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Featured Application: This proposed method could potentially be applied to musical instrument
classification tasks, contributing to the organization and analysis of audio data where identifying
instruments is required. This may be useful in research, music information retrieval systems, or
other related applications.

Abstract: Musical instrument recognition is a relatively unexplored area of machine learning due to
the need to analyze complex spatial-temporal audio features. Traditional methods using individual
spectrograms, like STFT, Log-Mel, and MFCC, often miss the full range of features. Here, we propose
a hierarchical residual attention network using a scaled combination of multiple spectrograms,
including STFT, Log-Mel, MFCC, and CST features (Chroma, Spectral contrast, and Tonnetz), to create
a comprehensive sound representation. This model enhances the focus on relevant spectrogram parts
through attention mechanisms. Experimental results with the OpenMIC-2018 dataset show significant
improvement in classification accuracy, especially with the “Magnified 1/4 Size” configuration.
Future work will optimize CST feature scaling, explore advanced attention mechanisms, and apply
the model to other audio tasks to assess its generalizability.

Keywords: spectrograms; musical instrument classification; audio classification; audio feature
extraction; music information retrieval; spectrogram transformation; residual attention networks;
attention mechanisms; deep learning for audio

1. Introduction

Musical instrument recognition in recorded music is complex due to the diverse and
intricate features in audio signals. Traditional approaches using individual spectrograms
like short-time Fourier Transform (STFT), logarithm Mel frequency (log-Mel), or Mel-
frequency cepstral coefficients (MFCCs) capture only specific aspects of the audio signal,
such as amplitude and the short-term power spectrum. This often fails to capture the full
richness of audio features necessary for accurate instrument classification.

To address this, combining multiple spectrograms—such as STFT, Log-Mel, MFCC,
and CST features (Chroma, Spectral contrast, and Tonnetz)—into a single compact input
image has been proposed for various audio tasks [1-5]. This approach leverages the
strengths of each spectrogram type, providing a more comprehensive understanding of the
audio signal and leading to more accurate classification accuracy.

However, the increased number of spectrogram features can introduce challenges,
making it difficult for the model to determine which part of the input image is the most
important. Attention mechanisms help the model focus on the most relevant spectrogram
features, addressing this issue. Some studies, like those on bird sound recognition [3] and
music annotation [6], integrate attention mechanisms [7,8] to enhance the model.
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Original Contribution

Expanding on the foundations discussed above, we here introduce a novel Hierar-
chical Residual Attention Network (HRAN) specifically designed for musical instrument
classification. Our approach is distinct due to the integration of multi-scaled spectrograms—
combining STFT, Log-Mel, MFCC, and CST (Chroma, Spectral contrast, and Tonnetz)
features. This multi-scale integration enables the model to capture a broad spectrum of
audio features, encompassing tonal, rhythmic, and harmonic components that are often
underrepresented when using single spectrogram types.

Our HRAN framework incorporates layered attention mechanisms strategically placed
within the hierarchical structure. This attention system allows the model to dynamically
focus on the most relevant parts of the spectrograms, thereby improving feature discrim-
ination and classification accuracy. By scaling each spectrogram type, we tailor feature
representations for optimal learning. The model’s architecture provides a refined and com-
prehensive feature representation that enhances classification accuracy beyond traditional
single-spectrogram approaches.

2. Literature Review

Deep learning for music informatics has demonstrated that convolutional neural net-
works (CNNs) can effectively learn features directly from audio data, advancing automatic
feature extraction and classification [9]. The integration of Deep Learning Networks [10]
and spectrogram features has proven to be a robust approach for audio classification, even
in noise conditions [11]. Spectrograms, which represent audio signals visually, allow CNNs
to learn intricate patterns and features from the time-frequency domain [12-14].

Transforming audio samples into spectrograms provides an effective advantage for
neural network training, particularly with convolutional neural networks (CNNs). This
approach not only optimizes the data for network input but also reduces the input size,
offering a more efficient alternative to raw digital sample-based methods [15-18]. Research
has demonstrated the effectiveness of CNNSs in classifying musical instruments by employ-
ing different spectrogram methods. For example, one study [19] reports an 80% accuracy
using the STFT (short-time Fourier transform) spectrogram. Additionally, approaches lever-
aging MFCCs (Mel-Frequency Cepstral Coefficients) have also been applied to instrument
recognition, achieving notable accuracy level [20-22]. The authors of [23] introduced a
method to categorize string instruments through the use of Chroma-based features.

Also, some research [24] proposed a multi-spectrogram encoder—decoder framework
that utilizes different types of spectrograms to improve acoustic scene classification. Their
approach highlights how integrating diverse spectral features can enhance the robustness
of audio classification models.

Various studies [25,26] have explored different spectrogram types, such as STFT,
Log-Mel, and MFCC, to capture diverse audio characteristics. Specifically, for musical
instrument classification in recorded polyphonic music, the work [27] accurately classifies
the NSynth dataset [28] with good performance. The IRMAS [29] dataset’s work [30]
achieved a 0.79 precision. The Open-Mic [31] dataset has been used more, with one
work [32] achieving a 0.843 mean average precision (mAP). Another work [33] achieved a
0.852 mAP, and a benchmark work [34] achieved a 0.855 mAP.

3. Method
3.1. Theoretical Background

In this study, we investigate how scaled multi-spectrogram inputs affect the per-
formance of a hierarchical residual attention network in musical instrument recognition.
According to the Universal Approximation Theorem [35], a neural network can approxi-
mate any continuous function, as shown in (1):

Y =0c(w-x+D) 1)
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where Y is the output, w is the weight, x is the input, and b is the bias. Here, o represents
an activation function, such as the sigmoid or tanh, which limits (or squashes) the output
into a specific range and introduces non-linearity to the model.

Thus, the spectrogram-based musical instrument classification can be expressed as

instrument = o(w - spectrogram(x) + b) (2)

3.2. Hypothesis

Building on the theorem, we preprocess our spectrogram inputs by applying distinct
scaling factors to each spectrogram component before feeding them into the model. This
preprocessing step is formalized in (3):

Y = o(w(Sy - LogMel (x) + Sy - Chroma(x) + S3 - SpectralContrast(x) 3
+8, - Tonnetz(x)) + b) ©)
where Y is the output and w represents the overall weight applied to the combined spectro-
grams, (S1,S2,53,) and (Sy) are the scale for the Log-Mel, Chroma, Spectral contrast, and
Tonnetz spectrogram features, respectively, and (x) represents the input audio signal.

The hypothesis (3) behind this approach is that by combining multiple spectrograms
with assigned scales, this preprocessing method can provide a richer set of learnable
features, improving the performance of the model. This scaled combination of spectrogram
inputs is expected to better capture the nuances in audio signals that single-spectrogram
methods might miss, thereby enhancing overall classification accuracy.

3.3. Data Pre-Processing

In this experiment, we use the OpenMIC-2018 dataset [31], an open-source, multilabel
music instrument annotated database. This dataset does not control for specific physical
parameters, such as subglottal pressure, vocal fold geometry, or recording equipment
settings, as the dataset was designed to facilitate general audio analysis rather than studies
requiring tightly controlled experimental conditions.

The dataset contains over 20,000 ten-second audio clips, each annotated with multiple
instrument labels, providing a diverse and extensive collection of musical instrument sam-
ples for analysis. The dataset includes 20 different musical instruments, and all recordings
are real audio recordings capturing the authentic characteristics of various instruments in
natural settings.

We used the OpenMIC-2018 default train—test split, which includes 14,914 training
samples and 5084 testing samples. During the training process, we further divided the
training set by defining a validation split of 20%, with a random shulffle applied to ensure
balanced representation across classes. This setup allows for consistent evaluation of model
performance on unseen data while using a portion of the training data to monitor and
fine-tune the model during training.

Figure 1 presents various audio feature representations extracted from a musical
instrument sample, along with the effects of combining these features at different scales.
Panel (a) shows the individual spectrogram types: the Log-Mel spectrogram has 128 Mel
frequency bins, the Chroma feature is divided into 12 pitch classes, the Spectral contrast
feature has 7 frequency bands, and the Tonnetz feature consists of 6 bins representing
harmonic intervals. This is the default input dataset configuration used in the experiment,
with no scaling adjustments applied to the spectrograms.

Using OpenCV [36], we resize the Chroma, Spectral contrast, and Tonnetz (CST)
features to match the Log-Mel spectrogram’s dimensions, as Log-Mel has shown superior
performance in musical instrument classification research. In panel (b), all CST features
are scaled to match the Log-Mel’s size exactly. Panels (c), (d), and (e) illustrate alternative
scaling approaches where CST features are resized to 1/4,1/2, and 3/4 of the Log-Mel size,
respectively. This scaling comparison explores the impact of different size ratios on feature
representation and classification performance.
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Figure 1. (a) From top to bottom: Log-Mel Spectrogram shows frequency (Hz) over time, where
brighter regions represent higher intensity in decibels (dB). Chroma Features capture pitch class
profiles (C, C#, D, D#, etc.), with “#” indicating a sharp note in musical notation. Spectral Contrast
represents the difference in intensity between spectral peaks and valleys across frequency bands
(e.g., 6400+ Hz to 200400 Hz), providing complementary information to the Log-Mel Spectrogram.
Tonnetz encodes harmonic relationships such as tonic, minor third, major third, perfect fifth, minor
seventh, and major seventh, which represent musical intervals over time. (b) Combined Spectrogram
Features (all same size), (c) Combined Spectrogram Features (CST—1/4 Size), (d) Combined Spectro-
gram Features (CST—Half Size), and (e) Combined Spectrogram Features (CST—3/4 Size) illustrate
normalized feature values scaled between 0 and 1, where brighter colors indicate values closer to 1,
and darker colors indicate values closer to 0. This normalization ensures consistent visualization
despite differences in the original scales (e.g., frequency reaching 8192 Hz in Log-Mel, compared to
the Tonnetz scale with a maximum value of 6 (Major Seventh)).

3.4. Convolutional Neural Network Structure

The neural network model used here (Figure 2) classifies musical instruments using
spectrogram inputs. It consists of three residual blocks with 32, 64, and 128 filters, respec-
tively, each followed by MaxPooling to reduce dimensions. Attention mechanisms are
applied at multiple stages: Early Attention after the first block, Mid Attention after the
second, and Late Attention after the third, along with Channel and Coordinate Attention
to emphasize critical features. The output is flattened, passed through a dense layer with
512 units and ReLU activation, followed by a 40% dropout layer, and finally, a sigmoid
activation layer for multi-label classification. The model uses binary cross-entropy loss,
Adam optimizer, and accuracy as the metric.

The combined use of Coordinate [7] and Channel Attention [37] mechanisms enable
a more flexible, targeted, and thorough analysis of the spectrogram inputs. By adjusting
focus along both spatial and channel dimensions, the model can learn hierarchical repre-
sentations that capture combined spectrogram features of musical instruments with greater
specificity. This multi-stage attention application supports improved generalization, even
in challenging and noisy audio conditions. This architecture effectively combines residual



Appl. Sci. 2024, 14, 10837

50f 16

connections, attention mechanisms, and dense layers to achieve robust feature extraction
and classification performance for musical instrument recognition tasks.

FC
H
Output
Res-Block-1 Res-Block-2 Res-Block-3
il |‘ ‘ ‘

Early Attention Mid Attention Late Attention

Figure 2. Overview of the neural network architecture used for musical instrument classification.
The input is an example sample of combined spectrogram features (CST) with all components scaled
to the same size and normalized to a range between 0 and 1, where brighter colors indicate values
closer to 1. The model includes three residual blocks (Res-Block-1, Res-Block-2, Res-Block-3), shaded
in blue and dark blue represent operations such as convolution, batch normalization, and activation
functions. Each residual block is followed by a coordinate attention mechanism (Early Attention,
Mid Attention, Late Attention) to enhance feature representation. After the three residual blocks and
attention layers, the final fully connected (FC) layer performs the classification to generate the output.

We trained the CNN model for up to 500 epochs with a batch size of 32, using early
stopping with a patience of 100 epochs to prevent overfitting and retain the best model
weights. A learning rate reduction was applied with a patience of 50 epochs and a decay
factor of 0.1 to fine-tune the learning process. Training also incorporated sample weights to
address class imbalances in the dataset. Detailed parameters are listed in Data Availability
Statement (DAS) Section.

4. Results
4.1. Benchmark Comparison

Figure 3 presents a comparison of mean average precision (mAP) achieved by different
methods on the Open-MIC dataset. The x-axis lists the methods, while the y-axis indicates
the mAP values. The graph includes benchmark methods and our proposed methods and
highlights our best model. The benchmark methods serve as a reference point, showing
the progression in performance over the years, including the Baseline [31], PaSST [32],
EAST-KD + PaSST [33], and DyMN-L [34]. Our methods include various configurations
of combining spectrogram features and attention mechanisms. Specifically, the “Single
Log-Mel” approach, “Log-Mel CST Combined Spectrogram”, and “Log-Mel CST with
Attention Layer” configurations explore the impact of different spectrogram features on
model performance. Additionally, we experimented with magnifying the spectrogram
features to different extents: “Magnified 1/4 Size”, “Magnified 1/2 Size”, “Magnified 3/4
Size”, and “Magnified Full Size”.
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Figure 3. Mean average precision (mAP) comparison across various methods on the Open-MIC
dataset [31-34].

Among these, the “Magnified 1/4 Size” model achieved a mAP of 0.8445, demon-
strating a performance close to the leading benchmark methods. This model’s success
highlights the importance of carefully scaling the spectrogram features and incorporating
attention mechanisms to enhance the model’s focus on the most informative parts of the
input data. The magenta marker and horizontal magenta line on the graph emphasize
the noteworthy performance of this model, illustrating the potential effectiveness of our
approach in musical instrument recognition tasks.

4.2. Evaluation Metrics Comparison Among Each Scaled Multi-Spectrogram Settings

Figure 4 presents a comprehensive comparison of the precision, recall, and F1 score
metrics for various instrument recognition models using different configurations of spec-
trogram features. The x-axis represents the different musical instruments, while the y-axis
indicates the metric values.

The models compared include configurations such as Log-Mel 128 with Original CST
Sizes (Chroma = 12, Spectral Contrast = 7, Tonnetz = 6), Log-Mel 128 with CST Magnified
to 1/4 Size (Chroma = 32, Spectral Contrast = 32, Tonnetz = 32), Log-Mel 128 with CST
Magnified to 1/2 Size (Chroma = 64, Spectral Contrast = 64, Tonnetz = 64), Log-Mel 128
with CST Magnified to 3/4 Size (Chroma = 96, Spectral Contrast = 96, Tonnetz = 96),
and Log-Mel 128 with CST Magnified to Full Size (Chroma = 128, Spectral Contrast = 128,
Tonnetz = 128). Each sub-plot within the figure illustrates a specific metric comparison, with
the top plot showing precision comparison, the middle plot showing recall comparison,
and the bottom plot showing F1 score comparison.

In Table 1, the mean precision remains stable across CST sizes, ranging from 0.812 to
0.845, with a consistent standard deviation of 0.12, indicating steady model performance
in detecting instruments. Recall shows a slight variation, with mean values between
0.16 and 0.18 and a higher standard deviation for 1/4 and 3/4 sizes (0.14) compared to
1/2 (0.11), indicating variability in detecting specific instruments for certain configurations.
The F1 score has a mean range of 0.25 to 0.27, with standard deviations from 0.15 to 0.18,
highlighting some variability in balanced performance, especially at the 1/4 and full sizes.

Overall, Table 1 suggests that while the 1/4 and full sizes achieve slightly higher F1
scores, they also introduce more variability across instruments. This variability hints that
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certain CST sizes may enhance performance for specific instruments but could reduce
consistency across the broader set, indicating a trade-off between targeted accuracy and
general stability across CST configurations.
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Figure 4. Precision, recall, and F1 score comparisons for different spectrogram scaled sizes.
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Table 1. Mean and standard deviation of precision, recall, and F1 score for different CST sizes,
highlighting performance stability and variability across instruments.

Size Setting  Precision  Std. Precision = Mean Recall Std. Recall MeanF1 Std. F1

Y4 CST Size 0.845 0.12 0.18 0.14 0.27 0.18
¥ CST Size 0.812 0.12 0.16 0.11 0.25 0.15
% CST Size 0.820 0.12 0.17 0.14 0.26 0.17

Full Size 0.827 0.12 0.17 0.14 0.26 0.17

OpenMIC-2018 is a multilabel [38] dataset where samples can contain multiple instru-
ments; we use individual confusion matrices for each instrument to evaluate model perfor-
mance. According to Figures 4 and 5, for instruments like accordion, banjo, bass, drumes,
guitar, marimba, piano, synthesizer, and trumpet, a high degree of precision is consistently
maintained across all configurations, indicating effective differentiation with minimal false
positives. However, for cello, clarinet, flute, mandolin, violin, and voice, precision varies,
suggesting certain spectrogram features better reduce false positives. Notably, the “Log-Mel
128 CST Magnified 1/4 Size” configuration generally provides a balanced performance, cap-
turing essential characteristics effectively. Instruments like cymbals, organs, saxophones, and
trombones exhibit significant precision fluctuations, indicating overlapping features with
other instruments, making accurate differentiation more challenging.

Multilabel Confusion Matrix

Accordion Banjo Bass Cello Clarinet
True False True False True False True False
4841 4859 0 4
rise{ 232 1 rise{ 229 15 rase{ 222 4 rise{ 295 7 rse{ 315 6
Cymbals Drums Flute Guitar Mallet percussion
True False False True False False True False
True 63 True 5 L 4689 81 True 12
o false 176 141 False 269 42 False 277 51 False 208 107 False 226 54
e
2
=
T Mandolin Organ Piano Saxophone Synthesizer
g True False True False True False True False True False
<}
-
O . 11 e 0 e 3 e 26 e 27
rise{ 273 56 rse{ 212 9 rse{ 222 82 rise{ 299 90 rse{ 214 91
Trombone Trumpet Ukulele Violin Voice
True False True False True False True False True False
Tue 1 True 12 True 14 True 15 iTe 4818 31
asey 374 19 e 397 56 ey 247 67 ase{ 367 91 e 129 107

| Predicted |

Figure 5. Multilabel confusion matrices for the best-performing model on each instrument. The
rows represent the ground truth labels, while the columns indicate the predicted classifications. The
matrices display true positives, true negatives, false positives, and false negatives for every instrument
classification. Darker shades represent higher values, illustrating areas of strong classification
accuracy and confusion points between certain instruments.
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Recall comparison (Figure 4) reveals consistently high detection rates for accordion,
banjo, bass, piano, synthesizer, trumpet, ukulele, violin, and voice, showcasing the model’s
effectiveness. Variability in recall for cello, clarinet, cymbals, flute, guitar, marimba, man-
dolin, and saxophone, with the “Log-Mel 128 CST Magnified Full Size” often achieving
higher recall, suggests larger feature sizes capture more relevant characteristics. Lower
and more variable recall rates for drums, organs, and trombones indicate that these instru-
ments are less distinct or more challenging to detect accurately. High and consistent F1
scores for instruments like accordion, banjo, bass, drums, guitar, piano, synthesizer, and
trumpet reflect a good balance between precision and recall. In contrast, cello, clarinet,
cymbals, flute, mandolin, organ, saxophone, and trombone show fluctuating F1 scores,
with the “Log-Mel 128 CST Magnified 1/4 Size” and “Log-Mel 128 CST Magnified Full
Size” configurations often performing better. This indicates these configurations provide
a better trade-off between detecting instruments and minimizing false predictions, while
voice, violin, marimba, and ukulele show variability in F1 scores, suggesting room for
optimization in feature size and attention mechanisms.

5. Discussion

The different configurations of CST feature sizes (original, 1/4, 1/2, 3/4, and full)
highlight how scaling affects model performance. Smaller sizes generally provide a com-
pact representation, leading to higher precision but potentially lower recall. Conversely,
larger sizes capture more details, improving recall but possibly introducing more false
positives. The “Magnified 1/4 Size” configuration often achieves a good balance, making
it a preferred choice for general purposes. The variability in performance across different
instruments suggests that certain instruments benefit more from specific feature configura-
tions. For instance, instruments like drums and organs might require more sophisticated
feature combinations or additional attention mechanisms to enhance detection accuracy.
Incorporating attention mechanisms at various stages helps the model focus on the most
relevant parts of the spectrogram, improving overall performance. The results indicate
that these mechanisms are crucial, particularly for instruments with overlapping or subtle
features. Further research could explore optimizing CST feature sizes and experimenting
with other attention mechanisms. Additionally, applying the hierarchical residual attention
network to other audio classification tasks could test its generalizability and effectiveness
beyond musical instrument recognition.

5.1. Early Attention Layer Analysis

The first two rows in Figure 6 illustrate the early convolutional layers, which capture
basic spectral and harmonic structures within the input spectrogram. At this stage, the
feature maps display a high level of activity across the spectrogram, revealing that the
network is primarily learning to detect general patterns such as fundamental frequencies
and overtone series. These early Conv layers act as foundational filters, identifying broad
regions of frequency and amplitude that are essential for distinguishing basic sound
structures. The activity patterns suggest that the network is still focused on general sound
characteristics, laying the groundwork for more detailed differentiation in later layers.

The third and fourth rows depict the height and width attention maps. In the height
attention maps, the model emphasizes certain frequency bands, suggesting that it is begin-
ning to recognize which harmonic regions contribute most to the trumpet and bass timbres.
This selective focus highlights early attempts at isolating key harmonic frequencies. In the
width attention maps, the network shows attention to temporal segments, indicating an
emerging sensitivity to rhythmic or temporal consistency across the input sound. These at-
tention maps reveal how the model begins to prioritize significant areas of the spectrogram,
helping it capture the foundational time-frequency patterns.
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Figure 6. Early feature and attention maps for a trumpet and bass sample showing the initial layer
outputs of the Log-Mel and scaled CST (Chroma, Spectral contrast, and Tonnetz) features. The maps
highlight the fundamental frequency components and outline basic musical structures through a
combination of Log-Mel’s high-resolution representation and the CST features scaled to 1/4 of the
Log-Mel size. The grayscale shades represent values in the feature maps and attention maps, where
darker shades indicate lower values, and lighter shades indicate higher values, providing a visual
representation of the extracted features.

5.2. Mid Attention Layer Analysis

The first two rows in Figure 7 show the mid-layer convolutional outputs, where the
network’s feature maps become more abstract and complex. Here, the model is no longer
capturing only basic spectral patterns; instead, it begins to identify mid-level structures,
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Mid Conv Layer 1 - Filter 20

such as harmonic relationships and timbral qualities specific to each instrument. The
feature maps display more intricate textures and organized clusters, reflecting the model’s
refined understanding of trumpet and bass sounds. These mid-level Conv layers capture
more nuanced aspects of sound, helping the network to distinguish between instruments
with increased specificity.

Mid Feature and Attention Maps of a Trumpet + Bass Sample

Mid Conv Layer 1 - Filter 237 Mid Conv Layer 1 - Filter 166 Mid Conv Layer 1 - Filter 43
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Figure 7. Mid-level feature and attention maps for a trumpet and bass sample, capturing intermediate
representations with heightened detail through the combination of Log-Mel spectrogram and CST
features at 1/4 scale. The mid layers reveal more refined frequency and harmonic structures, enhanc-
ing the model’s ability to distinguish between complex timbral characteristics. The grayscale shades
represent values in the feature maps and attention maps, where darker shades indicate lower values,
and lighter shades indicate higher values, providing a visual representation of the extracted features.
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The height and width attention maps in the mid layers, shown in the third and
fourth rows, demonstrate a sharper and more targeted focus. The height attention maps
now isolate specific harmonic frequencies more accurately, suggesting that the model
has identified frequency bands that are especially characteristic of each instrument’s tonal
quality. In the width attention maps, the network’s focus on temporal segments is also more
refined, capturing rhythm and temporal dynamics with greater precision. This enhanced
attention to both frequency and time dimensions enables the model to extract timbral and
rhythmic cues that contribute to the mid-level understanding of each instrument.

5.3. Late Attention Layer Analysis

The first two rows in Figure 8 highlight the late Conv layers, where feature maps
become highly selective and abstract. These layers capture distinct, high-level represen-
tations that embody the unique sound signatures of each instrument. The network has
refined its focus to specific frequency and amplitude regions, isolating instrument-specific
characteristics like the spectral textures unique to trumpet and bass. The sparse yet sharply
defined patterns in these feature maps indicate that the model has distilled the input into
concentrated features necessary for final classification. This layer’s focus on highly abstract,
distinguishing features reflects the network’s advanced ability to identify each instrument’s
unique sound signature.

In the height and width attention maps of the late layers (third and fourth rows),
we see a strong, focused emphasis on select frequency and time segments. The height
attention maps isolate frequency regions that contribute most to the tonal identities of
trumpet and bass, likely capturing Chroma components that characterize the harmonic
profile of each instrument. The width attention maps display precise temporal focus,
essential for capturing articulation and rhythmic qualities that differentiate the instruments.
This advanced focus on time and frequency allows the model to highlight key sound
features, capturing the unique temporal dynamics and harmonic content crucial for final
instrument classification.

In the final row, the channel attention maps show the model’s ability to focus on
abstracted, high-level channel features. These maps reveal selective emphasis on specific
channels, which are likely to correspond to spectral regions that capture the most informa-
tive cues for instrument identification. By isolating and concentrating on these channels,
the network leverages the most relevant aspects of the combined Log-Mel and scaled CST
features. This channel attention helps synthesize frequency and temporal information
into a cohesive representation, enabling the model to accurately distinguish between com-
plex instrumental sounds, completing the classification process with a robust, high-level
understanding of each instrument.
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Late Feature and Attention Maps of a Trumpet + Bass Sample

Late Conv Layer 1 - Filter 33 Late Conv Layer 1 - Filter 147 Late Conv Layer 1 - Filter 215 Late Conv Layer 1 - Filter 10
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Figure 8. Late feature and attention maps for a trumpet and bass sample, illustrating high-level
abstracted representations formed by deeper layers. The Log-Mel spectrogram and scaled CST
features at 1/4 size contribute to an enriched final classification layer, enhancing the recognition of
instrument-specific patterns through focused, high-contrast attention maps. The grayscale shades

represent values in the feature maps and attention maps, where darker shades indicate lower values,
and lighter shades indicate higher values, providing a visual representation of the extracted features.
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6. Conclusions

In this study, we presented a hierarchical residual attention network for musical
instrument recognition using scaled multi-spectrogram features. By combining the Log-
Mel feature with CST features (Chroma, Spectral contrast, and Tonnetz), our model captures
a more comprehensive representation of audio signals. The attention mechanisms, applied
at various stages of the network, allow the model to focus on the most relevant parts of the
combined spectrogram, improving classification performance.

Our experiments demonstrated that the “Magnified 1/4 Size” configuration achieved
the best balance of precision, recall, and F1 score, highlighting the effectiveness of scaling
spectrogram features to enhance model performance. The use of hierarchical residual
connections and attention mechanisms significantly improved the model’s ability to classify
instruments accurately, even those with subtle or overlapping features.

7. Limitations

This proposed approach improves instrument recognition by leveraging scaled multi-
spectrogram features and hierarchical attention mechanisms; however, it has several limita-
tions. Firstly, the method relies on manually selected spectrogram scaling configurations,
which may not be optimal for all instruments. This reliance on fixed scaling parameters
can lead to inconsistent performance across various instrument types, as certain scales
might emphasize features relevant to some instruments while underrepresenting others.
Additionally, the model’s performance heavily depends on the quality and diversity of
the training dataset. Limited training samples for less common instruments could result
in reduced accuracy for these classes, as the model may not generalize as effectively to
instruments with fewer examples.

Another limitation is the increased computational complexity introduced by the
layered attention mechanisms. While the hierarchical attention layers enhance the model’s
ability to focus on relevant frequency and time features, they also make the approach
computationally intensive. This complexity could restrict the model’s usability in real-time
applications or deployment on devices with limited processing power, such as mobile or
embedded systems. Furthermore, the proposed method has not been extensively tested
across different audio environments, which may impact its robustness in noisy or acoustic
varied settings. Future work could address these challenges by investigating adaptive
scaling techniques, optimizing model efficiency, and testing the approach under diverse
real-world conditions to enhance its applicability and reliability.

8. Future Work

We recognize that the performance improvements achieved here have room for further
enhancement. Nonetheless, the use of scaled multi-spectrogram features creates opportuni-
ties for further advancements in audio recognition models.

Thus, future work will explore optimizing scaling parameters by making them learn-
able within the network, enabling the model to adjust each feature’s representation during
training for enhanced accuracy.

Additionally, we can investigate multi-channel spectrogram inputs where each channel
applies a different scale or introduce specific attention layers per spectrogram type to
improve feature distinction. Another direction involves adaptive attention mechanisms,
such as Vision Transformer [39], which can adapt feature weighting based on both spectral
and temporal patterns. These strategies could strengthen the model’s focus and improve
its ability to capture complex audio features, addressing some limitations observed in the
current approach.
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