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Abstract: Digital twin (DT) technology, which can provide larger and more accurate amounts of 

data, combined with the additional computility brought by virtual environments, can support more 

complex connected industrial applications. Simultaneously, the development and maturity of 6G 

technology has driven the development of industrial manufacturing and greatly improved the op-

erational efficiency of the industrial internet of things (IIoT). Nevertheless, massive data, heteroge-

neous IoT device attributes, and the deterministic and bounded latency for delay sensitive applica-

tions are major barriers to improving the quality of services (QoS) in the IIoT. In this article, we first 

construct a new DT-enabled network architecture and computation offloading delay model in the 

IIoT. Then, the computation offloading problem is formulated with the goal of minimizing the over-

all task completion delay and achieving resource allocation. Since the formulation is a joint optimi-

zation problem, we use deep reinforcement learning (DRL) to solve the original problem, which can 

be described by a Markov decision process (MDP). Numerical results show that our proposed 

scheme is able to improve the task success rate and reduce the task processing end-to-end delay 

compared to the benchmark schemes. 

Keywords: 6G industrial internet of things (IIoT); digital twin; edge computing; computation  

offloading; deep reinforcement learning (DRL) 

 

1. Introduction 

Following the initial commercial implementation of 5G networks, industry and aca-

demic organizations have carried out their work to the architecture, requirements, and 

applications of 6G mobile networks. The international telecommunication union (ITU) re-

leased a white paper on the 6G [1] vision and candidate technologies in June 2021. As the 

next generation communication technology, the direction of 6G technology research and 

development has become more and more clear [2]. The industrial internet of things (IIoT) 

is an intelligent manufacturing model that integrates the sensors, networking technolo-

gies, and data analytics into the industrial production process. The rapid development of 

artificial intelligence (AI) technology has brought an explosive growth of industrial data, 

and the large amount of data generated during the industrial production process is a chal-

lenge for the IIoT [3–5]. How to effectively collect, analyze, and process these data, and 

extract the guiding recommendations for industrial production from them is the core of 

the design. Realizing such rigorous and diverse service requirements requires the design 

of a special-purpose IIoT network that incorporates a large number of specialized func-

tions and technical support. This is exactly what 6G technology is trying to do today [6,7]. 

This innovative architecture of the 6G IIoT network compensates for the shortcomings of 

previous wireless network technology applied to industrial field environments, providing 

higher security, reliability, and real-time performance. 

However, due to the limited computing resources and processing capabilities of IIoT 

devices, it presents serious challenges for running computationally intensive applications 
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locally. In order to meet the ever-increasing computing demands, mobile edge computing 

has been proposed as a promising approach that deploys cloud-like computing resources 

at the edge of the network to provide real-time computing services to nearby IoT devices 

[8–10]. The system can offload whole or part of the industrial computing tasks generated 

on the IIoT devices to the edge servers, utilizing superior computing resources to accom-

plish the tasks [11]. Computation offloading is a promising approach, but it faces a num-

ber of challenges. Firstly, the computing tasks generated by IIoT devices are heterogene-

ous, such as the amount of data, task priority, required resources, and so on [12]. Secondly, 

the computation offloading decision needs to sense the network condition in real time and 

dynamically select the appropriate edge server [13]. Finally, how to optimize the offload-

ing decision online to maximize the system performance is also a problem to be solved. 

The emergence of digital twin (DT) technology can well meet these challenges.  

Terminology for digital twins was first presented by Michael Grieves [14] of the Uni-

versity of Michigan as the “Information Mirroring Model”, which later evolved into the 

term “digital twin”. Digital twins are virtual representations of the state of a physical en-

tity or system by collecting data from physical entities through sensors and digitizing 

them to create a highly simulated virtual model [15–18]. Digital twins are theories and 

technologies with universal applicability, which can be applied to many fields, especially 

in system design, product manufacturing, data analysis, and engineering construction, 

etc. [19,20]. In view of the above characteristics, a number of studies combining DT and 

edge computing have recently emerged. Ref. [21] focused on minimizing the computa-

tional offload latency of DT wireless edge networks in IIoT environments through ultra-

reliable and low-latency communication links. Ref. [22] proposed a mobile edge compu-

ting framework based on network digital twins that would enable intelligent resource 

management. Ref. [23] studied the digital twin service caching and request routing prob-

lem along with fairness awareness. 

In fact, the above solutions for DT combined with edge computing are still in their 

infancy and have a lot of room for improvement. First, there is still relatively little research 

on using DT for the prediction and optimization of offloading decisions. Second, the ap-

proach adopted generally assumes that each IIoT device performs a single computing 

task, regardless of the randomness of task generation. As a new research method to solve 

time-varying problems, deep reinforcement learning (DRL) can be used to solve dynamic 

computation offloading and resource allocation problems. DRL can deal with the problem 

of the continuous action space and learn more complex offloading strategies, which can-

not be handled by traditional algorithms. Inspired by the above discussion, this article 

considers a DT-assisted edge computing network consisting of multiple mobile IIoT de-

vices. Computation offloading consists of three steps, offloading, processing, and feed-

back. Offloading refers to the use of wireless transmission technology to offload tasks to 

edge servers (deployed near the base station, not fixed) via mobile access points (APs). 

Processing requires that the edge servers have sufficient computational resources. Feed-

back is to return the processing results to the physical device through the AP after pro-

cessing by the edge server. Generally, the returned data is much smaller than the offloaded 

data, because the offloaded data is the entire data collected by the physical device, 

whereas the returned data may only be an instruction. It may not be the same AP that 

returns the results since the physical devices are movable. The main innovations of this 

article are summarized as follows: 

1. We propose an integrated digital twin and IIoT architecture to model the network 

systems and all physical devices in the IIoT. The architecture enables more efficient 

and optimized network operation. 

2. We explore the impact of the heterogeneity of physical devices and the execution time 

of different tasks on offloading decisions. A solution based on deep deterministic pol-

icy gradient (DDPG) is employed to realize effective computation offloading. The so-

lution focuses more on policy exploration than traditional algorithms to improve the 

adaptability of offloading algorithms and reduce the communication cost. 
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3. We have conducted extensive experiments on the proposed learning algorithm. The 

results show that by considering various delay constraints, more tasks can be better 

executed, and unnecessary contention and the wasted resources phenomenon can be 

greatly reduced. 

The rest of this article is organized as follows. The relevant research status is reviewed 

in Section 2. The problem is then described in Section 3. The formulations used by the 

MDP to describe the proposed problem are listed in Section 4, and the associated learning 

algorithm is also given in this section. Subsequently, simulation results are tested and an-

alyzed in Section 5. Finally, we summarize the paper in Section 6.  

2. Related Work 

In this section, we review the literature on computation offloading with DT-enabled 

architecture using cloud-edge collaboration or edge servers. In addition, we present some 

research on computation offloading using AI techniques. In Table 1, we compare existing 

studies to further discuss them from different perspectives. 

Table 1. Comparison of existing studies. 

Reference 
Offloading 

Position 
Algorithm 

Optimization 

Objective 

[24] Cloud-edge-client DRL Minimize latency performance 

[25] Cloud-edge-client FL Minimize the system cost 

[26] Cloud-edge-client 𝐶3-FLOW Minimize communication cost 

[27] Cloud-edge MA-DATD3 Minimize delay and energy 

[28] Cloud-edge-client DRL Minimize execution delay 

[29] Edge-client SCA Minimize the average delay 

[30] Edge-client two-stage Maximize total profits 

[31] Edge SCA Minimize latency 

[32] Edge UCB Minimize delay 

[33] Edge-client non-convex optimization Minimize the average delay 

[34] Edge A3C Minimize system energy cost 

[35] Edge MINLP Minimize the system latency 

[36] Edge GatMARL Maximize QoS 

[37] Edge AAC Minimize long term energy 

[38] Edge DDQN Minimize energy consumption 

[39] Edge-client DRL Minimize long term income 

2.1. DT-Enabled Computation Offloading with Cloud 

In recent years, DT can well replicate the network topology and the physical entities 

within it, which has been extended to industrial manufacturing, smart factories, and the 

Internet of Things. Therefore, given the technical advantages of DT, offloading locally-

heavy computational tasks to DT-enabled network architectures has been widely studied. 

The authors in [24] proposed for the first time a digital twin dual empowered system that 

included end users, base stations, and cloud servers, and utilized transfer learning to solve 

the edge association problem. In [25], the authors presented a privacy-enhancing feder-

ated learning framework and developed DT-assisted multi-intelligent DRL-based re-

source scheduling for federated client association and channel allocation. The authors in 

[26] proposed a cloud edge device collaboration, reliable, and communication efficient DT 

for low carbon electrical device management. DT-empowered satellite-terrestrial cooper-

ative edge computing networks were investigated in [27], in which computational tasks 

from terrestrial users could be partially offloaded to the associated base station edge serv-

ers or the associated satellite edge servers. In order to satisfy the dynamic service 
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requirements, Ref. [28] proposed a deep reinforcement learning-based offloading mecha-

nism for cloud edge collaborative mobile computing. 

2.2. DT-Enabled Computation Offloading with Edge 

By using the base stations closer to the physical entity as the edge servers, the prob-

lem of too wide coverage and heavy transmission burden of cloud computing can be alle-

viated. Edge computing usually has the advantage of lower costs of transmission, compu-

tation, and storage. In [29], the offloading problem was transformed into an equivalent 

convex problem with tractable solutions, in which users offloaded their tasks to edge serv-

ers using grant-free random access. The authors of [30] developed a two-stage incentive 

mechanism to encourage mobile devices to offload more computation tasks to edge serv-

ers when making optimal computational offloading and resource allocation decisions. In 

[31], a digital twin-assisted edge computing framework for fair perception delay minimi-

zation was presented and a low-complexity iterative algorithm was developed using suc-

cessive convex approximation. Considering the mapping deviation between DTs and ac-

tual network states, Ref. [32] formulated the computational offloading problem as an 

online matching problem in an uncertain bipartite graph. By optimizing the subchannels, 

Ref. [33] aimed to minimize the total task delay, while accomplishing the interconnection 

of all IIoT devices, edge correlation, computational capacity allocation, and transmission 

power allocation. 

2.3. Edge Computation Offloading Supported by AI 

Integrating artificial intelligence into DT-enabled edge computing and deploying it 

on edge servers can better optimize offloading policies. The authors of [34] considered 

service caching and task dependencies and proposed a DT-based mobile edge computing 

architecture that can support mobile users in offloading dependency-aware tasks. In [35], 

the authors satisfied the latency tolerance for latency-sensitive tasks by considering both 

computation offloading and service caching. The authors in [36] proposed an algorithm 

for learning optimal task offloading and service caching policies with a multi-intelligence 

reinforcement approach based on graph attention. The authors in [37] solved the compu-

tation offloading and resource allocation problems by using the AAC algorithm. They 

used Liapunov optimization techniques to equivalently transform the original problem 

into a deterministic per time slot problem. The authors in [38] effectively solved the prob-

lem of intelligent computation offloading for UAVs. A new approach was proposed in [39] 

that allowed distributed mobile edge servers to collaborate on peer-to-peer offloading 

tasks to balance compute workloads on edge servers. 

By analyzing these previous works, we can summarize the relevant research as fol-

lows. First, a DT-enabled network architecture can provide a solution for some risky field 

environments. Second, an AI algorithm can effectively solve the computation offloading 

problem in a complex dynamic environment. This is exactly what we will address next. 

In addition, we consider for the first time the heterogeneity of tasks generated by IIoT 

devices and how to optimize offloading strategies for such tasks. 

3. System Model 

3.1. DT-Enabled Network Model 

The proposed digital twin-enabled network architecture is shown in Figure 1, which 

is composed of three main elements:  

1. The bottom physical device network includes client devices in the IIoT, such as smart 

machines, sensors, vehicles, and IIoT devices. It also contains devices such as 

switches, access points, and databases that assist communication between devices. 

Sensors collect data from the industrial field environment and connect to the nearest 

AP according to the network topology. Cells led by AP are scattered throughout the 
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whole work region, operated for monitoring and control among the machines and 

the robots. 

2. The edge server element acts as a bridge between the network of physical devices 

and the digital twin. Digital twin networks are built and maintained with the help of 

edge servers. They are also the key to achieving virtual–physical interactions. The 

edge server element connects the network service application and the physical device 

network through standardized interfaces, completes the real-time information col-

lection and control of the physical network, and provides timely diagnosis and anal-

ysis. We can complete the digital modeling of the factory communication environ-

ment before the transmission of data, and then simulate the transmission in the vir-

tual digital space to evaluate the frequency allocation and channel tolerance. We can 

also import additional traffic data to evaluate whether the transmission scheme can 

meet the requirements of the service. 

3. The digital twin network can predict the optimal transmission channel through con-

tinuous acquisition and intelligent analysis of field data. A digital twin system can be 

roughly divided into three modules according to the functions it can achieve.  

The modeling function module should precisely digitize physical space and realize 

the virtual–real interaction between the physical entity and the digital model through the 

edge gateway. At this stage, the transmission of data does not necessarily need to be com-

pletely real-time. Data can be collected locally and transmitted periodically in a short pe-

riod. The core technology of this module is replication modeling and IoT device sensing 

technology. Through sensing, mapping, and process modeling, the system can recognize 

the physical objects, complete the digitization of physical objects, and build the corre-

sponding mechanism model. 

In the simulation functional module, the system can create a virtual replica of the 

physical entity according to the actual application requirements. The DT analyzes and 

understands the data involved, and tests, alerts, and adjusts problems that have occurred 

or are about to occur. This function can realize the status tracking, analysis, and problem 

diagnosis of the physical space. This module focuses on building a global operational 

model based on data from the digital twin without transferring the raw local data. 

The optimizing function module combines the results of the model operation with 

the dynamic system operation for self-learning and updating. This module predicts, sim-

ulates, and debugs potentially undiscovered and future new modes of physical space in 

digital space based on known modes of physical space operation. After establishing the 

prediction of future development, the digital twin will present the prediction content in 

the digital space in a way that can be understood and perceived. This module has the 

function of active learning. Based on the learned existing knowledge, the system deduces 

unknown knowledge. The core technologies involved are concentrated in the fields of ma-

chine learning, image recognition, big data analysis, etc. 
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Figure 1. Digital twin-enabled network architecture. 

The digital twin-enabled network architecture brings obvious efficiency gains and 

cost reductions to industrial manufacturing. With the support of 6G technology, closer 

connections can be established between edge servers and physical terminals. This also 

means that more data will be collected and aggregated. 

3.2. Computation Offloading Model 

The first step in creating a DT is to develop an accurate and comprehensive virtual 

model from the collected field data. After the DT is created, the DT model can be updated 

in real time with the data collected by the industrial equipment through the edge servers, 

and the decisions in the DT can be mapped to the physical entity. 

A directed graph 𝐺(𝒩, ℒ) is used to represent the physical device network, where 

𝒩 = {1,2, ⋯ , 𝑛, ⋯ , 𝑁} is the set of physical devices (including smart machines, switches 

or access points), and ℒ is the set of links. Accordingly, the virtual topology in the DT 

model can be represented as 𝐺𝐷𝑇(𝒩𝐷𝑇 , ℒ𝐷𝑇). Let ℱ be the set of tasks in the network, 

where ℱ = {1,2, ⋯ , 𝑓, ⋯ , 𝐹} and 𝐹 is the total number of tasks. A task 𝑓 ∈ ℱ is defined 

as a quadruple 𝑓 ≜ {𝑑𝑓 , 𝜔𝑓 , 𝜏𝑓 , 𝑛}, where 𝑑𝑓 represents the computational requirement to 

process the task, 𝜔𝑓 represents the transmitted data size of task 𝑓, 𝜏𝑓 is the maximum 

delay bound of task 𝑓, 𝑛 ∈ 𝒩 is the location of the task. A DT model refers to a network 

consisting of DT nodes (i.e., virtualized physical nodes) where the packets forwarding 

delay in transmission and processing delay on edge servers are computable. The central-

ized computation offloading scheme provides deterministic and easily computable la-

tency services. In the DT model, the delay caused by forwarding packets consists of the 

following parts: 

1. Queuing delay, which is the waiting time in the output port queue due to the accu-

mulation of packets generated by different applications to the same output port. 
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2. Transmission delay, which is the time consumed to put the packet on the wireless 

link and send it from the source to the destination. 

3. Update delay, which refers to the delay caused by synchronizing heterogeneous 

physical devices when updating the global DT model. 

4. Processing delay, which is the time consumption associated with completing a com-

putation task and can be measured in terms of the number of CPU cycles. 

In 6G scenarios, physical devices are mobile and may be in the coverage range of 

multiple APs. Computation offloading between physical devices and edge servers is real-

ized through wireless channels. To simplify the research, we only consider the uplink 

transmissions without backhaul, and do not consider communication interference be-

tween devices. Some advanced industrial applications, such as digitalized operations and 

predictive maintenance, require interconnection and cooperation of IIoT devices. When 

these tasks are offloaded to the edge server, the local time will deviate from the global 

time due to the heterogeneity of the physical devices. In order to ensure coherent data 

processing on digital twins, they need offset compensation before processing. For an IIoT 

device, the appropriate edge server will be selected to offload the task based on a set of 

criteria, including its physical location, the computing capabilities of the edge server, and 

the channel state information. As illustrated in Figure 2, more communication resources 

can be allocated to device 2 to mitigate the imbalance in communication performance. 

Servers with more computing resources can also be allocated to the computationally-

heavy device 3 to reduce its processing delay. 

 

Figure 2. An illustration of computation offloading processes. 

3.3. Problem Formulation 

In this section, we first define a total end-to-end delay for a task and then describe it 

with mathematical formulations. Our goal is to minimize this total delay while ensuring 

the maximum delay bound of this task. The important symbols and variables used in this 

article are shown in Table 2. As described earlier, the end-to-end delay consists of four 

parts, a queuing delay, transmission delay, synchronization delay, and processing delay. 

The physical device generates running data and synchronizes it with the corresponding 

digital twin running on the server. For a physical device n, its digital twin 𝐷𝑇𝑛 is modeled 

in its nearby server, as shown in (1) 

𝐷𝑇𝑛 = {𝑀𝑛, 𝑞𝑛,𝑓 , 𝑠𝑛 , ∆𝑠𝑛} (1) 

The server collects operational data from the physical device and constructs the DT 

model 𝑀𝑛 of the device 𝑛. 𝑞𝑛,𝑓 represents the quality of service (QoS) requirements to 

process task 𝑓, 𝑠𝑛 is the essential state data required to run digital twin applications, and 

∆𝑠𝑛  is the estimated deviation from data updating. 

Table 2. Explanation of symbols and variables. 
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3

2

1

Digital twin network
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send

Transmission

complete
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Symbol Description 

𝐺(𝒩, ℒ), 𝐺𝐷𝑇(𝒩𝐷𝑇 , ℒ𝐷𝑇) Network topology 

𝐷𝑇𝑛 The DT model for a physical device n 

𝑀𝑛, 𝑞𝑛,𝑓 , 𝑠𝑛 , ∆𝑠𝑛 
DT attribute element of n to process task 𝑓: DT model, QoS requirements, essential 

state, deviation 

ℱ = {1,2, ⋯ , 𝑓, ⋯ , 𝐹} The set of tasks 

𝑑𝑓 , 𝜔𝑓 , 𝜏𝑓 
Task attribute element of task 𝑓: computation requirement, transmitted data size, max-

imum delay bound 

𝒩 = {1,2, ⋯ , 𝑛, ⋯ , 𝑁} The set of nodes in the network 

𝜇𝑛, 𝜆𝑓 Queue parameter 

𝑏𝑘, 𝑝𝑛
𝑘 , ℎ𝑛,𝑖

𝑘 , 𝜎2, 𝑟𝑛,𝑖 , 𝛼 Wireless communication parameters 

𝐿𝑛
𝑟𝑒𝑠,𝑃𝑛

𝑟𝑒𝑠, 𝐷𝑛
𝑟𝑒𝑠 , 𝐶𝑖

𝑟𝑒𝑠 Resource upper limits for various nodes 

𝐵 Environmental bandwidth in DT model 

𝑇𝐺  DT global clock 
𝑡𝑛,𝑖,𝑓

𝑎𝑟𝑟  Task arrival time 

𝑡𝑖,𝑓
𝑠𝑒𝑟  Processing start time 

𝑥𝑖,𝑓 , 𝑦𝑖,𝑓
𝑘  Boolean variable 

𝐷𝑛,𝑖,𝑓
𝑞𝑢𝑒

, 𝐷𝑛,𝑖,𝑓
𝑡𝑟𝑎𝑛𝑠, 𝐷𝑛,𝑖,𝑓

𝑢𝑝𝑑𝑎𝑡𝑒
, 𝐷𝑛,𝑖,𝑓

𝑝𝑟𝑜  The composition of total end-to-end delay 

〈𝒮, 𝒜, 𝒫, ℛ, 𝛾〉 MDP attribute element: state, action, transition matrix, reward, discount factor 

𝑐(𝑡), 𝑝(𝑡), 𝑏(𝑡) Distribution of network resources at the current time  

𝜋 Deterministic policy 

𝜇, 𝜇′ Parameters of the Actor network 

𝜃, 𝜃′ Parameters of the Critic network 

𝑄𝜃(𝑠𝑚 , 𝑎𝑚) Maximum Q-value 

𝜌 A small step factor 

For simplicity, we assume that there is only one queue on the output port of one AP. 

We use the queuing theory to model the queuing delay as an M/M/1 queuing system. We 

define a binary variable 𝑥𝑖,𝑓 to represent edge server 𝑖 ∈ 𝒩 that is selected to offload the 

computation task of 𝑓; 𝑥𝑖,𝑓 = {0,1} is equal to 1 if task 𝑓 is offloaded to edge server 𝑖, 

otherwise, it equals 0. For a task 𝑓, its queuing delay is denoted as: 

𝐷𝑛,𝑖,𝑓
𝑞𝑢𝑒

= 𝑥𝑖,𝑓 ∙
1

𝜇𝑛−𝜆𝑓
  (2) 

Here, the arrival time intervals of task 𝑓 obeys a negative exponential distribution 

of with parameter 𝜆𝑓, and the node’s processing time for the task also has a negative ex-

ponential distribution with parameter 𝜇𝑛. 

The transmission delay is closely related to the uplink rate, which is affected by the 

amount of traffic and the transmission distance. The uplink transmission rate satisfies 

Shannon’s theorem and is related to node transmission power, wireless interference, and 

environmental bandwidth. Here, we consider device-to-device communication based on 

the shortest distance broadcast channel. The wireless communication data rate between 

two devices can be expressed as 

𝑅𝑛,𝑖,𝑓 = 𝑦𝑖,𝑓
𝑘 ∙ 𝑏𝑘𝑙𝑜𝑔2(1 +

𝑝𝑛
𝑘ℎ𝑛,𝑖

𝑘 𝑟𝑛,𝑖
−𝛼

𝜎2+𝐼
)  (3) 

We define a binary variable 𝑦𝑖,𝑓
𝑘   to represent the channel allocation status;  𝑦𝑖,𝑓

𝑘 =

{0,1} is equal to 1 if channel 𝑘 is assigned to edge server 𝑖 to transmit task 𝑓, otherwise, 

it equals 0. 𝑏𝑘 represents the bandwidth allocated to the 𝑘 subchannel. The channel gain 

is denoted as ℎ𝑛,𝑖
𝑘 , which can be considered to be constant, and varies with each update. 

𝑝𝑛
𝑘 is the transmitted power of physical device 𝑛 and 𝜎2 means the power of additive 

Gaussian white noise. 𝑟𝑛,𝑖 means the communication distance between the sender and 
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the receiver. 𝛼 is the path loss coefficient. 𝐼 = ∑ 𝑝𝑛′
𝑘 ℎ𝑛′,𝑖′

𝑘 𝑟𝑛′,𝑖′
−𝛼

𝑛′,𝑖′∈𝒩\{𝑛,𝑖}  is the communi-

cation interference between other physical devices and edge servers. 

Thus, we can calculate the average transmission delay as 

𝐷𝑛,𝑖,𝑓
𝑡𝑟𝑎𝑛𝑠 =

𝜔𝑓

𝑅𝑛,𝑖,𝑓
  (4) 

When the task 𝑓 arrives at the edge server where the task is to be offloaded, it has to 

wait for the DT to coordinate it. We consider a global time scale, as shown by the dotted 

lines in Figure 2, and this global clock is updated periodically with update intervals 𝜏. 

Tasks waiting to be processed by the edge server enter the DT’s processing queue in the 

latest update: 

𝐷𝑛,𝑖,𝑓
𝑢𝑝𝑑𝑎𝑡𝑒

= 𝑇𝐺(𝜏) − 𝑡𝑛,𝑖,𝑓
𝑎𝑟𝑟 + 𝑡𝑖,𝑓

𝑠𝑒𝑟   (5) 

where 𝑇𝐺(𝜏) is the global clock at time 𝜏, 𝑡𝑛,𝑖,𝑓
𝑎𝑟𝑟  denotes the time when the task 𝑓 gener-

ated from physical device 𝑛 arrives at the receiving port of edge server 𝑖, and 𝑡𝑖,𝑓
𝑠𝑒𝑟  rep-

resents the start time of task processing by server 𝑖. 𝑇𝐺  is updated periodically, so choos-

ing different edge servers brings different offset compensations and service queue lengths. 

Finally, the processing time of the task by the edge server is expressed as 

𝐷𝑛,𝑖,𝑓
𝑝𝑟𝑜

=
𝑑𝑓

𝐶𝑖
  (6) 

where 𝐶𝑖 is the CPU cycle frequency of the edge server 𝑖. 

Therefore, the total end-to-end delay of the task 𝑓 generated by physical device 𝑛 

can be expressed as 

𝐷𝑛,𝑖,𝑓
𝑡𝑜𝑡𝑎𝑙 = 𝐷𝑛,𝑖,𝑓

𝑞𝑢𝑒
+ 𝐷𝑛,𝑖,𝑓

𝑡𝑟𝑎𝑛𝑠 + 𝐷𝑛,𝑖,𝑓
𝑢𝑝𝑑𝑎𝑡𝑒

+ 𝐷𝑛,𝑖,𝑓
𝑝𝑟𝑜

  (7) 

Now, we intend to minimize the end-to-end delay by formalizing it as an optimiza-

tion problem. The constraints of the optimization problem are shown in (9)–(18) according 

to the order of appearance of the variables. 

P:    minimize ∑ 𝐷𝑛,𝑖,𝑓
𝑡𝑜𝑡𝑎𝑙𝐹

𝑓=1   (8) 

s.t.     ∑ 𝑥𝑖,𝑓𝑖∈𝒩 = 1, ∀𝑓 ∈ ℱ (9) 

𝜆𝑓

𝜇𝑛
< 1, ∀𝑓 ∈ ℱ, ∀𝑛 ∈ 𝒩  (10) 

𝜆𝑓

𝜇𝑛−𝜆𝑓
≤ 𝐿𝑛

𝑟𝑒𝑠, ∀𝑓 ∈ ℱ, ∀𝑛 ∈ 𝒩  (11) 

0 ≤ 𝑏𝑘 ≤
𝐵

|𝐾|
, ∀𝑘  (12) 

0 ≤ 𝑝𝑛
𝑘 ≤ 𝑃𝑛

𝑟𝑒𝑠,∀𝑛 ∈ 𝒩, ∀𝑘  (13) 

0 ≤ 𝑑𝑓 ≤ 𝐷𝑛
𝑟𝑒𝑠, ∀𝑓 ∈ ℱ, ∀𝑛 ∈ 𝒩  (14) 

𝑇𝐺(𝜏 − 1) ≤ 𝑡𝑛,𝑖,𝑓
𝑎𝑟𝑟 ≤ 𝑇𝐺(𝜏),  ∀𝑓 ∈ ℱ, ∀𝑛, 𝑖 ∈ 𝒩  (15) 

𝑇𝐺(𝜏) ≤ 𝑡𝑖,𝑓
𝑠𝑒𝑟, ∀𝑓 ∈ ℱ, ∀𝑖 ∈ 𝒩  (16) 

0 ≤ 𝐶𝑖 ≤ 𝐶𝑖
𝑟𝑒𝑠, ∀𝑖 ∈ 𝒩  (17) 

0 ≤ 𝐷𝑛,𝑖,𝑓
𝑡𝑜𝑡𝑎𝑙 ≤ 𝜏𝑓, ∀𝑓 ∈ ℱ, ∀𝑛, 𝑖 ∈ 𝒩  (18) 

Constraint (9) indicates that the computation task can be offloaded to only one edge 

server. Constraint (10) describes the service intensity of the physical node for task 
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processing in unit time and ensures that it has a steady-state solution. Constraint (11) re-

stricts the queue length on a device 𝑛 to not exceed the upper limit of queue resources. 

Constraint (12) ensures that the allocated bandwidth is non-negative and cannot exceed 

the bandwidth utilization limit of the network, assuming that there are |𝐾| subchannels 

over the whole bandwidth B. Constraints (13) and (14) guarantee that the transmit power 

and computation data size are non-negative and no more than the limits of their genera-

tion nodes. Constraints (15) and (16) describe the time limit for a task to reach the edge 

server, which must arrive before the next update to be processed in this round. Constraint 

(17) guarantees that the computation capability of the edge server is non-negative and 

cannot exceed the upper bound. Constraint (18) guarantees each task must be processed 

within its maximum delay bound. 

4. DRL-Driven Offloading Scheme Based on DT 

According to the analysis of problem (8), the computation offloading problem is a 

joint optimization problem, which requires strict assumptions and constraints. The per-

formance of traditional optimization approaches depends heavily on the selection of 

thresholds, which is a challenging task for multi-constraint problems. Because of its pow-

erful intelligent decision-making ability, DRL has been widely used in the field of user 

association and environment interaction in recent years. Mathematically, we would nor-

malize such an optimization problem as a Markov decision process (MDP). The DRL al-

gorithm is used to find the solution effectively. In order to improve the flexibility of the 

system and solve the delay minimization problem, we propose a DT-enabled DDPG algo-

rithm to find the optimal solution. The trained network model can be used for optimiza-

tion and can handle dynamic system states. 

4.1. Digital Twin Simulated MDP 

In reinforcement learning, the DRL agent learns the current state from the environ-

ment and takes actions that lead the system to the next state. The environment gives the 

agent a reward based on the action. In order to solve the problem (8), the system first 

establishes an MDP, i.e. 𝑀𝐷𝑃 = 〈𝒮, 𝒜, 𝒫, ℛ, 𝛾〉, here 𝛾 ∈ [0,1] is the discount factor. From 

Figure 3, the current state 𝑠𝑡 is constructed by the digital twin and output to the DRL 

agent. 

The current state 𝑠𝑡 ∈ 𝒮 is expressed as 

𝑠𝑡 = {∑ 𝐷𝑇𝑛(𝑡)
|𝑁𝐷𝑇|

𝑛=1 , 𝐺𝐷𝑇(𝑡), 𝐵}  (19) 

In (19), 𝐷𝑇𝑛(𝑡)  represents the DT model of the corresponding physical device. 

𝐺𝐷𝑇(𝑡) represents the current state of the network, including the available resources of 

the nodes and links. 𝐵 is the wireless channel bandwidth, which is a constant. 

The action space describes the DRL agent’s strategy for resource allocation. We define 

the action space as 𝑎𝑡 = 〈𝑎𝑡
𝑜𝑓𝑓

, 𝑎𝑡
𝑟𝑠𝑟𝑐〉 . In the tuple, 𝑎𝑡

𝑜𝑓𝑓
= {𝑎𝑖,𝑓

𝑜𝑓𝑓(𝑡) ∈ [0,1]|𝑖 ∈ 𝒩, 𝑓 ∈ ℱ} 

denotes whether task 𝑓 has been offloaded at node 𝑖. 𝑎𝑡
𝑟𝑠𝑟𝑐 = {𝑐(𝑡), 𝑝(𝑡), 𝑏(𝑡)} indicates 

the resource utilization in the network, where 𝑐𝑖(𝑡) ∈ 𝑐(𝑡) represents the computation re-

sources of edge servers, 𝑝𝑛(𝑡) ∈ 𝑝(𝑡) represents the transmit power distribution of the 

node at the current time, and 𝑏𝑘(𝑡) ∈ 𝑏(𝑡) represents the bandwidth allocated to the cur-

rent subchannel. 

Through DT, an immediate reward 𝑟𝑡 is returned, and the system is transferred to a 

new state 𝑠𝑡+1 with state transition matrix 𝒫. The goal of the DRL agent is to find an 

optimal policy that can maximize the long-term cumulative reward ℛ. Our goal is to min-

imize the total end-to-end delay. Therefore, the immediate reward function is defined as 

𝑟𝑡 = − ∑ 𝐷𝑛,𝑖,𝑓
𝑡𝑜𝑡𝑎𝑙

𝑛,𝑖∈𝒩,𝑓∈ℱ   (20) 
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The reward described in (20) is the delay criteria; the smaller the processing delay, 

the higher the reward value. If the service delay of a task exceeds its maximum delay 

bound, the task will be discarded. In this case, we set the punish reward 𝐷𝑛,𝑖,𝑓
𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑓. 

 

Figure 3. Structure of the DDPG agent. 

4.2. Solution Based on DDPG 

In this section, the DT-enabled network is considered as a DRL agent to resolve tasks 

and make decisions. At each time step t, the agent is given a set of states and learns the 

policy that allows the agent to maximize its rewards in this environment. After executing 

the action, the agent obtains feedback from the environment and accesses the value of the 

policy to optimize the parameters of the neural network. The commonly used DDPG al-

gorithm is an actor–critic algorithm that supports continuous action spaces. It uses two 

networks to generate actions and evaluate the current policy. The structure of the DRL 

agent is shown in Figure 3. Both the actor and the critic networks contain an original net-

work and a target network. 

Let us start with the actor network. At time step t, the agent executes 𝑎𝑡 in the DT 

virtual environment and then obtains the next state 𝑠𝑡+1 and immediate reward 𝑟𝑡. Exist-

ing known tuples (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡)  are stored in the experience replay buffer for further 

training. When the experience buffer overflows, DDPG constructs a mini-batch by ran-

domly selecting M samples in the buffer. Let (𝑠𝑚 , 𝑎𝑚 , 𝑠𝑚+1, 𝑟𝑚) be the 𝑚 sample in the 
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mini-batch. At the same time, the actor takes as input 𝑠𝑚 and outputs a deterministic ac-

tion, and the network that produces this action is defined as 𝑎𝑚 = 𝜋𝜇(𝑠𝑚). Here, 𝜋 de-

notes the deterministic policy and 𝜇 represents the parameters of the Original Actor net-

work. When this action is input to the Critic network, it can obtain the maximum value 

𝑄𝜃(𝑠𝑚 , 𝑎𝑚). The ideal output of the network is an accurate evaluation of the policy, so that 

the Actor network can adjust the policy accordingly and discard the actions with poor 𝑄 

value feedback. The Actor network is designed to maximize the output 𝑄 value of the 

Critic network, so it is updated based on gradient boosting. The loss function is given a 

minus sign to minimize the error. 

𝐿(μ) = 𝔼[−𝑄𝜃(𝑠𝑚, 𝜋𝜇(𝑠𝑚))]  (21) 

The gradient expression of 𝑄 with 𝜇 can be obtained by the chain derivation rule. 

∇𝜇𝐽(μ) =
1

𝑀
∑ (∇𝑎𝑚

𝑄𝜃(𝑠𝑚, 𝑎𝑚)𝑀
𝑚=1 ∇𝜇𝜋𝜇(𝑠𝑚))  (22) 

Moreover, it is the Target Actor network that updates the value network Critic, which 

has the same structure as the Original Actor network except that its parameter is 𝜇′. Both 

Actor networks output actions, which soft update the parameters of the Target Actor net-

work. 

μ′ ← 𝜌μ + (1 − 𝜌)μ′  (23) 

Here 𝜌 is a small step factor that controls the updating speed. 

Now consider the Critic network; its role is to fit the value function 𝑄𝜃(𝑠𝑚 , 𝑎𝑚). Sim-

ilarly, the Critic network has an original network and a target network with parameters 

𝜃  and 𝜃′ , respectively. The input sides of the two Critic networks are from different 

sources, and both output sides are the 𝑄 value of the current state. The input of the Orig-

inal Critic network is the action output from the current Original Actor network. There 

are two Target Critic network inputs, the observed value of the current state and the action 

output from the Target Actor network. 

The optimal value of the state–action pair is obtained according to Bellman equation: 

𝑄∗(𝑠𝑚, 𝑎𝑚) = 𝔼(𝑟(𝑠𝑚, 𝑎𝑚) + 𝛾𝑄∗(𝑠𝑚+1, 𝑎𝑚+1))  (24) 

where 𝑄∗ denotes the optimal value. In DDPG, we directly approximate 𝑄∗ with a neu-

ral network 𝑄𝜃  with parameter 𝜃. Through training, the neural network can output an 

accurate estimate of 𝑄𝜃  for a given state–action pair. Then, we build a loss function meas-

ured by mean squared error through temporal difference (TD) learning, which can be used 

to measure the estimated deviation of 𝑄𝜃(𝑠𝑚 , 𝑎𝑚) to the Bellman equation. 

𝐿(𝜃) = 𝔼[(𝑟(𝑠𝑚, 𝑎𝑚) + 𝛾𝑄∗(𝑠𝑚+1, 𝑎𝑚+1) − 𝑄𝜃(𝑠𝑚, 𝑎𝑚))2]  (25) 

Next, we obtain the gradient for the loss function 

∇𝜃𝐽(𝜃) = 𝔼[2(𝑟(𝑠𝑚, 𝑎𝑚) + 𝛾𝑄∗(𝑠𝑚+1, 𝑎𝑚+1) − 𝑄𝜃(𝑠𝑚, 𝑎𝑚))∇𝑄𝜃(𝑠𝑚, 𝑎𝑚)]  (26) 

With the gradient, we can use gradient descent to solve the above optimization prob-

lem. The TD target 𝑟(𝑠𝑚 , 𝑎𝑚) + 𝛾𝑄∗(𝑠𝑚+1, 𝑎𝑚+1) changes after each network parameter 

update, which is not conducive to the stability of training. Therefore, it is common to use 

two sets of networks: an original network (parameter 𝜃) and a target network (parameter 

𝜃′) to estimate 𝑄𝜃(𝑠𝑚 , 𝑎𝑚) and 𝑄𝜃′(𝑠𝑚+1, 𝑎𝑚+1), respectively. That is, the parameters of 

the target network are not updated immediately with each update but are synchronized 

with the original network parameters after a certain interval. 

∇𝜃𝐽(𝜃) =
2

𝑀
∑ [𝑟(𝑠𝑚, 𝑎𝑚) + 𝛾𝑄𝜃′(𝑠𝑚+1, 𝑎𝑚+1) − 𝑄𝜃(𝑠𝑚, 𝑎𝑚)]𝑀

𝑚=1 ∇𝑄𝜃(𝑠𝑚, 𝑎𝑚)  (27) 

Soft updates to the parameters of the Target Critic network are given by 

𝜃′ ← 𝜌𝜃 + (1 − 𝜌)𝜃′  (28) 

The workflow of the proposed algorithm is presented in Algorithm 1. 
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Algorithm 1: DRL-driven computation offloading algorithm with DT-enabled architec-

ture. 

Input: The original Actor parameter 𝜇. The target Actor parameter 𝜇′. The original 

Critic parameter 𝜃. The target Critic parameter 𝜃′. Discount factor 𝛾. Soft update step 

factor 𝜌. Mini-batch size M. 

Output: Computation offloading scheme and network resource allocation. 

1.  Initialize Actor networks and Critic networks. 

2.  for 𝑒𝑝𝑖 = 1 to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐸  do 

3.     Digital twin observes its 𝐷𝑇𝑛. 

4.     Normalize the state 𝒮 and receive the initial state 𝑠1. 

5.     for 𝑠𝑡𝑒𝑝 = 1 to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑇  do 

6.        Choose and execute action 𝑎𝑡 and map it onto 𝐷𝑇𝑛. 

7.        Calculate reward 𝑟𝑡 and receive next station 𝑠𝑡+1. 

8.        if the experience replay buffer is not full then 

9.           Store transition (𝑎𝑡 , 𝑠𝑡 , 𝑠𝑡+1, 𝑟𝑡) in the buffer. 

10.       else 

11.          Randomly replace a tuple in the buffer. 

12.          Sample a minibatch of M transition (𝑎𝑚, 𝑠𝑚 , 𝑠𝑚+1, 𝑟𝑚). 

13.          for m=1 to M do 

14.             Calculate the target value based on  

                𝑄∗(𝑠𝑚 , 𝑎𝑚) = 𝔼(𝑟(𝑠𝑚 , 𝑎𝑚) + 𝛾𝑄∗(𝑠𝑚+1, 𝑎𝑚+1)). 

15.             Update the Original Critic network by  

                𝐿(𝜃) = 𝔼[(𝑟(𝑠𝑚, 𝑎𝑚) + 𝛾𝑄∗(𝑠𝑚+1, 𝑎𝑚+1) − 𝑄𝜃(𝑠𝑚 , 𝑎𝑚))2]. 

16.             Update the Original Actor network by 

                𝐿(𝜇) =
1

𝑀
∑ (∇𝑎𝑚

𝑄𝜃(𝑠𝑚 , 𝑎𝑚)𝑀
𝑚=1 ∇𝜇𝜋𝜇(𝑠𝑚)). 

17.          end for 

18.       end if 

19.       Soft update the Target Actor network by 

          𝜇′ ← 𝜌𝜇 + (1 − 𝜌)𝜇′. 

20.       Soft update the Target Critic network by 

          𝜃′ ← 𝜌𝜃 + (1 − 𝜌)𝜃′. 

21.    end for 

22. end for 

5. Experiments and Discussion 

In this section, we carry out extensive experiments to simulate the proposed DT-en-

abled DDPG algorithm. These experiments are used to evaluate the learning process and 

network performance of the proposed computation offloading scheme in a 6G IIoT sce-

nario. 

We use Python 3.8 and TensorFlow 2.4 to evaluate our proposed algorithm. We con-

sider a network with a maximum of 12 edge servers. The physical devices are connected 

to the edge servers through access points and the number of IIoT devices is between 40 

and 50. The process by which IIoT devices generate computing tasks follows a Poisson 

distribution. The arrival rate of tasks on each access point is between 1 and 5 per second. 

We consider Rayleigh fading channels. Three fully connected hidden layers with [256 256 

512] neurons are deployed for DDPG, and its output layer is activated by the tanh func-

tion. The batch size is 32 and the total training episode is 2000. All the experimental results 

have been performed by extracting 100 data points on a PC with 2.81 GHz CPUs, 8.00 GB 

RAM, and Windows 10 OS. The key parameters employed in the simulations are summa-

rized in Table 3, unless specified. 
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Table 3. Key parameters in experiments. 

Parameters Value 

Maximum number of edge servers 12 

Number of physical devices 40~50 

CPU cycle frequency of IIoT (0, 1] GHz 

CPU cycle frequency of edge server (1, 2] GHz 

Task computation requirement [100, 200] M 

Bandwidth 20 MHz 

Gaussian white noise power 10−11 mW 

Batch size 32 

Episodes 2000 

Sample rate 0.1 

We first tested the learning relationships of the DDPG algorithm with different pa-

rameter settings to get the best rewards. Figure 4 describes the influence of the proposed 

algorithm on the convergence performance at different learning rates. The proposed algo-

rithm achieves poor performance after convergence when the learning rate is 0.01. The 

reason is that the greater learning rate will cause both the actor network and the critic 

network to adopt large updating steps. The algorithm converges faster and can obtain 

better cumulative rewards when the learning rate is 0.001. When the learning rate is very 

small, e.g., 0.0001 and 0.00001, the algorithm produces large fluctuations in the conver-

gence process. The reason for this is that the lower learning rate makes the network update 

more slowly and therefore requires more training steps to obtain better results. In subse-

quent experiments, we set the learning rate to 0.001. 

  

(a) (b) 

Figure 4. System rewards under different learning rates: (a) 𝐶𝑛 = 0.5 GHz,  𝑝𝑛
𝑘 = 0.1 W ; (b) 𝐶𝑛 =

1 GHz, 𝑝𝑛
𝑘 = 0.1 W. 

Next, we evaluate the effect of the discount factor on the system rewards. Figure 5 

describes the influence of different discount factors on the convergence performance of 

the proposed algorithm. The discount factor is used to adjust the weight of the effect of 

long-term and short-term rewards on the system. The larger the 𝛾 value, the more the 

agent considers long-term training factors, and the higher the training difficulty. The 

smaller the 𝛾 value, the more the agent focuses on short-term benefits, and the lower the 

training difficulty. From the figure, we can see that the trained rewards value has the best 

performance when the discount factor is 0.01 (Figure 5a) and 0.1 (Figure 5b), respectively. 

The reason is that the environment of different periods is quite different, so the generali-

zation ability of different periods is poor. The discount factor is not a universal hyperpa-

rameter, and its optimal value may be affected by many factors such as task, environment, 
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and algorithm. In different scenarios, the discount factor needs to be adjusted and opti-

mized to maximize the performance of the algorithm. In the following experiment, our 

communication scenario is set as a discount factor of 0.01. 

  

(a) (b) 

Figure 5. System rewards under different discount factors: (a) 𝐶𝑛 = 0.6 GHz, 𝑝𝑛
𝑘 = 0.1 W; (b) 𝐶𝑛 =

0.6 GHz, 𝑝𝑛
𝑘 = 0.2 W. 

For performance comparison, we enumerate two benchmark schemes: (1) the local 

processing scheme and (2) the nearest edge server selection scheme. 

(1) Local processing scheme: all computing tasks are performed by local devices, and DT 

is not enabled. The simulation scenario is a normal 6G IIoT network. 

(2) Nearest edge server selection scheme: in a DT-enabled network architecture, the 

nearest edge server is selected to offload the computation tasks.  

Figure 6 depicts the end-to-end delays under different offloading strategies. The pro-

posed DT-enabled DDPG algorithm is compared with two benchmark algorithms. From 

the figure, we can see that in all three scenarios, the end-to-end delays lengthen as the 

amount of task computation requirement increases. When the network throughput 

reaches equilibrium, the end-to-end delays stay at their maximum values, which are 

175.51 s, 108.23 s, and 79.82 s, respectively. This is because as the amount of task compu-

tation requirement increases, the system needs more time to process the data. When the 

task computation requirement is a constant, the end-to-end delay of the proposed DT-

enabled DDPG algorithm is the smallest, followed by the DT-enabled nearest selection, 

and the end-to-end delay of the local processing is the longest. This is because the local 

processing capability is limited, and although the transmission delay associated with of-

floading tasks is avoided, the processing delay is the longest. The factors to consider in 

DT-enabled nearest selection are relatively simple, which may cause an edge server to 

become too busy and increase its processing delay. 
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Figure 6. End-to-end delays under different task computation requirements. 

Figure 7 illustrates the variation of end-to-end delay with the change in the number 

of edges servers in different scenarios. Since this scenario requires the participation of the 

edge server, we compare the variation of end-to-end delays when the transmission powers 

are different. As can be seen from the figure, when the transmission power is larger, the 

end-to-end delay will be reduced, because the transmission delay is reduced. The gap be-

tween the two schemes increases as the number of edge servers increases, with a maxi-

mum gap of about 33.52 s. Similarly, when the transmission power is constant, the delay 

of DT-enabled DDPG is smaller than that of the DT-enabled nearest selection. For exam-

ple, when the transmission power is 0.1, the maximum difference between the two 

schemes can reach 36.25 s. As the number of edge servers increases, it brings more system 

processing capability, so the end-to-end delay decreases. 

 

Figure 7. End-to-end delays under different numbers of edge servers. 

Figure 8 depicts the variation of end-to-end delay with the change of the edge server 

CPU cycle frequency. Since the changes in the processing capability of the edge servers 

also have no impact on the local processing, we set the scenarios to be the same as in Figure 

7. As can be seen from the figure, as the CPU cycle frequency increases, the end-to-end 

delay decreases. The value is reduced from a maximum of 98.01 s (0.1 W) to a minimum 

of 49.98 s (0.2 W). When the transmission power remains the same, the difference between 

the two schemes is about 20 s to 30 s. This is due to the increased processing capability of 

edge servers, which reduces the processing delay in the total end-to-end delay. 
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Figure 8. End-to-end delays under different CPU cycle frequencies. 

Figure 9 shows the influence of different offloading strategies on the task success rate. 

It can be seen from the figure that the task success rate decreases as the amount of data 

generated for the task increases. The increased amount of data means that since more net-

work resources are needed to process it, some tasks are discarded because they exceed the 

maximum delay bound. This can be improved by increasing the processing capability of 

the CPU (both local and edge). In the case of the same amount of task computation re-

quirement data, local processing has the longest end-to-end delay, so it has the lowest 

success rate, which is from 86.43% to 57.03%. Algorithm DT-enabled nearest selection has 

an intermediate success rate, which is from 92.47% to 63.87%. Algorithm DT-enabled 

DDPG has the highest success rate due to the comprehensive consideration of various 

factors, which is from 98.03% to 95.01%. 

 

Figure 9. Success rates under different offloading strategies. 

6. Conclusions 

In this article, we propose a computational offloading strategy in 6G IIoT networks 

with DT-enabled network architecture by considering end-to-end delay as an optimiza-

tion objective. This strategy provides a real-time and effective method for processing het-

erogeneous task requests in 6G networks. The main innovations include the following 

two. First, the mobile IIoT device finds the optimal offload edge server in the network 

system enabled by DT. Second, we design a DRL-based offloading system that employs 

the DDPG algorithm to train the offloading strategy and minimize the end-to-end delay 

of the task by jointly solving the optimization combination problem. Numerical results 

show that compared with the benchmark schemes, the proposed algorithm has achieved 

significant improvement in both task success rate and end-to-end delay. 



Appl. Sci. 2024, 14, 1035 18 of 19 
 

As a future research direction, we will consider the load balancing problem on edge 

servers and the collaboration among edge servers. We will consider migrating the tasks 

on computationally heavy servers partially or entirely to other servers for processing. 

How to select the right server for task migration will be a challenging research direction. 
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