testing and assessment, and we assigned 12,909,735 records (80%) for system training.

Table 2 provides a visual representation of the quantity and percentage of each traffic
type before and after the completion of the data-cleaning process.

Table 2. Quantity and percentage of each traffic class before and after data cleaning.

Traffic Class Before Data
Cleaning

Percentage before
Data Cleaning

After Data
Cleaning

Percentage after
Data Cleaning

Benign 13,484,708 83.070% 13,390,234 82.978%

DDoS 1,263,933 7.787% 1,263,933 7.832%

Bot 286,191 1.76% 286,191 1.773%

Brute Force 380,949 2.347% 380,943 2.361%

Infiltration 161,934 0.998% 160,639 0.995%

Dos 654,300 4.032% 654,300 4.055%

Web Attack 928 0.0055% 928 0.006%

Total 16,232,943 16,137,168

4.2. Data Filtering

In data mining, ensuring data quality for subsequent mining stages is of utmost
importance. Data preprocessing plays a vital role in accomplishing this objective. Its
primary aim is to improve the quality of mining outcomes by cleaning the collected data,
encompassing activities such as data transformation and dimensionality reduction. In
discretization, one transforms continuous or numerical variables into discrete or nominal
attributes by dividing them into a finite number of intervals [36,37].

Appl. Sci. 2024, 14, 1044 10 of 25

Among the top ten data mining algorithms are machine learning approaches like naive
Bayes, Apriori, decision trees, and leveraged data discretization [38–40]. By employing data
discretization, these techniques construct more effective and efficient models. Moreover,
transforming continuous features into discrete counterparts provides a representation that
aligns with knowledge-level understanding, making them easier to comprehend, utilize,
and explain than continuous attributes [38].

In a comparison study, Garcia et al. [40] examined the classification performance of
30 discretized algorithms utilizing a slow, rule-based decision tree and Bayesian learning
techniques. Their work provides information on discretizations appropriate for a particular
classifier type, those that work with all classifier types, and those that strike a decent
balance between the number of intervals generated and the precision of classification. Data
discretization divides the range into short intervals showing strong class coherence to
determine a set of cut points for continuous features.

Additionally, discretization techniques should reduce the number of intervals while
maintaining a high degree of mutual dependency between classes and attributes. Because
of this, we partitioned continuous features into k intervals, or portions, with a maximum
of k − 1 cut points. The trade-off between the arity (number of intervals) and its effect on
accuracy must be considered [38].

The subsequent section summarizes the data discretization process applied to a dataset
containing N examples and C target classes. We apply an algorithm for discretization to
transform the continuous attribute A into m discrete intervals represented by D = {[d0, d1],
[d1, d2],. . ., [dm − 1, dm]}, where d0 is the minimum value, dm is the maximum value, and
di < di + 1 for i = 0, 1,. . ., m − 1. The resulting discrete representation D is a discretization
scheme for attribute A, and P = {d1, d2,. . ., dm − 1} represents attribute A’s set of cut
points [21]. Sorting the continuous feature values, identifying and assessing cut issues
for splitting or merging intervals, dividing or merging constant intervals depending on
particular criteria, and stopping at a specific point are the four general processes of the
discretization process [38].

Discretization algorithms can be categorized based on different characteristics [38,39,41],
as described below:

Dynamic vs. Static: Static discretization is performed before and does not depend on
the learning algorithm and the learning task; while creating a model, dynamic discretization
occurs. The most commonly used discretizations are static, whereas the discretized ID3
decision tree is an example of a dynamic discretization.

Comparing univariate and multivariate discretization, the former examines a single
continuous feature, while the latter considers several features simultaneously.

Supervised versus unsupervised discretization methods differ in their approach to
determining appropriate intervals during the discretization process. Supervised methods
utilize class information to guide the selection of intervals, considering the class mem-
bership of the data. On the other hand, unsupervised methods do not consider class
membership when discretizing the data. It is important to remember that the majority of
discretization methods require supervision.

Splitting vs. merging: while merging methods begin with a pre-defined partition
and remove a potential cut-point to combine nearby intervals, splitting methods select a
cut-point from among all available boundary points to divide the domain into two intervals.

Local vs. global: Local discretization bases its partition decisions solely on local data,
whereas global discretization handles the discretization of every numeric property during
preprocessing. Global discretization techniques typically perform better than local ones.

Incremental vs. Direct: Since direct approaches divide the range into k intervals
concurrently, they require an extra criterion to find k. Conversely, incremental approaches
begin with a straightforward discretization and proceed through an improvement process;
however, they need an extra criterion to decide when to end the process. We used an
unsupervised strategy to filter the data after the data-cleaning stage before selecting features.
In particular, we applied a discretized filter approach called “Discrete”—an instance filter.

Appl. Sci. 2024, 14, 1044 11 of 25

The many numerical properties of the dataset were converted into notional qualities using
this filter.

4.3. The Selection of Features

An essential component of machine learning is feature selection, which directly im-
pacts classification performance. A well-chosen feature set leads to higher accuracy in
classification tasks. This study employs four feature selection approaches: the Ant, Bee,
Bat, and Wolf algorithms, each selecting various features.

After the data cleaning stage, our dataset consisted of 67 features. We employed four
algorithms (Ant et al.). Tables 3–6 show the outcomes of using four distinct algorithms.

Table 3. Features selected by applying the bee algorithm.

No Feature

1 Dst Port

2 Fwd IAT Min

3 Bwd Pkts/s

4 Fwd Seg Size Min

5 Fwd Act Data Pkts

Table 4. Features delected by applying the Flower Pollination Algorithm.

No Feature

1 Dst Port

2 Fwd Pkt Len Min

3 Flow Pkts/s

4 Bwd Pkts/s

5 Fwd IAT Min

6 ECE Flag Cnt

7 ACK Flag Cnt

8 Fwd Seg Size Min

9 Fwd Act Data Pkts

Table 5. Features chosen using an Ant Colony Optimization algorithm.

No Feature

1 Dst Port

2 Flow Pkts/s

3 Fwd IAT Max

4 Flow, IAT Min,

5 Fwd Pkts/s

6 Fwd Header Len

7 Bwd Pkts/s

8 RST Flag Cnt

9 Fwd Seg Siz Min

10 Idle Std

Appl. Sci. 2024, 14, 1044 12 of 25

4.3.1. ABC, or Artificial Bee Colony (ABC)

The Artificial Bee Colony (ABC) algorithm takes cues from honey bee activities. Find-
ing the best answers to various issues is made possible by a swarm intelligence system
known as colonies [42]. This represents a potential food supply by each point in the search
space of the ABC algorithm, which depicts the surroundings of a colony of honey bees.
Each food source has a different amount of nectar, and those indicate the fitness value of
the food supply. Researchers use three different types of bees in the ABC algorithm: scout,
employed, and observation bees [42,43].

The algorithm only plans to provide a working bee with food. Worker bees figure
out how much nectar there is. There are the same number of workers in the colony and
observers of artificial bees. The task of collecting high-quality data and forwarding it to
observer bees falls to employed bees.

Consequently, nectar-rich food sources will be directed toward observers among the
bee population. We continued these steps until we obtained the limit value. Researchers
have developed numerous ABC algorithms in the literature [44] for various purposes. Re-
searchers have created numerous enhanced ABC variations to address global optimization
issues [45].

To create test cases, for example, two novel combinatorial ABC algorithms with many
requirements have been devised [46]. These algorithms improve both intensification and
variety in the bee population by optimizing coverage criteria.

There are five primary phases to the ABC algorithm:
First Step: Based on the amount of food sources indicated by SN, the initialization

randomly creates the initial food sources. Two times SN (SN employed bees + SN onlooker
bees) is the colony size NP. We generate food sources between the variables’ top and lower
boundaries. Equation (8) generates the food source positions during the startup stage:

Xij = Xminj + rand(0,1)(Xmaxj − Xminj) (8)

In dimension j, where j = 1, 2, 3,. . ., D, Xminj, and Xmaxj represent the lower and upper
bounds. SN defines the number of worker or observer bees. For every solution, we construct
a D-dimensional vector xi (i = 1, 2,. . ., SN), where D is the quantity of optimization factors.

Following the initialization stage, we repeat cycles with the populations of the scout,
employed, and onlooker bees C = 1, 2. . ., MCN used in the solution search strategies. MCN
is the maximum count of iterations.

Second step: Evaluate the food sources’ fitness value (i.e., nectar amount). We use
Equation (9) to compute the attributes of every food source individually:

f iti=

{
1

1+ fi
, i f (fi ≥ 0)

1 + abs(fi), otherwise
(9)

where fiti is the value of the specific objective function and fi is the fitness of the ith
food source.

Third Step: After initialization and fitness calculations, the employed bees, following
the bee method, explore new food sources with better nectar. Every worker bee updates the
locations of their relevant food sources. This way, we create a new food source position υij:

υij = Xij+ϕij

(
Xij −Xkj

)
(10)

The letters j ϵ {1, 2,. . ., d} and k ϵ {1, 2,. . ., SN} represent the randomly selected index
values. The uniform random number ij, in this instance, is located in the interval [−1, 1]. In
dimension j, the reference and randomly chosen food sources are at Xij and Xkj, respectively.

Equation (9), once we have established υij, is used to calculate its fitness value. An
employed bee stores the position of the new food source when its fitness exceeds that of
the previous one.

Appl. Sci. 2024, 14, 1044 13 of 25

Fourth step: The onlooker bee method: Each chooses a food source based on the
fitness values determined in Step 3. High-fitness food sources are more likely to be chosen
than others in this selection mechanism [42]. We compute the probability as follows:

pi =
f iti

∑SN
k=1 f itk

(11)

Upon determining the probability value pi, each food source produces a random
integer known as its fitness value or fiti. If there is a higher chance of locating the food
source than this random number, the spectator bee is given a current food source for the
searching–exploiting process. Bystander bees then identify the precise food sources. Similar
to the previous bee stage, we evaluated the new technique.

Fifth step: Process of the scout bee: The ABC algorithm states that the number of food
sources (i.e., solutions) and trial counts determine the incidence of scout bees. A deployed
bee’s trial counter value will depart from the food source if it exceeds the upper limit. After
that, the working bee changes into a scout bee. The scout bee looks for new food sources.

Using a simulated bee colony, we selected the characteristics in Table 3.

4.3.2. The Algorithm for Flower Pollination (FPA)

The FPA is a population-based global optimization algorithm.
Yang et al. summarized the features of the Flower Pollination Algorithm procedure

into the following four perfect guidelines [47].
Rule 1: Cross-pollination by pollinators, like birds, represents a global pollination

stage. Pollinators behave like light birds;
Rule 2: the local pollination process starts with self-pollination on nearby flowers;
Rule 3: the reproduction rate, or floral constancy, is a straight ratio comparable to the

two flowers under consideration;
Rule 4: a switch probability implements local and global pollination.
According to the previously mentioned principles, the FPA has a local and a global

pollination operator. Every pollen item in the FPA is considered a solution SXi; the ini-
tialization of solutions within the feasible search space involves the utilization of random
vectors. Presented below is the original formula [48]:

SXi = Lower + Rυ(Upper − Lower) (12)

where Rυ is a D-dimensional random vector in [0, 1] D; the bottom limit of the search space
is bottom = [l1,. . ., ld,. . ., lD], and the upper limit is Upper = [u1,. . ., ud,. . ., uD]. Where
i ∈ {1,. . ., NP}, NP is the population size. Pollinators, like birds, have a comparatively
wide range of motion and can transport pollen across great distances as part of the global
pollination process. Thus, the following is how Rules 1 and 3 are formulated [48]:

SXt+1
i = SXt

i + γL(λ)
(

gbest − SXt
i
)

(13)

By using the levies distribution denoted by (λ) in (13), we may numerically simulate
the flight behavior of birds. Furthermore, (λ) can be regarded as a variable step factor for
pollination intensity measurement. As a step factor, γ is the solution i at iteration t, and
abest is the current global best solution. When L > 0, the levy distribution can be explained
as follows [48]:

L ∼ λГ(λ)sin(πλ/2)
π

1
s1+λ

, s ≫ s0 > 0 , s0 = 0.1, (14)

Appl. Sci. 2024, 14, 1044 14 of 25

Using the two Gaussian distributions, U and V, and the standard gamma function,
Г (λ), whose λ = 1.5 [48], we compute s:

s =
U

|V|1/λ
, U ∼ N

(
0, δ2

)
, V ∼ N (0, 1) (15)

δ2 =

{
Г(1 + λ)

λГ[(1 + λ)/2]
.

sin(πλ/2)
2(λ−1)/2

}1/λ

The conventional normal distribution is shown by (0, 1), and the normal distribution
with mean value 0 and variance δ2 is denoted by (0, δ2). Local pollination disperses pollen
to a nearby neighbor if used in pollination activities. We can create the model as follows [48],
using Rules 2 and 3:

SXt+1
i = SXt

i + ξ
(

SXt
j − SXt

k

)
(16)

Here, j and k ϵ {1, . . ., NP} and ξ is a random vector in [0, 1] D of dimension D, and SXj
and SXk are the pollen that has been chosen at random from different flowers on the same
plant. Moreover, based on Rule 4, the randomness of the two pollination acts is determined
by a probability p. In contrast, the opposite is true if a random value rand in [0, 1] is mi-nor;
otherwise, p. Figure 4 displays the FPA flowchart [48].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 25

Figure 4. An Intrusion Detection Model with Binary Symmetry [48].

Table 4 shows the features selected using a Flower Pollination Algorithm.

Table 4. Features delected by applying the Flower Pollination Algorithm.

No Feature

1 Dst Port

2 Fwd Pkt Len Min

3 Flow Pkts/s

4 Bwd Pkts/s

5 Fwd IAT Min

6 ECE Flag Cnt

7 ACK Flag Cnt

8 Fwd Seg Size Min

9 Fwd Act Data Pkts

4.3.3. Ant Colony Techniques for Optimization (ACO)

Dorigo and colleagues introduced the Ant System (AS) algorithm in the early 1990s

as a cutting-edge meta-heuristic technique for resolving combinatorial optimization issues

that drew inspiration from nature. The first problem to be solved by the algorithm was

the traveling salesperson problem. Recently, this has been improved and modified to en-

hance its usefulness and apply it to other optimization problems. Ant Colony System

(ACS), AS-rank, MAX-MIN, and AS are the upgraded versions of AS [49].

Figure 4. An Intrusion Detection Model with Binary Symmetry [48].

Table 4 shows the features selected using a Flower Pollination Algorithm.

4.3.3. Ant Colony Techniques for Optimization (ACO)

Dorigo and colleagues introduced the Ant System (AS) algorithm in the early 1990s as
a cutting-edge meta-heuristic technique for resolving combinatorial optimization issues

Appl. Sci. 2024, 14, 1044 15 of 25

that drew inspiration from nature. The first problem to be solved by the algorithm was the
traveling salesperson problem. Recently, this has been improved and modified to enhance
its usefulness and apply it to other optimization problems. Ant Colony System (ACS),
AS-rank, MAX-MIN, and AS are the upgraded versions of AS [49].

Ant Colony Optimization mimics the cooperative and adaptive mechanisms of natural
ant behavior on an individual level. Real ants’ foraging habits inspire ACO [49]. We
based our computational paradigm for the ACO algorithm on actual ant colonies and their
functioning. Our goal was to involve as many constructive computational ants as possible.
Each ant follows the generated solution, which relies on its dynamic memory structure
recording outcomes from past trials.

Ethologists’ findings derived the paradigm regarding the pheromone trail system
ants employ to communicate information regarding the most direct paths to food. Upon
finding a previously constructed road, an ant can identify it, decide to follow it with a high
chance of success, and reinforce the route with its pheromones. A solitary ant, on the other
hand, travels around practically at random. What appears is a type of autocatalytic process
whereby a track becomes more appealing to ants to follow the more they follow it. As a
result, a positive feedback loop defines the process where the likelihood of selecting a path
increases in proportion to the number of ants that have already selected that path. The
ACO family of algorithms draws inspiration from the abovementioned mechanism [50].

It is also possible to consider a FS period before the training phase. Which traits are
more discriminative than others is determined by the FS process. It removes duplicated
and unnecessary functionality, improving system performance. Generally speaking, FS is
a rare IDS operation. Nonetheless, several researchers have conducted their experiments
using various FS techniques. This suggests that FS may raise IDS classification accuracy.
The problem in using FS lies in finding a minimal feature subset of size S (S < N) given
a feature set of size N while maintaining the prior accuracy. As a result, the FS problem
needs a solution path [50,51].

A partial solution, sometimes referred to as a subset, suggests that there is no con-
nection between the elements or characteristics of the solution, and the decision of which
element to add to the partial solution after the previous one needs not be influenced [50,51].
FS problems can occasionally have solutions of varying proportions. Redefining the use of
the ACO representation graph is the first stage in FS employing ACO.

Using an Ant Colony Optimization algorithm, we selected the attributes shown in
Table 5.

4.4. Performance Evaluation

Our study employed a confusion matrix to evaluate a binary classification problem.
Such problems often involve classes of interest, including a minority class and its opposite
class, commonly called positives and negatives. In this context, several key performance
metrics are used [52–54]:

True Positive (TP): these correctly anticipated positive results suggest that the actual
and forecasted class values are accurate;

True Negative (TN): the fact that neither the actual class value nor the expected class
value is positive is one of the precisely predicted negative values;

False Positive (FP): the situation where the expected class is valid but the actual class
is false;

False Negative (FN): a situation where the actual class is positive but the projected
class is negative;

Accuracy: the percentage of related samples among the retrieved samples is known as
accuracy, another name for a positive value:

Accuraccy =
TP + TN

TP + TN + FP + FN
(17)

Appl. Sci. 2024, 14, 1044 16 of 25

Precision: precision is the ratio of accurately expected observations to all anticipated
positive observations concerning positive observations:

Precision =
TP

TP + TN
(18)

Recall (Sensitivity): the sensitivity is calculated quantitatively by dividing the total
number of true positives by the sum of the true and false negatives:

Recall =
TP

TP + TN
(19)

F-measure (F1 score): The F-measure functions as a sort of average between the
parameters P (Precision) and R (Recall). P represents the system’s accuracy when compared
to the predicted data. We express the number of predicted data to all expected data for
prediction as a ratio or r:

F1Score =
2 × Precision × Recall

Precision + Recal
(20)

4.5. Time Taken to Build a Model

The algorithm’s duration is required to build the model using the training data.

5. Experimental Design
5.1. Dataset

The Communications Security Establishment (CSE) and the Canadian Institute for
Cyber Security (CIC) have jointly developed the CSE-CIC-IDS2018 dataset for attack detec-
tion and prevention. This open-source dataset provides traffic patterns and various attacks
found in network architecture [52].

There are 80 features in the dataset, including tags, most consisting of data in terms
of statistics regarding internet traffic. The CICFlowMeter tool obtains these features by
generating information based on network traffic flow. The dataset includes continual
characteristics such as labels, timestamps, destination ports, and protocols. It includes six
scenarios and fourteen types of assaults, such as botnet, denial of service (DoS), infiltration,
Web attack, and DDoS [28,52].

Amazon Web Services (AWSs) offers the CSE-CIC-IDS2018 dataset for download;
included are ten CSV files totaling over 16.2 million samples, representing ten recorded
network flow days. The CICFlowMeter program extracted more than 80 features to produce
the dataset. The CSE-CIC-IDS2018 dataset’s Table 6 [29,54] offers comprehensive details on
the different kinds of assaults and safe traffic.

Table 7 shows the record count and attack percentage of the CSE-CIC-IDS2018 dataset.
There are 16,232,943 records in the CSE-CIC-IDS2018 dataset, with 83.07 percent

(or records) consisting of benign traffic, while the remaining records represent malicious
activity. This study used 80 percent of the records for training, while the remaining
20 percent was allocated for testing [28,29,52–55].

5.2. Experimental System Specifications

The experimental design for this study involved implementing the test procedure on a
system comprising an AMD Ryzen 7 1800X eight-core processor (Santa Clara, CA, USA)
operating at a clock speed of 3.60 GHz, paired with 32 GB of RAM and 128 GB allocated as
swap space on the hard disk. The system employed an X64-based processor and ran on
Windows 10 Enterprise as the operating system.

Appl. Sci. 2024, 14, 1044 17 of 25

Table 6. Attack types and secure traffic in the dataset CSE-CIC-IDS-2018.

Category Attack Types

Benign

DDoS

HOIC

LOIC-HTTP

LOIC-UDP

Botnet Bot

Brute Force
FTP

SSH

Infiltration Infiltration

Dos

Hulk

SlowHTTPTest

GoldenEye

Slowloris

Web Attack

Web

XSS

SQL Injection

Table 7. The CSE-CIC-IDS2018 dataset’s record count.

Traffic Class Record Count Share (%)

Benign 13,484,708 83.070%

HOIC 686,012 4.226%

LOIC-HTTP 576,191 3.550%

Hulk 461,912 2.846%

Bot 286,191 1.76%

FTP—BruteForce 193,360 1.191%

SSH—BruteForce 187,589 1.156%

Infiltration 161,934 0.998%

SlowHTTPTest 139,890 0.862%

GoldenEye 41,508 0.256%

Slowloris 10,990 0.068%

LOIC-UDP 1730 0.011%

Brute Force—Web 611 0.004%

Brute Force—XXS 230 0.001%

SQL Injection 87 0.0005%

6. Results

Utilizing a range of machine learning algorithms, we performed experiments by di-
viding 80% of the dataset for training the system while allocating the remaining 20% to
evaluate its performance. The feature selection techniques included Ant Colony Optimiza-
tion (ACO) algorithms, the Flower Pollination Algorithm (FPA), and Artificial Bee Colony
(ABC). Subsequently, these selected features were tested and evaluated with various ma-
chine learning algorithms. Tables 8–10 (values rounded to three decimal places) display the
outcomes of these tests.

Appl. Sci. 2024, 14, 1044 18 of 25

Table 8. Results of different algorithms using features selected by the Ant Colony Optimization
(ACO) algorithms.

Algorithm Time Spent on a
Model Build Accuracy Precision Recall F-Measure

AdaBoostM1 802.44 s 0.862 0.961 0.883 0.920

Bagging 13,969.96 s 0.988 0.996 0.989 0.992

BayesNet 638.07 s 0.965 0.968 0.989 0.979

CDT 1132.89 s 0.987 0.997 0.988 0.993

DTNB 18,733.06 s 0.986 0.996 0.988 0.992

IB1 9 s 0.978 0.986 0.988 0.987

J48 2858.5 s 0.988 0.997 0.988 0.993

KStar 3 s 0.979 0.989 0.987 0.988

Local Knn 324,075 s 0.984 0.993 0.988 0.990

Logistic 35,662 s 0.960 0.981 0.972 0.976

LogitBoost 2752 s 0.982 0.993 0.985 0.989

Multilayer perceptron 17,072 s 0.945 0.968 0.965 0.967

Random Tree 481.24 s 0.983 0.991 0.989 0.990

SMO 48,562 0.891 0.993 0.889 0.938

Table 9. Results of different algorithms using features selected by the Flower Pollination Algo-
rithm (FPA).

Algorithm Time Spent on a
Model Build Accuracy Precision Recall F-Measure

AdaBoostM1 593.74 s 0.862 0.961 0.883 0.920

Bagging 14,089.45 s 0.987 0.996 0.988 0.992

BayesNet 438.8 s 0.978 0.988 0.986 0.987

CDT 991.14 s 0.987 0.997 0.988 0.992

DTNB 9329.23 s 0.986 0.996 0.988 0.992

IB1 7 s 0.978 0.986 0.987 0.987

J48 3003.97 s 0.987 0.997 0.988 0.992

KStar 1 s 0.980 0.990 0.986 0.988

Local Knn 445,905 s 0.983 0.992 0.988 0.990

Logistic 20,578 s 0.946 0.971 0.964 0.968

LogitBoost 2565 s 0.975 0.987 0.983 0.985

Multilayer perceptron 16,290 s 0.956 0.974 0.974 0.974

Random Tree 445.08 0.982 0.991 0.988 0.989

SMO 35,787 s 0.885 0.997 0.880 0.935

Appl. Sci. 2024, 14, 1044 19 of 25

Table 10. Results of different algorithms using features selected by the Artificial Bee Colony (ABC).

Algorithm Time Spent on a
Model Build Accuracy Precision Recall F-Measure

AdaBoostM1 430.44 s 0.862 0.961 0.883 0.920

Bagging 6679.11 s 0.966 0.995 0.988 0.992

BayesNet 230.1 s 0.970 0.978 0.985 0.982

CDT 475.84 s 0.986 0.996 0.988 0.992

DTNB 2941.84 s 0.983 0.996 0.984 0.990

IB1 5 s 0.976 0.985 0.986 0.986

J48 1299.04 s 0.986 0.996 0.988 0.992

KStar 2 s 0.977 0.987 0.985 0.986

Local Knn 3,430,073 s 0.982 0.991 0.987 0.989

Logistic 7212.36 s 0.892 0.998 0.887 0.939

LogitBoost 1287.00 s 0.973 0.984 0.985 0.984

Multilayer perceptron 11,008 s 0.926 0.998 0.920 0.957

Random Tree 394.52 s 0.981 0.990 0.987 0.989

SMO 12,496 s 0.890 0.992 0.888 0.938

As can be seen in Table 8, after applying 14 different machine learning algorithms,
according to the results obtained, we obtained the best accuracy in intrusion detection by
applying the Bagging and J48 machine learning algorithms, of which 98.8% were able to
detect different types of cyber threats and distinguish them from regular traffic; furthermore,
regarding the shortest time to build the model, the construction time was 3 s using the Ant
Colony Optimization feature selection method.

According to the results obtained after selecting features using the Flower Pollination
Algorithm by applying different machine learning algorithms, the best result was an
accuracy of 98.7 in detecting regular traffic and different cyberattacks. Moreover, the
shortest model-building time was one second using the KStar algorithm.

Table 10 shows that the DTNB and J48 machine learning algorithms, combined with
the Artificial Bee Colony feature selection approach, yielded the maximum accuracy of 98.6,
and that this strategy took the smallest amount of time to develop the model at 2 s.

Readers are encouraged to explore the following charts (Figures 5 and 6), portraying
the accuracy and time needed for model construction employing various machine learning
algorithms alongside diverse feature selection techniques. As shown in Figure 5, the
highest accuracy among the three different feature selection methods, including Artificial
Bee Colony (ABC), the Flower Pollination Algorithm (FPA), and Ant Colony Optimization
(ACO), was that related to Ant Colony Optimization (ACO) with 98.8% using the Bagging
and J48 machine learning algorithms. Moreover, the minimum model-building time was
related to the Flower Pollination Algorithm (FPA), which was only 1 s using the KStar
machine learning algorithm.

Appl. Sci. 2024, 14, 1044 20 of 25Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 25

Figure 5. Accuracy of different machine learning algorithms with various feature selection algo-

rithms.
Figure 5. Accuracy of different machine learning algorithms with various feature selection algorithms.

Appl. Sci. 2024, 14, 1044 21 of 25Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 25

Figure 6. The time taken in building models using machine learning and feature selection algo-

rithms.
Figure 6. The time taken in building models using machine learning and feature selection algorithms.

Appl. Sci. 2024, 14, 1044 22 of 25

7. Discussion

This research introduced novel methodologies by combining various approaches in
intrusion detection in computer networks, contributing to advancements in computer
science. The initial data cleaning stage was crucial in eliminating disruptive and noisy
data that could hinder selecting selection features. After the data cleaning phase, the
subsequent step focused on optimizing the selection of valuable features; a filtering method
was applied—discretize—to the features obtained, allowing the entry of the most suitable
feature set into the selection process. This research employed the Ant Colony Optimization
(ACO) algorithms, Flower Pollination Algorithm (FPA), and Artificial Bee Colony (ABC) in
conjunction with other feature selection techniques for the first time, generating distinct
subsets of features not utilized in similar studies. Remarkably, this study achieved note-
worthy accuracy with a minimum number of features. For instance, achieving more than
98% intrusion detection accuracy was possible using only five features, and an impressive
accuracy of approximately 99% (equal to 0.988) was achieved using just ten features. These
findings represent a significant advancement within the field of Intrusion Detection Sys-
tems. Another critical accomplishment of this study is the model-building time facilitated
by the employed algorithms. The model-building time was substantially reduced to a
minimum of 1 s (With the KStar machine learning algorithm); this emphasizes the efficiency
and effectiveness of the algorithms utilized, a crucial aspect often overlooked in previous
research endeavors.

In brief, the effectiveness of feature selection and data-cleaning approaches in Intrusion
Detection Systems was demonstrated in this study. While drastically cutting down on the
time needed to generate the model, using a few features allowed for previously unheard of
accuracy levels. Computer science researchers can use these insights to create and enhance
Intrusion Detection Systems.

8. Conclusions

This study utilized the CSE-CIC-IDS2018 dataset, comprising 80 features and over
16 million records, to evaluate Intrusion Detection Systems in computer networks, em-
phasizing its relevance to computer science. This research involved data cleaning and
three feature selection approaches. In the initial stage, by utilizing only five features, a
remarkable accuracy of 98% in identifying safe traffic and computer attacks was achieved;
this demonstrates the effectiveness of feature selection and its impact on accurate intrusion
detection. Additionally, this study successfully built a model to detect intrusion in 1 s using
only nine features, showcasing efficient performance in time.

Furthermore, in subsequent stages, a model with approximately 99% accuracy was
constructed within a reasonable time frame by selecting ten features and employing dif-
ferent feature selection techniques; this highlights the importance of accuracy and time
considerations in Intrusion Detection Systems.

Future research should continue refining feature selection methods and exploring
data cleaning. Various techniques can be employed to optimize system performance and
determine which features influence accurate intrusion detection most. These techniques
aim to enhance the overall effectiveness of Intrusion Detection Systems by optimizing
system performance and focusing on identifying key features that contribute significantly
to accurate detection. One valuable suggestion arising from this study is to consider the
priorities of network experts or managers. Depending on their network requirements, they
can prioritize either time or accuracy. If time is crucial, they can adopt approaches that pri-
oritize faster detection of attacks. Conversely, investing more time in the detection process
can yield higher accuracy if accuracy is paramount. This recommendation gives network
experts an essential tip for making informed decisions based on their network’s needs.

Regarding computer networks, especially data centers, using intrusion systems is
essential for reducing the damage caused by cyberattacks. One of the most important
aspects of preventing intrusions on servers and networked devices is the timely and
accurate identification of such intrusions. Intrusion Detection Systems become much more

Appl. Sci. 2024, 14, 1044 23 of 25

efficient when the number of features required for detection is reduced. This decrease
prevents potential slowdowns in intrusion detection operations by reducing excessive
memory and CPU consumption and increasing detection speed. For this reason, it is
critical to detect assaults on computer networks as soon as possible to prevent serious
harm. Furthermore, reaching higher threat detection accuracy gives network specialists
more confidence and presents chances for cost savings by switching resources from human
involvement to Intrusion Detection Systems’ strong capabilities.

Author Contributions: Acquiring, organizing, simulating, analyzing, and drawing conclusions from
data; formulating problems and providing feedback on outcomes: H.N.M. and M.A.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset can be accessed through the https://www.kaggle.com/
datasets/dhoogla/csecicids2018 provided in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, C.; Du, X.; Cao, L. Analysis of Multi-Types of Flow Features Based on Hybrid Neural Network for Improving Network

Anomaly Detection. IEEE Access 2019, 7, 148363–148380. [CrossRef]
2. Ahmad, I.; Ul Haq, Q.E.; Imran, M.; Alassafi, M.O.; AlGhamdi, R.A. An Efficient Network Intrusion Detection and Classification

System. Mathematics 2022, 10, 530. [CrossRef]
3. Liu, L.; Wang, P.; Jun, L.; Liu, L. Intrusion Detection of Imbalanced Network Traffic based on Machine Learning and Deep

Learning. IEEE Access 2021, 9, 7550–7563. [CrossRef]
4. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9,

4396. [CrossRef]
5. Jovic, A.; Brkic, K.; Bogunovic, N. A review of feature selection methods with applications. In Proceedings of the International

Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29
May 2015.

6. Althubiti, S.; Nick, W.; Mason, J.; Yuan, X.; Esterkine, A. Applying long short-term memory recurrent neural networks to Intrusion
detection. In Proceedings of the SoutheastCon 2018, St. Petersburg, FL, USA, 19–22 April 2018.

7. Esmaeili, A.; Ghorrati, Z.; Matson, E.T. Agent-Based Collaborative Random Search for Hyperparameter Tuning and Global
Function Optimization. Systems 2023, 11, 228. [CrossRef]

8. Nisioti, A.; Mylonas, A.; Yoo, P.; Katos, V. From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of
Unsupervised Methods. IEEE Commun. Surv. Tutor. 2018, 20, 3369–3388. [CrossRef]

9. Chockwanich, N.; Visoottiviseth, V. Intrusion Detection by Deep Learning with TensorFlow. In Proceedings of the 21st Interna-
tional Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 17–20 February 2019.

10. Prabakaran, P.; Mohana, R.S.; Kalaiselvi, S. Enhancing the Cyber Security Intrusion Detection It based on Generative Adversarial
Network. Elem. Educ. Online 2021, 20, 7401–7408.

11. Cieslak, D.A.; Chawla, N.V.; Striegel, A. Combating imbalance in network intrusion datasets. In Proceedings of the IEEE
International Conference on Granular Computing, Atlanta, GA, USA, 10–12 May 2006.

12. Zamani, M.; Movahedi, M. Machine learning techniques for intrusion detection. arXiv 2015, arXiv:1312.2177.
13. Pervez, M.S.; Farid, D.M. Feature selection and intrusion classification in NSL-KDD cup 99 datasets employing SVMs. In

Proceedings of the 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA
2014), Dhaka, Bangladesh, 18–20 December 2014; pp. 1–6.

14. Shapoorifard, H.; Shamsinejad, P. Intrusion Detection Using a Novel Hybrid Method Incorporating an Improved KNN. Int. J.
Comput. Appl. 2017, 173, 5–9. [CrossRef]

15. Kaluri, S.R.; Singh, S.; Alazab, M.; Tariq, U. A novel PCA-firefly based XGBoost classification model for intrusion detection in
GPU networks. Electronics 2020, 9, 219–223.

16. Farhan, R.; Maolood, A.; Hassan, N. Optimized Deep Learning with Binary PSO for intrusion Detection on CSE-CIC-IDS2018
dataset. J. Al-Qadisiyah Comput. Sci. Math. 2020, 12, 16–27. [CrossRef]

17. Lava, A.; Savant, P. Network-Based intrusion detection systems using a machine learning algorithm. Int. J. Eng. Appl. Sci. Technol.
2022, 6, 145–155.

18. Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A survey of deep learning-based network anomaly detection. Clust.
Comput. 2019, 22, 949–961. [CrossRef]

https://www.kaggle.com/datasets/dhoogla/csecicids2018
https://www.kaggle.com/datasets/dhoogla/csecicids2018
https://doi.org/10.1109/ACCESS.2019.2946708
https://doi.org/10.3390/math10030530
https://doi.org/10.1109/ACCESS.2020.3048198
https://doi.org/10.3390/app9204396
https://doi.org/10.3390/systems11050228
https://doi.org/10.1109/COMST.2018.2854724
https://doi.org/10.5120/ijca2017914340
https://doi.org/10.29304/jqcm.2020.12.3.706
https://doi.org/10.1007/s10586-017-1117-8

Appl. Sci. 2024, 14, 1044 24 of 25

19. Tama, B.A.; Comuzzi, M.; Rhee, K.H. Tse-ids: A two-stage classifier ensemble for the intelligent anomaly-based intrusion detection
system. IEEE Access 2019, 7, 94497–94507. [CrossRef]

20. Ayachi, Y.; Mellah, Y.; Berrich, J.; Bouchentouf, T. Increasing the performance of an IDS using ANN model on the realistic
cyber dataset CSE-CIC-IDS2018. In Proceedings of the International Symposium on Advanced Electrical and Communication
Technologies (ISAECT), Marrakech, Morocco, 25–27 November 2020; pp. 1–4.

21. Gonzalez Rios, A.; Li, Z. Detection of Denial Service attacks in communication networks. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020.

22. Ferrag, M.A.; Janicke, H.; Maglaras, L.; Smith, R. Deep Learning Techniques for Cyber Security Intrusion Detection: A Detailed
Analysis. In Proceedings of the 6th International Symposium for ICS & SCADA Cyber Security Research (ICS-CSR), Athens,
Greece, 10–12 September 2019; pp. 126–136.

23. Kurochkin, L.; Volkov, S. Using GRU-based neural network for intrusion detection in software-defined networks. In Proceedings
of the IOP Conference Series Materials Science and Engineering, Alushta, Russia, 2 November 2020.

24. Khan, M.; Kim, J. Toward Developing Efficient Conv-AE-Based Intrusion Detection System using Heterogeneous. Electronics 2020,
9, 1771. [CrossRef]

25. Hagar, A.A.; Gawali, B.W. Apache Spark and Deep Learning Models for High-Performance Network Intrusion Detection Using
CSE-CIC-IDS2018. Comput. Intell. Neurosci. 2022, 2022, 3131153. [CrossRef]

26. Farhan, A.D.; Farhan, B.I. Performance analysis of intrusion detection for deep learning model based on CSE-CIC-IDS2018 dataset.
Indones. J. Electr. Eng. Comput. Sci. 2022, 26, 1165–1172. [CrossRef]

27. Budler, B.; Ajoodha, R. Comparative analysis of deep learning models for network intrusion detection system. In Proceedings of
the IEEE 2nd Conference on Information Technology and Data Science (CITDS), Debrecen, Hungary, 16–18 May 2022; pp. 45–50.

28. Arsalan, S. FastTrafficAnalyzer: An Efficient Method for Intrusion Detection Systems to Analyze Network Traffic. DUJE (Dicle
Univ. J. Eng.) 2021, 12, 565–572. [CrossRef]

29. Government of Canada. Communications Security Establishment. Available online: https://www.cse-cst.gc.ca/en (accessed on
2 February 2023).

30. Agbotiname, L.I.; Oyedare, T.; Otuokere, M.E.; Shettym, S. Software Intrusion Detection Evaluation Sytems: A Cost-Based
Evaluation of Intrusion Detection Capability. Commun. Netw. 2018, 10, 211–229.

31. Gu, G.; Fogla, P.; Dagon, D.; Lee, W.; Skoric, B. Measuring Intrusion Detection Capability: An Information-Theoretic Approach.
In Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, Taipei, Taiwan, 21–24
March 2006; pp. 90–101.

32. Garcia, S.; Luengo, J.; Saez, J.A.; Lopez, V.; Herrera, F. A survey of discretization techniques: Taxonomy and empirical analysis in
supervised learning. IEEE Trans. Knowl. Data Eng. 2013, 25, 734–750. [CrossRef]

33. Liu, H.; Hussain, F.; Tan, C.L.; Dash, M. Discretization: An enabling technique. Data Min. Knowl. Discov. 2002, 6, 393–423.
[CrossRef]

34. Ali, R.; Siddiqi, M.H.; Lee, S. Rough set-based approaches for discretization: A compact review. Artif. Intell. 2015, 44, 235–263.
[CrossRef]

35. Dougherty, J.; Kohavi, R.; Sahami, M. Supervised and unsupervised discretization of continuous features. In Proceedings of the
International Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995; pp. 194–202.

36. Yang, Y.; Webb, G.I. Discretization for naïve-Bayes learning: Managing discretization bias and variance. Mach. Learn. 2009, 74,
39–74. [CrossRef]

37. Parsad, A.; Chandra, S.H. Machine learning to combat cyberattack: A survey of datasets and challenges. J. Def. Model. Simul.
2022, 20, 577–588. [CrossRef]

38. Kiran, M.S.; Babalik, A. Improved Artificial Bee Colony Algorithm for Continuous Optimization Problems. J. Comput. Commun.
2014, 2, 108–116. [CrossRef]

39. Yan, X.; Zhu, Y.; Zou, W.; Wang, L. A new approach for data clustering using a hybrid artificial bee colony algorithm. Neurocom-
puting 2012, 97, 241–250. [CrossRef]

40. Brajević, I.; Stanimirović, P. An improved chaotic firefly algorithm for global numerical optimization. Int. J. Comput. Intell. Syst.
2018, 12, 131–148. [CrossRef]

41. Chu, X.; Cai, F.; Gao, D.; Li, L. An artificial bee colony algorithm with adaptive heterogeneous competition for global optimization
problems. Appl. Soft Comput. 2020, 93, 106391. [CrossRef]

42. Sahin, O.; Akay, B.; Karaboga, D. Archive-based multi-criteria Artificial Bee Colony algorithm for whole test suite generation.
Eng. Sci. Technol. 2021, 24, 806–817. [CrossRef]

43. Yang, X.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim.
2014, 46, 1222–1237. [CrossRef]

44. Cui, W.; He, Y. Biological Flower Pollination Algorithm with Orthogonal Learning Strategy and Catfish Effect Mechanism for
Global Optimization Problems. Math. Probl. Eng. 2018, 2018, 6906295. [CrossRef]

45. Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 334, 243–278. [CrossRef]
46. Montemanni, R.; Gambardella, L.M.; Rizzoli, A.E.; Donati, A.V. Ant Colony System for a Dynamic Vechile Routing Problem. J.

Comb. Optim. 2005, 10, 327–3430. [CrossRef]

https://doi.org/10.1109/ACCESS.2019.2928048
https://doi.org/10.3390/electronics9111771
https://doi.org/10.1155/2022/3131153
https://doi.org/10.11591/ijeecs.v26.i2.pp1165-1172
https://doi.org/10.24012/dumf.1001881
https://www.cse-cst.gc.ca/en
https://doi.org/10.1109/TKDE.2012.35
https://doi.org/10.1023/A:1016304305535
https://doi.org/10.1007/s10462-014-9426-2
https://doi.org/10.1007/s10994-008-5083-5
https://doi.org/10.1177/15485129221094881
https://doi.org/10.4236/jcc.2014.24015
https://doi.org/10.1016/j.neucom.2012.04.025
https://doi.org/10.2991/ijcis.2018.25905187
https://doi.org/10.1016/j.asoc.2020.106391
https://doi.org/10.1016/j.jestch.2020.12.011
https://doi.org/10.1080/0305215X.2013.832237
https://doi.org/10.1155/2018/6906295
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1007/s10878-005-4922-6

Appl. Sci. 2024, 14, 1044 25 of 25

47. Blum, C.; Dorigo, M. The hyper-cube framework for ant colony optimization. IEEE Trans. Syst. Man Cybern. 2004, 34, 1161–1172.
[CrossRef]

48. Leguizamon, G.; Michalewicz, Z. A New Version of Ant System for Subset Problems. In Proceedings of the IEEE Congress on
Evolutionary Computation, Washington, DC, USA, 6–9 July 1999.

49. Khraisat, A.; Gondal, L.; Vawplew, P.; Kamruzzman, J. Survey of intrusion detection systems: Techniques, datasets, and challenges.
Cybersecurity 2019, 2, 20. [CrossRef]

50. Zhang, L.; Xu, C. An Intrusion Detection Model Based on Convolutional Neural Network and Feature Selection. In Proceedings of
the 5th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 27–30 May 2022; pp. 162–167.

51. Abdulhammed, R. Intrusion Detection: Embedded Software Machine Learning and Hardware Rules Based Co-Designs. Doctoral
Dissertation, University of Bridgeport, Bridgeport, CT, USA, 2019.

52. A Realistic Cyber Defense Dataset (CSE-CIC-IDS2018). Registry of Open Data on AWS. Available online: https://registry.
opendata.aws/cse-CIC-ids2018 (accessed on 2 February 2023).

53. Alzughaibi, S.; El Khediri, S. A Cloud Intrusion Detection Systems Based on DNN Using Backpropagation and PSO on the
CSE-CIC-IDS2018 Dataset. Appl. Sci. 2023, 13, 2276. [CrossRef]

54. Canadian Institute for Cybersecurity. University of New Brunswick est.1785. Available online: www.unb.ca/cic/ (accessed on 2
February 2023).

55. Canadian Institute for Cybersecurity. CSE-CIC-IDS2018 on AWS. Available online: www.unb.ca/cic/datasets/ids-2018.html
(accessed on 2 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSMCB.2003.821450
https://doi.org/10.1186/s42400-019-0038-7
https://registry.opendata.aws/cse-CIC-ids2018
https://registry.opendata.aws/cse-CIC-ids2018
https://doi.org/10.3390/app13042276
www.unb.ca/cic/
www.unb.ca/cic/datasets/ids-2018.html

	Introduction
	Related Works
	Theoretical Background
	Methodology
	Data Cleaning
	Data Filtering
	The Selection of Features
	ABC, or Artificial Bee Colony (ABC)
	The Algorithm for Flower Pollination (FPA)
	Ant Colony Techniques for Optimization (ACO)

	Performance Evaluation
	Time Taken to Build a Model

	Experimental Design
	Dataset
	Experimental System Specifications

	Results
	Discussion
	Conclusions
	References

