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Abstract: In response to the difficulties and poor timeliness in detecting feeding metallic foreign
objects during high-yield continuous crushing operations in coal mines, this paper proposes a
new method for detecting metallic foreign objects, combining pulsed eddy current testing with the
Truncated Region Eigenfunction Expansion (TREE) method. This method is suitable for the harsh
working conditions in coal mine crushing stations, which include high dust, strong vibration, strong
electromagnetic interference, and low temperatures in winter. A model of the eddy current field
of feeding metallic foreign objects in the truncated region is established using a coaxial excitation
and receiving coil with a Hall sensor. The full-cycle time-domain analytical solution for the induced
voltage and magnetic induction intensity of the reflective field under practical square wave signals
is obtained. Simulation and experimental results show that the effective time range, peak value,
and time to peak of the received voltage and magnetic induction signals can be used to classify
and identify the size, thickness, conductivity, and magnetic permeability of feeding metallic foreign
objects. Experimental results meet the actual needs for removing feeding metallic foreign objects
in coal mine sites. This provides core technical support for the establishment of a predictive fault
diagnosis system for crushing equipment.

Keywords: crusher; feeding materials identification; predictive fault diagnosis; pulsed eddy current
testing; Truncated Region Eigenfunction Expansion (TREE) method

1. Introduction

Coal, as the most fundamental energy source for industrial production in China,
consistently accounts for more than 65% of the total primary energy production. The
proportion of open-pit coal mines in the total coal mine production capacity has increased
from 2.7% in 1980 to the current 23%. The crushing station, as the core equipment of the
semi-continuous process system in open-pit coal mining, is critical, as any failure in this
equipment can lead to prolonged idle or downtime in other parts of the system. The early
warning of feeding metallic foreign objects in crushers is becoming increasingly important
for ensuring the safety and continuous production of coal mines.

The feeding material composition at the crushing station of open-pit coal mines is the
most complex, with the largest crushing particle size and the highest difficulty in sensor
placement, playing a key role in linking the various stages of the entire semi-continuous
production process. The falling of large metallic foreign objects onto the crusher could
cause cracks or even fractures at the tips and roots of the crusher’s teeth. In particular, large
metallic objects exceeding the crusher’s discharge particle size could cause the motor to
stop and overheat, leading to damage and blocking of the material feeding path between
the crusher teeth. In severe cases, a return-to-factory overhaul is required, which is time-
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consuming and costly. Therefore, the classification and identification of feeding metallic
foreign objects in crushers is crucial.

Currently, there is no systematic research on the classification and identification of
feeding metallic foreign objects in crushers. Bi et al. [1,2] classified and identified feeding
coal, iron objects, and wood by collecting the sound and vibration signals of the crusher.
However, this detection method has poor timeliness and cannot quantitatively classify and
identify the characteristic parameters of feeding metallic foreign objects. Therefore, there is
an urgent need to address this issue, and a predictive fault diagnosis method for detecting
feeding metallic foreign objects in crushers needs to be proposed.

In large coal mines with an annual production capacity of 35 million tons, the material
layer thickness of the plate feeder can reach 0.5 m, and common metallic foreign objects
include electric shovel bucket teeth, road grader blades, etc. The high production capacity
and continuous operations in coal mines, along with the harsh detection environment
under complex working conditions, limit the use of most sensors, such as ultrasonic testing
(UT), image recognition sensors, and others. Therefore, this paper proposes a new method
for the quantitative detection of feeding metallic foreign objects, combining pulsed eddy
current testing and the truncated region eigenfunction function expansion method, tailored
to the operating conditions.

Pulsed Eddy Current (PEC) Testing technology is characterized by low cost, fast
detection speed, and high sensitivity. With its rich spectral components, it enables non-
contact, all-weather detection in harsh environments [3–6]. Currently, many scholars at
home and abroad have conducted extensive research on eddy current forward problems
and feature classification recognition. There are two methods for acquiring time-domain
PEC signals: Fourier transform [7,8] and Laplace transform [9,10]. Theodoulidis and
Kriezis [11] used Dirichlet boundary conditions to represent the integral form of the
analytical solution in series form. They optimized and extended the Dodd and Deeds
model [12]. They innovatively proposed the Truncated Region Eigenfunction Expansion
(TREE) method. Li et al. [13,14] employed the Expanded Truncated Region Eigenfunction
Expansion (ETREE) method to establish a PEC analytical model for the magnetic field.
Tian and Sophian [15] proposed a method using normalization and two reference signals
to reduce liftoff problems, applicable for measuring the thickness of metals with various
coatings. Skarlatos et al. [16] calculated the transient response of the induced coil above
an infinite conductive plate in the time domain by combining a semi-analytical modal
expansion method with Euler integration scheme. Theodoulidis et al. [17] proposed a
new method called the Sturm–Liouville Global Function (SLGF) for calculating complex
eigenvalues in eddy current problems, which can obtain results in a very short time. Huang
et al. [18] proposed a new Finite Region Eigenfunction Expansion (FREE) method, which
can achieve planar dimension measurement of metallic plates by utilizing peak frequency
features.

Wen et al. [19] used the lift-off point of intersection (LOI) in the pulsed eddy current
response signal of ferromagnetic test pieces to detect their conductivity, magnetic perme-
ability, and thickness. Xue et al. [20] obtained the log–log method (LLM) by taking the
logarithm of power fitting equation, where the linearity and slope can be used to detect
metal plates with different conductivities. Ma et al. [21] proposed a high conductivity
resolution alloy classification method based on single-frequency eddy current (EC) sensing
technology. Qian et al. [22] proposed a Pulse Eddy Current Testing (PECT) method that
combines multidimensional features and classification algorithms to identify bearing steel,
rebar steel types, and heating defects. Cao et al. [23] innovatively combined Eddy Current
Testing (ECT) with deep learning, utilizing the nonlinear fitting ability of neural networks
to distinguish between five types of metal materials. Huang et al. [24] introduced the con-
ductivity point of intersection (CPI) feature for noncoaxial T-R sensors in PEC, where the
magnitude of the CPI is primarily related to the sensor parameters and sample thickness,
and the thickness of the sample and the lift-off of sensor were precisely inverted using the
improved Newton–Raphson method.
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The mining truck directly dumps the raw coal material into the ore receiving hopper.
A large amount of raw coal material is transported into the crusher through the plate feeder.
Due to the vibration of the plate feeder and large density of raw coal material, metallic
foreign objects tend to sink to the bottom of the material during transportation. Therefore,
in this paper, a rectangular-section coil and Hall sensor array are arranged beneath the
outlet of the plate feeder to conduct quantitative detection and analysis of feeding metallic
foreign objects, as shown in Figure 1. This study is focused on the SANDVIK dual-roll
screening crusher CR610/14-35 (Sandvik Rock Processing Solutions, Stockholm, Sweden),
with removable eagle-beak-shaped crusher teeth and a maximum discharge particle size of
300 mm, as shown in Figure 2.
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2—Crusher Tooth Rolls, 3—Drive Motor, 4—Hydraulic Coupling, 5—Reducer, and 6—Coupling).

To address the complex issues of material type and size of feeding metallic foreign
objects, and to improve the robustness of the detection system, a reflective double-coil
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and Hall sensor array was designed to quantitatively classify and identify the character-
istics of metallic foreign objects. A theoretical analysis model was established, internal
design parameters were optimized, an engineering prototype was fabricated, and on-site
experimental verification was conducted.

The rest of this paper is organized as follows: Section 2 presents the frequency do-
main analytical expressions for the induced voltage and magnetic induction intensity of
the metallic foreign object truncated pulsed eddy current field. Section 3 calculates the
time-domain expressions for the induced voltage and magnetic induction intensity of the
reflective field under actual square wave current signals. Section 4 discusses the results of
simulations and experiments, and compares and analyzes the simulation results with the
experimental ones. Section 5 summarizes the research work in this paper.

2. System Design and Modeling

According to the introduction in the previous section, the theoretical model for the
air layer, metallic foreign object layer, and coal layer is established based on the actual site
conditions. Figure 3a shows the side view of the truncated region eddy current field model
of the single-turn excitation coil and feeding metallic foreign objects.
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Figure 3. Side view of the truncated region of (a) the single-turn coil, and (b) the rectangular
cross-section coaxial excitation and receiving coils with Hall sensors.

First, a cylindrical coordinate system or φx is established, dividing the field into four
regions: I, II, 1, and 2. These regions represent the area where the single-turn coil is far
from the detection target along the x-axis, the area where the single-turn coil is close to the
detection target along the x-axis, the metallic foreign object region, and the feeding coal
layer region, respectively. Regions I and II can be combined into region 0. As shown in
the diagram, the radius of the single-turn coil is r0, the distance between the coil and the
metallic foreign object layer is x0, the radius of the truncated region is h, and the thickness
of the metallic foreign object layer is d.

Next, the magnetic vector potential
→
A is taken as the object of solution. Since the

cylindrical coil with a rectangular cross-section is axially symmetric about the x-axis, the
magnetic vector potential only has an azimuthal component Aφ(r, x). Based on the Laplace
operators for scalars and vectors in cylindrical coordinates [25,26], and using Green’s
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function [27], the expression for the azimuthal component of the magnetic vector potential
can be derived from Maxwell’s equations:

∂Aφ

∂r
+

∂2 Aφ

∂x2 −
Aφ

r2 − µσ
∂Aφ

∂t
+ µIδ(r − r0)δ(x − x0) = 0 (1)

where σ is the electrical conductivity. µ = µ0µr, µ is the magnetic permeability, with µ0 being
the permeability of free space and µr being the relative magnetic permeability, and I is the
amplitude of the excitation current. Then, taking t as the independent variable, the Fourier
transform of the azimuthal component of the magnetic vector potential is performed to
convert the time domain to the frequency domain, denoted as:

Ã =
∫ +∞

−∞
Aφ(t)e−jωtdt (2)

Taking r as the independent variable, the Hankel transform is performed on Ã(r, x)
over the interval [0, h], denoted as:

ÃH(λi, x) =
∫ h

0
Ã(r, x)rJ1(λir)dr (3)

where λi is the i-th positive root of J1(λih)= 0. Using integration by parts and the general
solution of the first-order Bessel function, the expression becomes:

−λ2
i ÃH(λi, x) +

∂2 ÃH(λi, x)
∂x2 − s2 ÃH(λi, x) + µ Ĩr0J1(λir0)δ(x − x0) = 0 (4)

where in region 0, s2 = 0, and in regions 1 and 2, s2 = jωµσ. According to the general solu-
tion of ordinary differential equations, and satisfying the conditions that C(λi) approaches
0 as x → +∞ and D(λi) approaches 0 as x → −∞ , we obtain:

ÃH(λi, x) =
∞

∑
i=1

[
C(λi)eγkx + D(λi)e−γkx] (5)

where γk =
√

λ2
i + jωµ0µrkσk (k = 0, 1, 2). First, consider only the single-turn excitation

coil in region 0, ignoring the effects of the receiving coil, Hall sensor, and metallic foreign
objects. The boundary conditions at x = x0 for regions I and II can be obtained as:

ÃI
H(λi, x0) = ÃII

H(λi, x0) (6)

∂ÃI
H

∂x

∣∣∣∣∣
x=x0

=
∂ÃII

H
∂x

∣∣∣∣∣
x=x0

− µ0 Ĩr0J1(λir0) (7)

Solving the equation, the excitation field coefficient is obtained as:

CS = CII =
µ0 Ĩ
2λi

r0 J1(λir0)e−λix0 (8)

Next, merging regions I and II into region 0, and adding the effect of the metallic
medium, the boundary conditions at the interface x = xk (k = 1, 2) between regions k − 1
and k can be obtained as:

ÃHk−1(λi, xk) = ÃHk(λi, xk) (9)

1
µrk−1

∂ÃHk−1
∂x

∣∣∣∣∣
x=xk

=
1

µrk

∂ÃHk
∂x

∣∣∣∣∣
x=xk

(10)
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Solving the equation, the reflection field coefficient is obtained as:

Dre f = D0 =
µ0 Ĩ
2λi

r0R̃J1(λir0)e−λix0 (11)

where R̃ = e2γ1d(γ1µr2+γ2µr1)(λiµr1−γ1)+(γ1µr2−γ2µr1)(λiµr1+γ1)

e2γ1d(γ1µr2+γ2µr1)(λiµr1+γ1)+(γ1µr2−γ2µr1)(λiµr1−γ1)
. Thus, we obtain ÃHS(λi, x) =

∞
∑

i=1
CSeλix, ÃHre f (λi, x) =

∞
∑

i=1
Dre f e−λix. Taking λi as the independent variable, the inverse

Hankel transform is performed on ÃHS(λi, x) and ÃHre f (λi, x) over the interval [0, h],
yielding:

ÃS(r, x, r0, x0) =
∞

∑
i=1

µ0 Ĩ J1(λir)
λih2 J2

0 (λih)
r0 J1(λir0)eλi(x−x0) (12)

Ãre f (r, x, r0, x0) =
∞

∑
i=1

µ0 Ĩ J1(λir)
λih2 J2

0 (λih)
r0R̃J1(λir0)e−λi(x+x0) (13)

Next, by considering the rectangular cross-section coaxial excitation and receiving
coils with Hall sensors, we establish the truncated region eddy current field model as
shown in Figure 3b. The current Ĩ in the single-turn excitation coil is replaced with the
current density in the excitation coil’s rectangular cross-section, denoted as ĩ0, satisfying
the condition ĩ0 = N1 Ĩ/(r2d − r1d)(x2d − x1d).

Since the radial dimension of the Hall sensor is small, its magnetic induction intensity
in the z-axis direction can be neglected, and only its magnetic induction intensity in the
x-axis direction is considered. The formula for the magnetic induction intensity of the
Hall sensor and the induced voltage formula for the receiving coil can be derived and are
denoted as:

B̃ = B̃air + B̃re f =
∫ x2d

x1d

∫ r2d

r1d

1
r

∂
{

r
[

ÃS(r, x, r0, x0) + Ãre f (r, x, r0, x0)
]}

∂r
dr0dx0 (14)

Ũ = Ũair + Ũre f =
∫ x2p

x1p

∫ r2p

r1p

jω2πrN2(
r2p − r1p

)(
x2p − x1p

){∫ x2d

x1d

∫ r2d

r1d

[
ÃS(r, x, r0, x0) + Ãre f (r, x, r0, x0)

]
dr0dx0

}
drdx (15)

Substituting Equations (12) and (13) into Equations (14) and (15), and using the
recurrence relation of the Bessel function, along with the definition of the double integral,
and replacing the Fourier variable jω with the Laplace variable p, we obtain:

B(p) =
∞

∑
i=1

µ0 I(p)Y(λi)

h2 J2
0 (λih)

[
eλixh + R(p)e−λixh

]
(16)

U(p) = 2πµ0

∞

∑
i=1

pI(p)Y(λi)

λih2 J2
0 (λih)

[
YS(λi) + R(p)Yre f (λi)

]
(17)

In Equations (16) and (17),

Y(λi) =
N1
[
r2

2dχ(λir2d)− r2
1dχ(λir1d)

](
e−λix2d − e−λix1d

)
−λi(r2d − r1d)(x2d − x1d)

(18)

YS(λi) =
N2

[
r2

2pχ
(
λir2p

)
− r2

1pχ
(
λir1p

)](
eλix2p − eλix1p

)
λi
(
r2p − r1p

)(
x2p − x1p

) (19)

Yre f (λi) =
N2

[
r2

2pχ
(
λir2p

)
− r2

1pχ
(
λir1p

)](
e−λix2p − e−λix1p

)
−λi

(
r2p − r1p

)(
x2p − x1p

) (20)
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χ(λi) =
∫ 1

0
J1(λir0)r0dr0 =

π

2λi
[J1(λi)H0(λi)− J0(λi)H1(λi)] (21)

R(p) =
e2γ1

′d(γ1
′µr2 + γ2

′µr1)(λiµr1 − γ1
′) + (γ1

′µr2 − γ2
′µr1)(λiµr1 + γ1

′)

e2γ1
′d(γ1

′µr2 + γ2′µr1)(λiµr1 + γ1
′) + (γ1

′µr2 − γ2′µr1)(λiµr1 − γ1
′)

(22)

γk
′ =

√
λ2

i + pµ0µrkσk (k = 0, 1, 2). (23)

3. Time-Domain Analytical Solution of the Received Signal

Next, the signal generator applies a square wave voltage signal to the excitation coil.
We perform a time-domain analysis of the output voltage signal from the receiving coil and
the magnetic induction intensity signal generated by the actual square wave current signal.

3.1. Time-Domain Analytical Solution of the Received Voltage Signal

First, an ideal step current signal is applied to the excitation coil, denoted as:

I(p) = I
1
p

(24)

The relative magnetic permeability of coal is 1, and its electrical conductivity is close
to 0. Substituting the conditions µr1 = µr, σ1 = σ, µr2 = 1, and σ2 = 0 into Equation (22),
the reflection coefficient is obtained as:

ΓU(p) = pI(p)R(p) =
2I − 2ξ I

λiµrd (tan ξ − cot ξ)(
tan ξ + 2ξ

λiµrd

)(
cot ξ − 2ξ

λiµrd

) (25)

where ξ = −jdγk
′/2. Thus, we can obtain the relationship between the poles of the

equation and the corresponding Laplace variables, yielding:

pt,c = −
λ2

i + (2ξt,c/d)2

µ0µrσ
(26)

According to the Cauchy residue theorem [28], and using the residue calculation prop-
erty of the poles, we can obtain the inverse Laplace transform of the reflection coefficient,
denoted as:

f (t) =
1

2πi

∫ +∞

0
F(p)eptdp =

n

∑
k=1

Res
[
F(p)ept]∣∣∣∣∣

p=ptk,ck

(27)

By applying Equation (27) to Equation (25) and substituting the result into
Equation (17), we obtain:

Ure f (t) =
8π I
σd

∞

∑
i=1

Y(λi)Yre f (λi)

h2 J2
0 (λih)

[
n

∑
k=1

(
Atkeptkt + Ackepckt)] (28)

where Atk = − ξtk sin 2ξtk
2 cos2 ξtk+λiµrd , Ack =

ξck sin 2ξck
2 sin2 ξck+λiµrd

. ξtk and ξck are the k-th positive poles of

equations tan ξ = − 2ξ
λiµrd and cot ξ = 2ξ

λiµrd , respectively.
Finally, we consider the actual rectangular pulse current signal applied to the excitation

coil, i(t) = I
[(

1 − e−
t

τ0

)
ε(t) +

(
e−

t−τ
τ0 − 1

)
ε(t − τ)

]
(0 ≤ t ≤ T). Where τ is the pulse

width, and τ0 is the actual rise or fall time of the rise or fall edge. According to the
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convolution theorem, the time-domain expression for the reflected field induced voltage in
the receiving coil under actual conditions can be obtained as:

Ure f (t) = i(t) ∗ 8π I
σd

∞

∑
i=1

Y(λi)Yre f (λi)

h2 J2
0 (λih)

[
n

∑
k=1

(
Atkeptkt + Ackepckt)] (29)

3.2. Time-Domain Analytical Solution of the Received Magnetic Induction Intensity Signal
3.2.1. Full-Period Time-Domain Analytical Solution

First, we decompose Equation (22) into R0(p)+
∞
∑

m=1
Rm(p). According to the frequency

shift and scale transformation properties of the Laplace transform [29], and using the
standard Laplace inverse transform formula [30], we can obtain:

R0(t) =

√
4µ2

r λ2
i

πτt
e−

λ2
i t
τ −

2µ2
r λ2

i
τ

erfc

µr

√
λ2

i t
τ

− δ(t) (30)

Rm(t) =
λ2

i e−λ2
i t/τ

τ

[
2m

∑
j=0

Cj
2m(−2)j+2µ

j+1
r φj−1

(
µr, 2mλid,

λ2
i t
τ

)
+

2m−1

∑
j=0

Cj
2m−1(−2)j+2µ

j+3
r φj+1

(
µr, 2mλid,

λ2
i t
τ

)]
(31)

where τ = µ0µrσ, φj(a, k, t) = (4t)
j
2 eak+a2tijerfc

(
a
√

t + k
2
√

t

)
. Erf(x) and erfc(x) represent

the error function and complementary error function, respectively, and ijerfc(x) is the j-th
integral of the complementary error function.

To obtain the time-domain expression for the reflected magnetic induction intensity of
the Hall sensor under actual conditions, we first use MATLAB 2023b to perform the fast

Fourier transform (FFT) on i(t) and R0(t) +
∞
∑

m=1
Rm(t), respectively. After multiplying the

two results, we apply the inverse FFT (IFFT) to the product. Finally, the inverse transform
result is combined with the remaining part through series operations.

Bre f (t) =
∞

∑
i=1

µ0e−λixhY(λi)

h2 J2
0 (λih)

· 1
2π

∫ +∞

−∞

[
R0(ω) +

∞

∑
m=1

Rm(ω)

]
· I(ω)ejωtdω (32)

3.2.2. Time-Domain Analytical Solution for the Rising Half-Cycle

Next, we consider the analysis of the rising edge of the actual square wave current
signal applied to the excitation coil. By verifying the above method, the reflection coefficient
is obtained as:

ΓB(p) = I(p)R(p) = ΓBL0(p) + ΓBR0(p)−
∞
∑

m=1
[ΓBLm(p) + ΓBRm(p)]

=

(
I
p
− τ0 I

pτ0 + 1

)[
µrλi + γ′

µrλi − γ′ −
4µrλiγ

′

µr2λi
2 − γ′2

∞
∑

m=0

(
µrλi − γ′

µrλi + γ′ · e−γ′d
)2m

] (33)

By dividing ΓB(p) into terms ΓBL0(p) and ΓBLm(p) with I
p , and terms ΓBR0(p) and

ΓBRm(p) with τ0 I
pτ0+1 , the inverse Laplace transform is applied to each separately. For

the former, I
p is transformed into Iτ

2λi

[
1√

pτ+λ2
i −λi

− 1√
pτ+λ2

i +λi

]
. For the latter, τ0 I

pτ0+1 is

transformed into I
2

√
τ
ν

[
1√

pτ+λ2
i −

√
τν

− 1√
pτ+λ2

i +
√

τν

]
, where ν =

λ2
i

τ − 1
τ0

. At this point,

the Laplace inverse transform formula can be applied to continue the solution, denoted as:
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ϕn(a, b, k, t) =
1

2πi

∫ +∞

0

e−k
√

p

√
p(
√

p + a)n(
√

p + b)
eptdp (34)

where ϕn(a, b, k, t) = 1
(a−b)n

[
φ0(b, k, t)−

n−1
∑

j=0
(b − a)j φj(a, k, t)

]
. ΓBL0(p) and ΓBLm(p) are

obtained by using the frequency shift and scale transformation properties of the Laplace
transform [29], combined with the standard Laplace inverse transform formula [25], the
Laplace inverse transform form can be obtained as:

ΓBL0(t) = 2

√
λ2

i t
πτ

e−λ2
i t/τ −

(
1 +

2λ2
i t

τ

)
erfc

√λ2
i t
τ

+1 − ε(t) (35)

ΓBLm(t) = Ψ

(
µr, 1, 2mλid,

λ2
i t
τ

)
+

[
2m
∑

n=1
Cn

2m(−2)n+2ηn

(
µr, 2mλid,

λ2
i t
τ

)

+
2m−1

∑
n=0

Cn
2m−1(−2)n+2ηn+2

(
µr, 2mλid,

λ2
i t
τ

)] (36)

where ηn(a, k, t) = ane−t

2 [ϕn(a,−a, k, t)− φn(a, k, t)]. ΓBR0(p) and ΓBRm(p) are obtained by
using the integral formula of the complementary error function [30], combined with the
standard Laplace inverse transform formula [30], the Laplace inverse transform form can
be obtained as:

ΓBR0(t) =
2Iµr

2λ2
i

µr2λ2
i − ντ

{
e−t/τ0 [1 −

√
ντ

µrλi
erf

√
νt] −e(µr

2−1)λ2
i t/τerfc

(
µrλi

√
t
τ

)}
− Ie−t/τ0

(37)

ΓBRm(t) = Ψ

(
µr,

√
τν

λi
, 2mλid,

λ2
i t
τ

)
+

2m
∑

n=1
Cn

2m(−2)n+2Φn

(
µr,

√
τν

λi
, 2mλid,

λ2
i t
τ

)

+
2m−1

∑
n=0

Cn
2m−1(−2)n+2Φn+2

(
µr,

√
τν

λi
, 2mλid,

λ2
i t
τ

) (38)

where Ψ(a, b, k, t) = 2ae−t I
b [φ0(−b, k, t)− φ0(b, k, t)], Φn(a, b, k, t) = an+1e−t I

2b [ϕn(a,−b, k, t)
−ϕn(a, b, k, t)] . By substituting Equations (35)–(38) into Equation (16), the following
formula can be obtained. It has been verified that this equation achieves the same result as
the Section 3.2.1.

Bre f (t) =
∞

∑
i=1

µ0e−λixhY(λi)

h2 J2
0 (λih)

· ΓB(t) (39)

4. Theoretical Simulation and Experimental Verification
4.1. Theoretical Simulation

By subtracting the output signals U(t), B(t) with the metal plate from the output
signals Uair(t), Bair(t) without the metal plate, the differential signals Uref (t) and Bref (t)
can be obtained. As seen in Figures 4 and 5, the characteristics of ferromagnetic metals
are distinctly different from those of non-ferromagnetic metals. For ferromagnetic metals,
Uref (t) and Bref (t) are on the same side as U(t) and Uair(t), and B(t) and Bair(t), respectively,
whereas for non-ferromagnetic metals, they are on opposite sides. This is because under
the action of the single probe, ferromagnetic metals are magnetized in the region and cause
the output signal U(t) and B(t) to rise faster and with a higher amplitude than the signal
from the non-metal plate. On the other hand, non-ferromagnetic metals, due to the eddy
current effect, hinder the rise of the output signal U(t) and B(t), producing the opposite
result. The typical characteristics of the output signals can thus distinguish ferromagnetic
and non-ferromagnetic metals.
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4.2. Single-Probe Testing Experiment

In order to better observe the interaction between the rectangular cross-section coaxial
excitation, receiving coil, Hall sensor, and the moving metal foreign object, a single-probe
testing experimental platform is built, as shown in Figure 6. The signal generator, with
a power amplifier, outputs a high-level square wave signal with a 12 V amplitude and a
50% duty cycle. The square wave signal is applied to the excitation coil of the single probe,
and the output signals from the receiving coil and Hall sensor are sent through a signal
conditioning module to the data acquisition card. The signal conditioning module is a
second-order low-pass filter circuit, characterized by fast attenuation and strong filtering
effects. The data acquisition card used is Smacq USB-4650 (Smacq Technologies Co.,
Ltd., Beijing, China), a high-speed acquisition card that transmits data via USB. It has
8 synchronized analog input channels with a sampling rate of 500 kSa/s, a resolution of
16 bits, and an input voltage amplitude of ±10 V. It is equipped with a DAQUS 2.0 driver
and can be programmed using LabVIEW 2021 or MATLAB 2023b software. The PC and
data acquisition card are connected via USB. The system block diagram is shown below.
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The PC is connected to the controller to manipulate the three-dimensional moving plat-
form. The three-dimensional moving platform is responsible for the horizontal and vertical
positioning of the single probe and the uniform movement of the metal foreign object. The
single-probe coil is a cylindrical hollow coil precisely wound with copper wire, and the Hall
sensor is placed at the center of the single probe, as shown in Figure 7a. The Hall sensor
selected is a proportional linear Hall effect magnetic sensor with a high-speed detection
bandwidth of 20 kHz, a magnetic sensitivity of 51.5 mV/mT, and a range of ±42 mT. In
the experiment, the sensitivity of the coil and Hall sensor is affected by temperature [31].
The resistance of the copper hollow coil is proportional to temperature. As the temperature
of the Hall sensor rises from −40 ◦C to 120 ◦C, its magnetic sensitivity increases from
46 mV/mT to 56 mV/mT. Therefore, data collection should only be performed after the
temperature of the single-probe coil has stabilized. The parameters of the coil used in the
experiment are shown in Table 1.
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test samples for experiment.

Table 1. Single-probe parameters.

Coil Parameters Receiving Coil Excitation Coil

Inner radius (mm) 2.6 7.0
Outer radius (mm) 5.0 12.0

Length (mm) 3.2 7.1
Number of turns 100 745

Liftoff (mm) (same as Hall sensor) 5 5
Inductance value (mH) 0.06 9.1

τ0 (µs) - 250

The sample dimensions are determined based on the maximum discharge particle size
of the SANDVIK dual-roll screening crusher CR610/14-35, which is 300 mm. The length
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and width are 300 mm × 300 mm, with thicknesses chosen as 3 mm, 5 mm, 7 mm, 10 mm,
and 12 mm. The materials of the samples are selected from common metal foreign objects
found in coal mine crushers, such as alloy steel Mn13, 42CrMo, copper alloy beryllium
bronze, aluminum alloys 4A01, 5A05, 6061, and 7075, as shown in Figure 7b. The relative
magnetic permeability of the ferromagnetic alloy steel 42CrMo is taken as 60, while the
relative magnetic permeability of other metals is 1. The electrical conductivity of the
samples is measured using the Autosigma3000 from General Electric Company (Boston,
MA, USA), and the conductivity parameters are shown in Table 2.

Table 2. Conductivity of common metal foreign objects in coal mines.

Material Name Mn13 42CrMo Beryllium Bronze 4A01 5A05 6061 7075

Conductivity (MS/m) 3.69 6.49 12.76 18.02 20.12 23.26 25.34

Figure 8 above shows the output signal curves of the ferromagnetic alloy steel 42CrMo
at five different thicknesses, with the probe lift height set to 5 mm. Figure 9 extracts the
relationship between the key characteristic quantities and the thicknesses from Figure 8. The
results indicate that as the sample thickness increases, the peak value gradually decreases,
while the peak time gradually increases. The differential output signals Uref (t) and Bref (t)
from the receiving coil and Hall sensor exhibit the same characteristics. The two results
corroborate each other, allowing for more accurate classification and identification of
ferromagnetic metals. The simulation used a CPU E-2276M (Intel Corporation, Santa Clara,
CA, USA) and MATLAB 2023b, and the simulated data closely matched the measured
results.
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differential voltage signals; (b) magnetic induction differential signals of Hall sensor.

Figures 10 and 11 above shows the relationship between key characteristics of pulsed
eddy current differential signals and the conductivity and thickness of non-ferromagnetic
metals. The results differ from those of ferromagnetic metals. It can be seen that, for non-
ferromagnetic metals of the same thickness, as the conductivity increases, both the peak
value and peak time also increase. When the conductivity of non-ferromagnetic metals
is the same, increasing the thickness leads to higher peak values and longer peak times.
However, the effect of conductivity on these two features is more significant than the effect
of thickness, whether considering the peak value or the time to peak. This allows for more
effective extraction of the conductivity and thickness characteristics of non-ferromagnetic
metals.
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4.3. Multi-Probe Array Field Experiment

Figure 12 shows the experimental platform set up to simulate the coal mine site. The
belt width of the belt conveyor is 400 mm, and the belt running speed is the same as that at
the coal mine site, which is 0.3 m/s. Four multi-probe arrays are set one meter below the
exit of the belt conveyor. These four multi-probe arrays are evenly spaced, with a detection
range of 300 mm. Data are collected at a horizontal distance of 5 mm from the falling
metallic foreign object. The position and horizontal width of the metallic foreign object are
determined based on the range of signals received by the multi-probe array. The vertical
width of the metallic foreign object is then calculated by the time range of the effective
detection signals from the multi-probe array.
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falling metallic foreign object. The position and horizontal width of the metallic foreign 
object are determined based on the range of signals received by the multi-probe array. 
The vertical width of the metallic foreign object is then calculated by the time range of 
the effective detection signals from the multi-probe array. 

 
Figure 12. Field experiment platform with the multi-probe array. Figure 12. Field experiment platform with the multi-probe array.

A 300 × 300 × 10 mm alloy steel Mn13 metal plate was selected for the drop test
experiment. The signal generator with a power amplifier emitted the same signal as in the
single-probe test experiment. After the probe coil temperature stabilized, the experiment
was started. The data acquisition card began collecting data when the metal foreign object
was about to leave the conveyor belt.

Figure 13 shows the valid data collection interval of PEC differential signals. The
positions marked by circles in the figure represent the start and end points of the effective
receiving signal range. All four multi-probe arrays detected effective differential signals,
and it was determined that the horizontal width of the metal foreign object was 300 mm. By
averaging the four differential signals, the effective detection data for the differential signals
was from 424.4 ms to 485.4 ms. Based on the initial falling velocity of the metallic foreign
object being the same as the operating speed of the belt conveyor (0.3 m/s), the calculated
vertical width of the metallic foreign object is 290 mm. The relative error compared to the
actual vertical width of 300 mm is 3.33%, which is less than 5% and meets the field testing
requirements. Further analysis of the single-period waveform characteristics in the effective
detection interval of the differential signals Uref (t) and Bref (t) confirmed the presence of
non-ferromagnetic metal. The average peak value of the extracted signals was 45.8 mV,
1.1 mT, and the corresponding average peak times were 0.1 ms and 0.19 ms. According
to Figures 10 and 11, it was confirmed that the dropped metal was a 10 mm thick alloy
steel Mn13.
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5. Conclusions

This study developed a metal foreign object detection system for coal mine crushers. A
truncated region eddy current field model was established for the rectangular cross-section
coaxial excitation, receiving coils, and Hall sensors interacting with the feeding metal
foreign objects. The time-domain expressions for the reflected field induced voltage and
magnetic induction intensity were calculated under actual square wave current signals.

Simulation and experimental results demonstrate a close relationship between the
effective range, peak value, and peak time of the receiving voltage and magnetic induction
signals and the typical characteristics of the metal foreign objects. These characteristics
can be used to classify and identify the dimensions, thickness, electrical conductivity,
and magnetic permeability of the feeding metal foreign objects. The results of field drop
experiments reveal that the horizontal width, thickness, and material of the metal foreign
objects were detected with high accuracy. The relative error in detecting the vertical width
was less than 5%, which meets the requirements for field detection. This can enhance
the recognition rate of metal foreign objects, reduce false alarm rates, and ensure the safe,
continuous operation of coal mines.

The signal conditioning module used in this study may be insufficient to handle
the strong electromagnetic radiation environment of coal mines. Future research will
elaborate on signal preprocessing algorithms tailored to the metallic foreign object detection
environment. The research work and findings presented in this paper hold significance
for the advancement of classification and recognition methods for feeding metallic foreign
objects in crushing operations within coal mines and the development of moving metal
detection systems.
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