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Abstract: Proxy re-encryption (PRE) is a cryptographic primitive that extends public key encryption
by allowing ciphertexts to be re-encrypted from one user to another without revealing information
about the underlying plaintext. This makes it an essential privacy-enhancing technology, as only
the intended recipient is able to decrypt sensitive personal information. Previous PRE schemes
were commonly based on symmetric bilinear pairings. However, these have been found to be
slower and less secure than the more modern asymmetric pairings. To address this, we propose
two new PRE scheme variants, based on the unidirectional symmetric pairing-based scheme by
Weng et al. and adapted to utilize asymmetric pairings. We employ a known automated black-box
reduction technique to transform the base scheme to the asymmetric setting, identify its shortcomings,
and subsequently present an alternative manual transformation that fixes these flaws. The adapted
schemes retain the properties of the base scheme and are therefore CCA-secure in the adaptive
corruption model without the use of random oracles, while being faster, practical, and more secure
overall than the base scheme.

Keywords: proxy re-encryption; unidirectional; chosen-ciphertext security; asymmetric bilinear groups

1. Introduction

Proxy re-encryption (PRE), first introduced by Blaze et al. [1], is a cryptographic
primitive that extends public key encryption by allowing ciphertexts to be re-encrypted
from one user (delegator) to another (delegatee) without revealing information about the
underlying plaintext. This privacy-friendly re-encryption is performed by a semi-trusted
proxy using a re-encryption key and establishes PRE as an essential privacy-enhancing
technology, as only the intended recipient is able to decrypt sensitive personal information.

A PRE scheme can be classified according to different properties. In a unidirectional
scheme, re-encryption keys can re-encrypt ciphertexts from the delegator to the delegatee.
In a bidirectional scheme, they can also be used vice versa. A scheme can be either single-
use or multi-use. Single-use schemes do not allow re-encryption of ciphertexts that have
already been re-encrypted, while multi-use schemes have no such restriction. This paper
considers unidirectional single-use schemes.

Many different unidirectional PRE schemes have been proposed in the past. The first
unidirectional schemes were proposed by Ateniese et al. [2], but they were only secure
against chosen-plaintext attacks (CPAs). Libert and Vergnaud [3] proposed a unidirectional
scheme in the selective corruption model and proved its security against replayable chosen-
ciphertext attacks (RCCAs)—a slightly weaker variant of chosen-ciphertext attacks (CCAs).
Weng et al. [4] further extended this result and presented a scheme which they proved to be
CCA-secure in the adaptive corruption model. To the best of our knowledge, the scheme by
Weng et al. is the only PRE scheme in the literature achieving CCA security under adaptive
corruptions in the standard model. The adaptive corruption model is considered superior
to approaches that only permit selected corruptions. This is because it provides a more
realistic assessment of security, as it accounts for dynamic adversarial behavior.
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All these schemes have in common that they are based on bilinear pairings, which
can be categorized into three main types [5]. Type 1 pairings are called symmetric; Type 2
and Type 3 pairings are called asymmetric. To the best of our knowledge, all CCA-secure
unidirectional single-use PRE schemes based on pairings proposed in the literature to date
use Type 1 pairings.

However, it has been shown that Type 1 pairings exhibit a significantly poorer run-
time [6] than their asymmetric counterparts [7,8] and are generally considered inferior in
terms of security, flexibility, and efficiency, leading to the conclusion that modern asymmet-
ric pairings should be the default choice when designing schemes based on pairings [9].
In the asymmetric setting, in turn, Type 3 pairings are the preferred choice, since it has been
demonstrated that whatever is achievable in terms of functionality and security in Type 2
can also be achieved in Type 3 [10], but with better performance.

Although CCA-secure PRE schemes have been proposed that do not rely on pairings,
their complexity often introduces a higher risk of errors. Shao et al. [11] proposed the
first CCA-secure unidirectional PRE scheme without pairings under adaptive corruptions.
However, Chow et al. [12] demonstrated a flaw in the scheme proposed in [11] and pre-
sented an adapted scheme that achieves CCA security, but only under selective corruptions.
Selvi et al. [13] subsequently demonstrated that the proof in [12] was flawed and proposed
another CCA-secure PRE scheme under selective corruptions. In contrast to the previously
discussed pairing-based schemes, the security proofs of the proposed pairing-free schemes
require the use of the random oracle model instead of the standard model. Recent work
also includes quantum-safe PRE based on lattices. In this context, Dutta et al. [14] presented
novel constructions for identity-based PRE, while Susilo et al. [15] advanced the field of
attribute-based PRE. Zhou et al. [16] proposed a PRE scheme that is secure under adaptive
corruptions and supports fine-grained re-encryptions. They subsequently extended this
scheme to a multi-use scheme [17]. However, thus far, lattice-based PRE schemes have only
achieved CPA security.

Consequently, pairing-based PRE schemes exhibit a unique characteristic within
the field. Currently, they are the only PRE schemes that feature CCA security in the
standard model. However, to date, all pairing-based schemes are based on Type 1 pairings,
as opposed to Type 3 pairings. Type 1 pairing-based schemes require supersingular elliptic
curves over large characteristic fields, which are mainly relevant for academic research,
but not for practical implementations [9]. In contrast, Type 3 pairing-based schemes permit
the use of established pairing-friendly elliptic curves (e.g., BN and BLS curves [18]), which
exhibit better security margins and are practical for implementation.

1.1. Our Contribution

The goal of this paper is to address the gap in the existing literature by proposing a
practical CCA-secure PRE scheme based on Type 3 pairings. Given the unique properties
of achieving CCA security under adaptive corruptions, the Type 1 pairing-based scheme by
Weng et al. [4] is used as the base scheme. By transforming the base scheme, a CCA-secure
Type 3 pairing-based PRE scheme is obtained.

The initial evident methodology for obtaining a Type 3 pairing-based PRE scheme is
to apply a generalized scheme transformation, which was first proposed by Abe et al. [19].
This approach is pursued by applying the automated black-box reduction technique by
Akinyele et al. [20] to transform the base scheme and its security proof from the Type 1 to
the Type 3 setting. However, we identify that the scheme resulting from the transformation
exhibits flaws that render it an impractical PRE scheme, which is contrary to the goal of
our paper. To resolve these issues, we next propose a manually transformed scheme. This
scheme preserves the properties of the base scheme and the CCA security in the adaptive
corruption model without the use of random oracles. We refine the hardness assumption
for the Type 3 setting, ensuring that it is at least as hard as in the base scheme.
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1.2. Organization of This Paper

This paper begins with a review of bilinear pairings and relevant complexity assump-
tions in Section 2. Furthermore, the notion of unidirectional PRE and the security model
is reviewed. Section 3 outlines the application of the automated transformation and the
resulting scheme is analyzed. Subsequently, Section 4 presents our adapted manually trans-
formed Type 3 pairing-based PRE scheme and the necessary adjustments to the security
proof. This is followed by a performance and ciphertext size evaluation of both transformed
schemes. Finally, the paper concludes in Section 5.

2. Preliminaries

This section introduces our notation and reviews the definition of bilinear pairings.
Subsequently, the complexity assumption that is used to modify the security proof of the
base scheme for our manually transformed scheme is described and proven to be at least as
hard as the assumptions used in previous schemes. The section concludes with a review of
the definition of PRE and the security model used by Weng et al. [4].

2.1. Notation

We denote drawing an element x from a finite set S uniformly at random by x $← S.
For a string x ∈ {0, 1}n, we let [x]ℓ denote its first ℓ bits and [x]ℓ denote its last ℓ bits.

2.2. Bilinear Pairings

For cyclic groups G1, G2, and GT of large prime order p, a bilinear pairing is a function
e : G1 ×G2 → GT that maps pairs of elements in (G1,G2) to elements of the group GT .
The map e must satisfy the following properties:

• Bilinear: For all u ∈ G1, v ∈ G2, and a, b ∈ Zp, it holds that e(ua, vb) = e(u, v)ab.
• Computable: The map e is efficiently computable and so are the group operations in

G1,G2, and GT .
• Non-degenerate: There exist g1 ∈ G1 and g2 ∈ G2 such that e(g1, g2) ̸= 1.

There are two forms of pairings used in the cryptography literature [5]. In the symmet-
ric setting, it holds that G1 = G2, whereas in the asymmetric setting G1 ̸= G2. Besides the
distinction between symmetric and asymmetric pairings, three basic types can be identified
as possible pairing instantiations. Type 1 is the symmetric setting. In the asymmetric setting,
a distinction is made between Type 2, where there is an efficiently computable isomorphism
ψ : G2 → G1, and Type 3, where there are no efficiently computable isomorphisms between
the source groups G1 and G2.

In order to differentiate between the pairing types, we define, analogously to [10],
the groups G1 = ⟨g1⟩,G′2 = ⟨g′2⟩, and Ĝ2 = ⟨ĝ2⟩ of prime order p, such that there is an
isomorphism ψ : G′2 → G1 with g1 = ψ(g′2) and an isomorphism ρ : G′2 → Ĝ2 with
ĝ2 = ρ(g′2)

1
c for an arbitrary c ∈ Z∗p. Finally, we define the Type 2 pairing e2 : G1 ×G′2 →

GT and the Type 3 pairing e3 : G1× Ĝ2 → GT . The relation between e2 and e3 is established
by the following Lemma.

Lemma 1 (Chatterjee and Menezes [10] (Lemma 2)). Let g1, g′2, and ĝ2 be generators of G1,G′2,
and Ĝ2 with g1 = ψ(g′2) and ĝ2 = ρ(g′2)

1
c for some c ∈ Z∗n. Then, e2(g1, g′2) = e3(g1, ĝ2)

2c.

This notation is maintained throughout the paper in order to facilitate the differentia-
tion between elements x ∈ G1 and elements x̂ ∈ Ĝ2.

2.3. Complexity Assumptions

We base the security of our manually transformed scheme on a variant of the 3-weak
Decisional Bilinear Diffie–Hellman Inversion (3-wDBDHI) assumption, which was used by
Libert and Vergnaud [3] and subsequently by Weng et al. [4] to construct their unidirectional
PRE schemes.



Appl. Sci. 2024, 14, 11322 4 of 15

Definition 1. The 3-weak Decisional Bilinear Diffie–Hellman Inversion Type 3 assumption (3-

wDBDHI3) states that, given (g1, g
1
a
1 , ga

1, g(a2)
1 , gb

1, ĝ2, ĝ
1
a
2 , ĝa

2, ĝ(a2)
2 , ĝb

2, Q) ∈ G5
1 × Ĝ5

2 ×GT with

unknown a, b ∈ Z∗p, it is computationally infeasible to decide whether Q = e3(g1, ĝ2)
b

a2 . A
distinguisher B (t, ε) breaks the assumption if it runs in time t and∣∣∣∣∣Pr

B
 g1, g

1
a
1 , ga

1, g(a2)
1 , gb

1, ĝ2, ĝ
1
a
2 ,

ĝa
2, ĝ(a2)

2 , ĝb
2, Q = e3(g1, ĝ2)

b
a2

 = 1

∣∣∣∣∣∣a, b $← Z∗p


− Pr

[
B
(

g1, g
1
a
1 , ga

1, g(a2)
1 , gb

1, ĝ2, ĝ
1
a
2 ,

ĝa
2, ĝ(a2)

2 , ĝb
2, Q = e3(g1, ĝ2)

z

)
= 1

∣∣∣∣∣a, b, z $← Z∗p

]∣∣∣∣∣ ≥ ε.

Lemma 2 shows that the 3-wDBDHI3 problem is at least as hard as the 3-wDBDHI2

problem, where the task is to distinguish e2(g1, g′2)
b

a2 from random data given g1 ∈ G1 and

g′2, g′2
a, g′2

(a2), g′2
b ∈ G′2. The 3-wDBDHI2 problem is the same assumption that Weng et al. [4]

use in their scheme, but translated from the symmetric setting into the Type 2 setting.

Lemma 2. Let g1 be a generator of G1 and g′2 a generator of G′2 with g1 = ψ(g′2). Then, 3-
wDBDHI3 is at least as hard as 3-wDBDHI2.

Proof. Given a 3-wDBDHI2 instance (g1, g′2, g′2
1
a , g′2

a, g′2
(a2), g′2

b, Q) ∈ G1 ×G′2
5 ×GT with

a, b ∈ Z∗p, we apply ρ : G′2 → Ĝ2 to obtain ĝ2 = ρ(g′2)
1
c , ĝ

1
a
2 = ρ(g′2

1
a )

1
c , ĝa

2 = ρ(g′2
a)

1
c ,

ĝ(a2)
2 = ρ(g′2

(a2))
1
c , ĝb

2 = ρ(g′2
b)

1
c . Furthermore, we apply ψ : G′2 → G1 to g1 = ψ(g′2),

g
1
a
1 = ψ(g′2

1
a ), ga

1 = ψ(g′2
a), g(a2)

1 = ψ(g′2
(a2)), gb

1 = ψ(g′2
b). The resulting 3-wDBDHI3

problem instance (g1, g
1
a
1 , ga

1, g(a2)
1 , gb

1, ĝ2, ĝ
1
a
2 , ĝa

2, ĝ(a2)
2 , ĝb

2, Q
1
2c ) ∈ G5

1 ×G5
2 ×GT is given to

the 3-wDBDHI3 solver, which determines whether Q
1
2c = e3(g1, ĝ2)

b
a2 which, by Lemma 1,

is equivalent to Q = e2(g1, g′2)
b

a2 . This establishes that 3-wDBDHI2 ≤ 3-wDBDHI3.

2.4. Model of PRE

We recall the syntax of PRE using the following definition.

Definition 2. A single-hop unidirectional PRE scheme consists of a tuple of algorithms (Setup,
KeyGen,ReKeyGen,Enc2,Enc1,ReEnc,Dec2,Dec1):

Setup(1k)→ param: Given the security parameter k, output the public parameters param which
will be used by all parties of the scheme.

KeyGen(param)→ (ski, pki): Given the global parameters param, output a secret/public key pair
(ski, pki).

In the remaining algorithms that follow, the public parameter param will be implicitly included.
ReKeyGen(ski, pk j) → rki→j: Given the secret key ski and another public key pk j, output a

re-encryption key rki→j.
Enc2(pki, m) → CTi: Given a public key pki and a message m ∈ M, output a second-level

ciphertext CTi that can be re-encrypted into a first-level ciphertext using the suitable re-
encryption key.

Enc1(pk j, m)→ CTj: Given a public key pk j and a message m ∈ M, output a first-level ciphertext
CTj that cannot be re-encrypted for another party.

ReEnc(pki, rki→j, CTi)→ CTj: Given the public key pki, a re-encryption key rki→j, and a second-
level ciphertext CTi encrypted under user i’s public key, output a first-level ciphertext CTj or
⊥ if CTi is invalid.

Dec2(ski, CTi) → m: Given a secret key ski and a second-level ciphertext CTi, output either a
message m ∈ M or ⊥ if CTi is invalid.
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Dec1(sk j, CTj) → m: Given a secret key sk j and a first-level ciphertext CTj, output a message
m ∈ M or ⊥ if CTj is invalid.

For any common public parameters, param; for any message m ∈ M; and for any pair of
secret/public key pairs, (ski, pki), (skj, pkj), these algorithms should satisfy the following correctness
conditions:

Dec1(ski,Enc1(pki, m)) = m;
Dec2(ski,Enc2(pki, m)) = m;

Dec1(sk j,ReEnc(pki,ReKeyGen(ski, pk j),Enc2(pki, m))) = m.

2.5. Security Model

The transformation of the base scheme to the Type 3 setting does not alter the security
model in which the scheme is defined. Therefore, a brief overview of the game-based
security model used by Weng et al. [4] is provided. The security game consists of five phases.

In the setup, the challenger B hands over the required information to the adversary
A. Then, A can query oracles which the challenger responds to in the find stage. In the
challenge phase, the adversary outputs two distinct messages m0, m1 as well as the target
public key pki∗ . The challenger returns the encrypted message CT∗ = Enc(pki∗ , mδ) with
δ ∈ 0, 1. In the guess stage, A is given access to the oracles again, and in the output phase,
they return their guess δ′. The adversary has access to the following oracles in the find and
guess phase.

• Public key oracle Opk(i): Create a key pair (pki, ski) analogously to KeyGen(param)
and return pki to A.

• Secret key oracle Osk(pki): Return ski to A with respect to pki, which was generated
by the oracle Opk beforehand.

• Re-encryption key oracle Ork(pki, pk j): Given two public keys, pki and pk j, which
were generated by the oracle Opk beforehand, run rki→j ← ReKeyGen(ski, pk j) and
return the re-encryption key rki→j to A.

• Re-encryption oracle Ore(pki, pkj, CTi): Given a second-level ciphertext CTi and two
public keys, pki and pkj, which were generated by the oracleOpk beforehand, return the
re-encrypted first-level ciphertext CTj ← ReEnc(pki,ReKeyGen(ski, pkj), CTi) toA.

• First-level decryption oracle O1d(pk j, CTj): Given a first-level ciphertext CTj and a
public key pk j which was generated by the oracle Opk beforehand, return the result of
Dec1(sk j, CTj) to A.

Weng et al. proved their scheme to be CCA-secure in the adaptive corruption model.
This model allows the adversary A to adaptively corrupt users, thereby permitting them to
query arbitrary secret keys from the secret key oracle during the find and guess phase. This
stands in contrast to a selective corruption model, where the attacker must commit ahead
of time to a certain set of users to corrupt in the setup.

Naturally, the oracle queries are constrained in such a way that it is not possible for
the adversary to trivially win the security game by, for example, corrupting the target user
of the challenge, submitting the challenge ciphertext directly to the decryption oracle, or
using the re-encryption oracle on the challenge ciphertext and corrupting the target user of
the re-encryption.

In accordance with the security game outlined above, Weng et al. defined security
notions for both types of ciphertexts. A PRE scheme is called IND-2PRE-CCA-secure if the
adversary’s advantage in winning the security game for a second-level challenge ciphertext
is negligible in the security parameter k. The definition of IND-1PRE-CCA is analogous for
first-level ciphertexts. Finally, we consider the notion of master secret security (MSS-PRE),
also referred to as collusion-resistance, in [12,13]. This notion captures the requirement that
it should not be possible for a dishonest proxy (holding rki→j) and delegatee (holding sk j)
to reveal the delegator’s secret key ski by colluding with each other. It can be shown that if
a PRE scheme is IND-1PRE-CCA-secure, it is also MSS-PRE-secure.
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Additionally, Weng et al. base the security of their scheme on target collision-resistant
(TCR) hash function families and pseudorandom function families (PRFs). A hash func-
tion family H is said to be TCR if it is infeasible for an adversary, given a random hash
function H from the family H and a random element x, to find another element y such
that H(x) = H(y). Further, a function family F is said to be a PRF if it is infeasible for an
adversary to distinguish F from a true random function family.

3. Automated Transformation of the PRE Scheme

We begin this section with a brief review of the PRE scheme by Weng et al. [4], which
we take as the base scheme for transforming into the asymmetric pairing setting. Next, we
use the automated transformation by Akinyele et al. [20], which translates cryptographic
schemes defined in the Type 1 setting to the Type 3 setting. We apply the transformation
to the base scheme by using the software tool provided by the publication and obtain a
variant of the scheme defined in the Type 3 setting. Finally, we analyze the resulting scheme
and identify flaws, which we address in Section 4.

3.1. Symmetric Pairing-Based Scheme by Weng et al. [4]

Below (see Algorithms 1–8), we briefly review the scheme introduced by Weng et al. [4]
in the symmetric setting, where k, ℓ, and ℓ1 are security parameters.

Algorithm 1 Setup(1k)

1: Choose Type 1 bilinear groups G, GT of prime order p > 2k

2: g, g1, u, v, w $← G
3: Z = e(g, g)
4: Choose a TCR hash function

H: G× {0, 1}ℓ → Z∗p
5: Choose a PRF

F: GT ×G→ {0, 1}ℓ−ℓ1 × {0, 1}ℓ1

6: return param = (p,G,GT , g, g1, u, v, w, Z, H, F, ℓ1, ℓ)

Algorithm 2 KeyGen(1k)

1: xi
$← Z∗p

2: pki = gxi

3: ski = xi
4: return (pki, ski)

Algorithm 3 ReKeyGen(ski, pk j)

1: rki→j = pk1/ski
j = gxj/xi

2: return rki→j

Algorithm 4 Enc2(pki, m)

1: r $← Z∗p
2: C1 = gr

1
3: C2 = pkr

i
4: K = Zr

5: C3 = [F(K, C1)]ℓ−ℓ1 ||([F(K, C1)]
ℓ1 ⊕m)

6: t $← Z∗p
7: h = H(C1, C3)
8: C4 = (uhvtw)r

9: return CTi = (t, C1, C2, C3, C4)
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Algorithm 5 Enc1(pk j, m)

1: r $← Z∗p
2: C1 = gr

1
3: C′2 = e(pk j, g)r

4: K = Zr

5: C3 = [F(K, C1)]ℓ−ℓ1 ||([F(K, C1)]
ℓ1 ⊕m)

6: t $← Z∗p
7: h = H(C1, C3)
8: C4 = (uhvtw)r

9: return CTj = (t, C1, C′2, C3, C4)

Algorithm 6 ReEnc(pki, rki→j, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e(C1, pkr1
i (uhvtw)r2) ̸= e(Cr1

2 Cr2
4 , g1) then

5: return ⊥
6: C′2 = e(C2, rki→j)

7: return CTj = (t, C1, C′2, C3, C4)

Algorithm 7 Dec2(ski, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e(C1, pkr1
i (uhvtw)r2) ̸= e(Cr1

2 Cr2
4 , g1) then

5: return ⊥
6: K = e(C2, g)1/ski

7: if [F(K, C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 then
8: return ⊥
9: return m = [F(K, C1)]

ℓ1 ⊕ [C3]
ℓ1

Algorithm 8 Dec1(ski, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e(C1, uhvtw) ̸= e(C4, g1) then
5: return ⊥
6: K = C′2

1/skj

7: if [F(K, C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 then
8: return ⊥
9: return m = [F(K, C1)]

ℓ1 ⊕ [C3]
ℓ1

3.2. Applying the Automated Transformation

For the automated transformation of the scheme from the symmetric to the asymmetric
setting, we used the method by Akinyele et al. [20]. The method is based on the theoretical
framework introduced by Abe et al. [19]. We note that there exists an improvement to
this method presented by Abe et al. [21]; however, it only speeds up the transformation
process and has no effect on the resulting scheme itself. We used the method by Akinyele
et al. because the authors made their proposed transformation available as an open-source
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tool (https://github.com/JHUISI/auto-tools/tree/88d20b0/auto_group, (accessed on 31
January 2024)). The application of the transformation resulted in the following scheme.
Differences from the base scheme are highlighted in gray (Algorithms 9–16).

Algorithm 9 Setup(1k)

1: Choose Type 3 bilinear groups G1, Ĝ2 , GT of prime order p > 2k

2: g $← G1, ĝ $← Ĝ2

3: a $← Z∗p, g1 = ga, ĝ1 = ĝa

4: b $← Z∗p, u = gb, û = ĝb

5: c $← Z∗p, v = gc, v̂ = ĝc

6: d $← Z∗p, w = gd, ŵ = ĝd

7: Z = e(g, ĝ )
8: Choose a TCR hash function

H: G1 × {0, 1}ℓ → Z∗p
9: Choose a PRF

F: GT ×G1 → {0, 1}ℓ−ℓ1 × {0, 1}ℓ1

10: return param = (p,G1, Ĝ2 ,GT , g, g1, u, v, w, ĝ , ĝ1 , û , v̂ , ŵ , Z, H, F, ℓ1, ℓ)

Algorithm 10 KeyGen(1k)

1: xi
$← Z∗p

2: pki = (pki,1, pki,2 ) = (gxi , ĝxi )
3: ski = xi
4: return (pki, ski)

Algorithm 11 ReKeyGen(ski, pk j)

1: rki→j = pk1/ski
j,2 = ĝ xj/xi

2: return rki→j

Algorithm 12 Enc2(pki, m)

1: r $← Z∗p
2: C1 = gr

1
3: C2 = pkr

i,1
4: K = Zr

5: C3 = [F(K, C1)]ℓ−ℓ1 ||([F(K, C1)]
ℓ1 ⊕m)

6: t $← Z∗p
7: h = H(C1, C3)
8: C4 = (uhvtw)r

9: return CTi = (t, C1, C2, C3, C4)

https://github.com/JHUISI/auto-tools/tree/88d20b0/auto_group
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Algorithm 13 Enc1(pk j, m)

1: r $← Z∗p
2: C1 = gr

1
3: C′2 = e(pk j,1, ĝ )r

4: K = Zr

5: C3 = [F(K, C1)]ℓ−ℓ1 ||([F(K, C1)]
ℓ1 ⊕m)

6: t $← Z∗p
7: h = H(C1, C3)
8: C4 = (uhvtw)r

9: return CTj = (t, C1, C′2, C3, C4)

Algorithm 14 ReEnc(pki, rki→j, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e(C1, pkr1
i,2 ( ûhv̂tŵ )r2) ̸= e(Cr1

2 Cr2
4 , ĝ1 ) then

5: return ⊥
6: C′2 = e(C2, rki→j)

7: return CTj = (t, C1, C′2, C3, C4)

Algorithm 15 Dec2(ski, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e(C1, pkr1
i,2 ( ûhv̂tŵ )r2) ̸= e(Cr1

2 Cr2
4 , ĝ1 ) then

5: return ⊥
6: K = e(C2, ĝ )1/ski

7: if [F(K, C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 then
8: return ⊥
9: return m = [F(K, C1)]

ℓ1 ⊕ [C3]
ℓ1

Algorithm 16 Dec1(ski, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e(C1, ûhv̂tŵ ) ̸= e(C4, ĝ1 ) then
5: return ⊥
6: K = C′2

1/skj

7: if [F(K, C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 then
8: return ⊥
9: return m = [F(K, C1)]

ℓ1 ⊕ [C3]
ℓ1
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3.3. Analysis of the Transformed Scheme

The scheme resulting from the automated transform retains the ciphertext size of the
original scheme and adds a second group element to the public key. The main portion
of the transformation to the asymmetric setting is realized by duplicating the generators
from the public parameters into both source groups. However, for the practical application
of the scheme, this leads to a problem. If we look at the public generator g1 and its use
in the ciphertext element C1, we notice that if the discrete logarithm a of g1 to base g is
known, it can function as a backdoor since any ciphertext could be decrypted by computing
e(C1, ĝ)1/a = e(gr

1, ĝ)1/a = e(gar, ĝ)1/a = K. In the base scheme, g1 is chosen uniformly at
random, which in practice could be achieved by hashing a nothing-up-my-sleeve value,
e.g., digits of π or a fixed string into G. In contrast, in the transformed scheme, a is
explicitly chosen in the setup method to compute g1 and ĝ1, which would pose a virtually
insurmountable hurdle to establishing trust in the scheme in a practical instantiation. To
tackle this issue, we propose an alternative transformation of the scheme that does not
exhibit this design flaw in the following section.

4. Our PRE Scheme Design

In this section, we present our manual transformation of the base scheme to the Type 3
setting. The transformation fixes the identified design flaw of the automated transformation
by preventing the duplication of generators to both source groups. This introduces the
need for adjustments to the security proof, which can be found in Section 4.2.

4.1. Manually Transformed Scheme

As in Section 3.2, differences to the base scheme are highlighted in gray (Algorithms 17–24).

Algorithm 17 Setup(1k)

1: Choose Type 3 bilinear groups G1, Ĝ2 , GT of prime order p > 2k

2: g, u, v, w $← G
3: ĝ, ĝ1

$← Ĝ2
4: Z = e(g, ĝ )
5: Choose a TCR hash function

H: Ĝ2 × {0, 1}ℓ → Z∗p
6: Choose a PRF

F: GT × Ĝ2 → {0, 1}ℓ−ℓ1 × {0, 1}ℓ1

7: return param = (p,G1, Ĝ2 ,GT , g, u, v, w, ĝ , ĝ1 , Z, H, F, ℓ1, ℓ)

Algorithm 18 KeyGen(1k)

1: xi
$← Z∗p

2: pki = (pki,1, pki,2 ) = (gxi , ĝxi )
3: ski = xi
4: return (pki, ski)

Algorithm 19 ReKeyGen(ski, pk j)

1: rki→j = pk1/ski
j,2 = ĝxj/xi

2: return rki→j
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Algorithm 20 Enc2(pki, m)

1: r $← Z∗p
2: C1 = ĝr

1
3: C2 = pkr

i,1
4: K = Zr

5: C3 = [F(K, C1)]ℓ−ℓ1 ||([F(K, C1)]
ℓ1 ⊕m)

6: t $← Z∗p
7: h = H(C1, C3)
8: C4 = (uhvtw)r

9: return CTi = (t, C1, C2, C3, C4)

Algorithm 21 Enc1(pk j, m)

1: r $← Z∗p
2: C1 = ĝr

1
3: C′2 = e(pk j,1, ĝ )r

4: K = Zr

5: C3 = [F(K, C1)]ℓ−ℓ1 ||([F(K, C1)]
ℓ1 ⊕m)

6: t $← Z∗p
7: h = H(C1, C3)
8: C4 = (uhvtw)r

9: return CTj = (t, C1, C′2, C3, C4)

Algorithm 22 ReEnc(pki, rki→j, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e( pkr1
i,1(u

hvtw)r2 , C1 ) ̸= e(Cr1
2 Cr2

4 , ĝ1 ) then
5: return ⊥
6: C′2 = e(C2, rki→j)

7: return CTj = (t, C1, C′2, C3, C4)

Algorithm 23 Dec2(ski, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e( pkr1
i,1(u

hvtw)r2 , C1 ) ̸= e(Cr1
2 Cr2

4 , ĝ1 ) then
5: return ⊥
6: K = e(C2, ĝ )1/ski

7: if [F(K, C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 then
8: return ⊥
9: return m = [F(K, C1)]

ℓ1 ⊕ [C3]
ℓ1
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Algorithm 24 Dec1(ski, CTi)

1: (t, C1, C2, C3, C4)← CTi
2: h = H(C1, C3)

3: r1, r2
$← Z∗p

4: if e(uhvtw, C1 ) ̸= e(C4, ĝ1 ) then
5: return ⊥
6: K = C′2

1/skj

7: if [F(K, C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 then
8: return ⊥
9: return m = [F(K, C1)]

ℓ1 ⊕ [C3]
ℓ1

4.2. Transforming the Security Proof

The base scheme has been proven to be IND-2PRE-CCA-secure and IND-1PRE-
CCA-secure. Given the analogous structure of the two proofs, the strategy for transforming
the proofs to the Type 3 setting is applicable to both.

In the manually transformed scheme, C1 ∈ G1 is chosen from a different group
than C2, C3, C4 ∈ G2 and the generators are not duplicated to both source groups. This
prevents the implicit transformation of the security proofs from the base scheme that would
otherwise occur through the automated transformation. Consequently, we present the
necessary adjustments for transforming the proof to the Type 3 setting.

As indicated in Section 2.3, we replace the symmetric pairing-based assumption used
by Weng et al. in the base scheme with the 3-wDBDHI3 assumption (Definition 1) in the
security proof. In the transformed proof, the challenger B is thus given a 3-wDBDHI3

instance (g, A−1 = g1/a, A1 = ga, A2 = g(a2), B = gb, ĝ, Â−1 = ĝ1/a, Â1 = ĝa, Â2 = ĝ(a2),

B̂ = ĝb, Q) ∈ G5
1 × Ĝ5

2 ×GT with unknown a, b $← Z∗p, which is then used in the setup

phase to provide the adversary A with the public parameters u = Aα1
1 Aβ1

2 , v = Aα2
1 Aβ2

2 ,

w = Aα3
1 Aβ3

2 , and ĝ1 = Âα4
2 for random α1, α2, α3, α4, β1, β2, β3

$← Z∗p, analogous to the
proof of the base scheme. The majority of the proof of the base scheme can be transformed
by making use of either Ai or Âi according to the required group or by adjusting the
positions of variables in a pairing to match the order of the source groups. However, in the
proof of the base scheme both the re-encryption and the first-level decryption oracle recover
K = e(g, ĝ)r by computing K = e(A−1, Ar

1), where

Ar
1 =

 C4

C
β1h+β2t+β3

α0
1


1

α1h+α2t+α3

.

This is not feasible for the manually transformed scheme since C1 ∈ Ĝ2 and C4 ∈ G1
are incompatible. Fortunately, there is an alternative approach to recovering K from C1 and
C4, which leverages the bilinearity of the pairing e by computing

K = e(g, ĝ)r =

(
e(C4, Â−1)

e(A−1, C
1/α4
1 )β1h+β2t+β3

) 1
α1h+α2t+α3

,

since

e(C4, Â−1) = e((Aα1h+α2t+α3
1 Aβ1h+β2t+β3

2 )r, Â−1)

= e(g, ĝ)r(α1h+α2t+α3)e(g, ĝ)ar(β1h+β2t+β3)

and
e(A−1, C

1/α4
1 ) = e(A−1, Âr

2) = e(g, ĝ)ar.
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The application of these adjustments allows for the transformation of both the chosen-
ciphertext security proofs at the first and second level of the base scheme to the Type 3
setting for the manually transformed scheme.

4.3. Performance Evaluation

We compare the performance and ciphertext size of the schemes resulting from the
automated transformation (Section 3.2) and the manual transformation (Section 4.1). To that
end, we implemented the schemes using mcl-wasm (https://github.com/herumi/mcl,
(accessed on 1 March 2024) ) [7] with the BLS12-381 curve, roughly targeting the 128-bits
security level [22].

As we can see in Table 1, the manually transformed scheme outperforms the automat-
ically transformed scheme in decryption and re-encryption at the cost of slightly slower
encryption and larger ciphertexts. This can be explained by the difference that the manual
transformation chooses C1 to be in Ĝ2 instead of G1 as in the automated transformation.
This leads to the fact that the manually transformed scheme performs more computations
in Ĝ2 for the encryption, whereas the automatically transformed scheme carries this out
in the ciphertext validation, which is required when re-encrypting and decrypting. Since
in the Type 3 setting Ĝ2 is usually defined over an extension field, group operations are
slower in Ĝ2 than in G1. Furthermore, due to this fact, the representation of group elements
of Ĝ2 is larger than in G1, leading to the slightly larger ciphertext sizes.

Table 1. Ciphertext sizes and benchmark of the automatically and manually transformed schemes on
an Intel Core i7-6600U CPU with 16 GB of RAM.

Method/Scheme Automated Manual

KeyGen 1.5 ms 1.5 ms
ReKeyGen 1.0 ms 1.0 ms
Encrypt2 4.3 ms 4.7 ms
Encrypt1 9.3 ms 9.7 ms
ReEncrypt 20.1 ms 17.8 ms
Decrypt2 21.6 ms 18.8 ms
Decrypt1 13.7 ms 12.5 ms
Second-Level Ciphertext Size 208 B 256 B
First-Level Ciphertext Size 736 B 784 B

5. Conclusions

In conclusion, we presented the first unidirectional PRE scheme based on asymmetric
pairings. We started with the application of the automated black-box reduction technique
by Akinyele et al. [20] to transform the base scheme and its security proof from the Type 1
to the Type 3 setting. Our findings reveal that relying solely on this automated technique
does not necessarily produce a scheme suitable for practical use, as it introduced flaws
that rendered the resulting scheme impractical. To address these issues, we proposed an
adapted manually transformed scheme. The scheme retains the properties of the base
scheme, achieving CCA security under adaptive corruptions in the standard model. We
refined the hardness assumption for the Type 3 setting, ensuring that it is at least as
hard as in the base scheme, and outlined the necessary adjustments to the security proof.
The transformed scheme enables the use of superior Type 3 pairing-friendly curves, thereby
superseding the obsolete Type 1 setting of the base scheme.

The manual transformation is essential as it fixes the flaws present in the automatically
transformed scheme, as discussed in Section 3.3, making it suitable for practical use. While
this comes with slight computational overhead associated with encryption performance and
increased ciphertext size, it also results in faster re-encryption and decryption, contributing
to the scheme’s overall practicality. Therefore, we argue that our manually transformed

https://github.com/herumi/mcl
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scheme represents a preferable choice for the practical instantiation of a Type 3 pairing-
based PRE scheme, while still being faster and more secure overall than the base scheme.
Our scheme offers an alternative to more complex pairing-free PRE schemes, providing a
practical and efficient solution for real-world applications.

Future work will focus on leveraging the distinctive properties of Type 3 pairings to
construct an even more efficient asymmetric pairing-based PRE scheme or create a PRE
scheme with advanced properties that is CCA-secure in the standard model.
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