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Abstract: Mildew in maize kernels is typically caused by various fungi, necessitating prompt de-
tection and treatment to minimize losses during harvest and storage. In this study, a deep learning
YOLOvb5s algorithm based on machine vision technology was employed to develop a maize seed
surface mildew detection model and to enhance its portability for deployment on additional mobile
devices. To guarantee the fruitful progression of this research, an initial experiment was conducted on
maize seeds to obtain a sufficient number of images of mildewed maize kernels, which were classified
into three grades (sound, mild, and severe). Subsequently, a maize seed image was extracted to create
an image of a single maize seed, which was then divided to establish the data set. An enhanced
YOLOv5s-ShuffleNet-CBAM model was ultimately developed. The results demonstrated that the
model achieved with an mAP50 value of 0.955 and a model size of 2.4 MB. This resulted in a notable
reduction in the model parameters and calculation amount while simultaneously enhancing model
precision. Furthermore, K-fold cross-validation demonstrated the model stability, and Grad-CAM
validated the model effectiveness. In the future, the proposed lightweight model in this study can
be applied to other crops in the context of portable or online inspection systems, thus advancing
effective and high-quality agricultural applications.
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1. Introduction

Maize is one of the top three worldwidely agricultural products, with a total produc-
tion that ranks high among worldwide food crops. It is widely planted and currently one of
the most extensively distributed crops in the world. In comparison to traditional food crops
like wheat and rice, maize can adapt to most environments and has superior nutritional
value [1]. Maize is also a very important feed crop, containing a variety of nutrients needed
by poultry and livestock, and is a major source of feed for animal husbandry. At present,
maize can be processed into starch, fermented products, alcohol, maize oil, maize food,
maize plastics, and dozens of other types, as many as thousands of products, which are
widely used in the food, aquaculture, chemical, medical, fuel, paper, textile, and other
industries. According to the 2019-2023 yearbook of the National Bureau of Statistics of
China, the average sown area of maize in China is 42.632 million hectares, accounting for
181 percent of the sown area of wheat and 144 percent of the sown area of rice. In 2023,
China produced 272,200,200 tons of maize, which was twice of the total wheat production
and 1.3 times of the total rice production (Figure 1). The advancement of the maize industry
in China has a dual benefit: it enhances food security and fosters economic resilience.
Furthermore, it uplifts rural livelihoods and supports broader economic goals [2].
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Figure 1. Annual maize production of China from 1978 to 2023.

Maize is a dietary staple for a significant proportion of the global population, and the
successful cultivation of this crop is closely linked to the quality of the seeds used. Key
indicators for assessing maize seed quality include moisture content, viability, maturity,
and the presence of surface defects. These factors play a critical role in ensuring optimal
growth and yield. Seed mildew has an important effect on maize vitality. Screening maize
seeds before sowing is beneficial for increasing yield and income. During the storage period
of maize seeds, according to their respiratory characteristics, with the increase in storage
time, their respiratory intensity will continue to increase and continue to generate heat.
The structural characteristics of the maize seed itself ensure that it is easy for endosperms
rich in starch to inhale moisture and heat in the environment, thus becoming the most
suitable growth environment for mold. If the storage conditions are not good, the mold in
the environment will easily lead to more mold in high-moisture maize seeds produced by
respiration and produce maize seeds with different degrees of mold [3]. If moldy seeds
are not screened, moldy seeds will increase the rate of mildew in other seeds and reduce
storage time. In addition, in moldy maize seeds, with the proliferation of microorganisms,
many toxic mycotoxins will be metabolized, such as aflatoxin, zearalenone, etc. The impact
of these mycotoxins on the growth and development of poultry and livestock is significant.
In addition to damaging tissue and organ function, they can cause disease or death in
affected animals. Furthermore, they can facilitate the transmission and prevalence of
diseases by enabling the cross-infection and propagation of microorganisms. Moreover, the
germination rate, seedling rate, and disease resistance of maize will decline markedly as a
consequence of the presence of impurities in the seeds, which will consequently impact
yield and the income of farmers [4]. Therefore, accurately classifying and identifying
seed quality have become urgent problems to be solved. Consequently, in examining the
detection of maize seed surface mildew, scientists and researchers may pursue a variety
of strategies and techniques with the objectives of minimizing environmental impact and
facilitating the advancement of sustainable agricultural practices.

Presently, the quality of crop seeds is still predominantly determined by traditional
manual screening methods. These methods rely on the sensory system of operators,
including the assessment of attributes such as touch, sight, and smell, in conjunction with
personal experience, to evaluate quality. However, this method has many limitations,
such as the insufficient consistency of the results, low efficiency, potential damage, and
susceptibility to subjective bias, which means that it cannot fully and objectively reflect
the true state of seeds. Especially in the detection of large quantities of samples, it is
difficult for manual methods to meet the needs of modern agricultural production. In
addition, while chemical sampling is an accurate method, it is both time-consuming and
costly, making it unsuitable for large-scale commercial seed detection. The advancement
of science and technology has led to the gradual integration of non-destructive testing
techniques, including electronic nose technology, spectral imaging technology, image
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processing technology, and machine vision, into the domain of agricultural product testing.
These methodologies offer robust technical support for the advancement of agricultural
automation, reduce labor costs, and enhance detection efficiency and accuracy. The rise of
computer vision technology has further promoted the development of image processing
and gradually replaced manual operation. However, traditional computer vision relies
on a lot of engineering experience and prior knowledge and analyzes image features by
manually extracting them, which has limitations when dealing with complex problems. In
contrast, machine learning (ML) techniques, particularly deep learning (DL), demonstrate
enhanced adaptability and accuracy through the automatic learning of features within
data sets. DL has demonstrated considerable success in a range of tasks, including image
classification, localization, detection, segmentation, and tracking. The model multilayered
architecture facilitates the learning of intricate feature representations, thereby enhancing
the efficiency and precision of data representation learning. Applying DL to machine vision
for processing and analyzing images of seeds can quickly and effectively detect mildew,
improving seed quality, reducing the introduction of mold, ensuring food safety, and
contributing to the modernization and automation of agricultural production. Although
DL has demonstrated great potential in many fields, its application in agricultural crop
detection still needs further research and exploration. This study aims to utilize DL
algorithms to achieve the automatic detection of surface defects in maize seeds, enhancing
seed quality, increasing germination rates, boosting yield and income, reducing labor costs,
and providing strong support for agricultural production.

DL has been employed extensively in agricultural contexts. Yuan et al. proposed
a novel type of point-centered convolutional neural network (CNN) that demonstrated
superior performance compared to full-band-based CNNs and holds significant promise
for the non-destructive identification of moldy peanuts [5]. Chen et al. integrated a near-
infrared (NIR) snapshot hyperspectral sensor with DL to develop a multi-modal, real-time
coffee bean defect detection algorithm for sorting defective green coffee beans [6]. Xuan
et al. proposed a Partial Least Squares Discriminant Analysis (PLS-DA) model that uses
spectral features for early diagnosis, which can effectively detect whether wheat leaves are
infected with powdery mildew [7]. Lv et al. proposed an improved YOLOVS5 algorithm
and proposed a Bidirectional Feature Pyramid Network (BiFPN)-S structure, called the
YOLOV5-B algorithm, which can accurately identify apple fruit growth in real time [8].
Zhang et al. combined the DL algorithm with edge detection threshold processing based
on the optimized S2Anet (Single-shot Alignment Network) model, and the optimized
algorithm was able to identify cracked and non-cracked seeds effectively [9].

The majority of current research in the field of maize crop detection is concentrated
on the identification of defects and the classification of maize varieties. There is a paucity
of studies addressing the detection of maize mildew. Javanmardi et al. proposed a new
method using a deep CNN as a general feature extractor. Compared with the model
based only on simple features, the model trained by extracting features using a CNN
had a higher classification accuracy for maize seed varieties. A CNN-artificial neural
network (ANN) classifier performed the best [10]. Wang et al. combined a dual-path
CNN model to establish a defect detection method based on a watershed algorithm. The
results proved that the model was effective in identifying defective seeds and defect-free
seeds [11]. Suarez Patricia L et al. proposed a method for segmenting and classifying
maize kernels, which solved the problem of inspecting the quality of maize seeds [12].
Song et al. proposed an improved seed quality evaluation method based on maize seeds
with different qualities based on the Inception—Residuals Network (ResNet). The results
showed that the proposed method had good comprehensive performance in the detection
of maize seed appearance quality [13]. Liu et al. proposed an improved CST-YOLOvb5s
(YOLOV5s + CBAM + SPPCPSC + Transformer) algorithm, which was capable of detecting
damaged and mildewed corn grains with high Precision and mAP50 value. However, the
size of the model was increased to 1.93 times that of the original model [14]. In order
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to develop a portable device for the accurate detection of corn mildew, a new detection
algorithm for corn mildew is urgently needed.

A review of the current research status at home and abroad reveals a plethora of studies
on the quality of maize appearance varieties. However, there is a paucity of experiments
on the detection of maize mildew. The focus of this study is to use DL technology to detect
maize seed surface mildew. DL frameworks such as YOLOv5 were used to detect the
surface defects of maize seeds, especially to identify healthy, mildly moldy, and severely
moldy maize grains using self-created maize seed data sets. In order to achieve the above
main goals, three aspects of work need to be completed: (1) The construction of a maize
seed surface mildew detection hardware system. In accordance with the specifications
for the detection of maize seed surface mildew, an image acquisition apparatus for maize
seed surface mildew was devised, and a hardware system for maize seed surface mildew
was assembled. The image data of healthy, mildly infected, and severely infected maize
kernels were collected. (2) The process of data cleaning and image preprocessing. In order
to meet the requirements of the DL algorithm with respect to both the image and data
set, OpenCV was employed for the purpose of image preprocessing. Furthermore, the
data set was augmented through a series of operations, including image transformation,
enhancement, segmentation, filtering, and morphological processing, with the objective
of enhancing the robustness of the trained model. (3) A DL algorithm for analyzing and
detecting the collected data. According to the characteristics of maize seed surface mildew,
a YOLOv5s model was used for training. On this basis, the YOLOv5s-Shufflenet model
was proposed to replace the YOLOv5s backbone network with a ShuffleNet CNN. Then, a
CBAM was integrated into the improved YOLOv5s-ShuffleNet neck network, resulting in
the proposed YOLOv5s-ShuffleNet-CBAM model. Finally, a healthy maize kernel, slightly
mildewed maize kernel, and severely mildewed maize kernel were identified, and the
model volume was simplified [15].

2. Materials and Methods
2.1. Sample Preparation and Mildew Test

The objective of this study was to identify and differentiate between healthy and
moldy grains in maize seeds. It is essential to obtain a substantial quantity of maize
seeds exhibiting optimal visual characteristics, including the absence of mildew, for the
purposes of model training and detection. The primary cause of maize seed mildew is
a fungal infection, including, but not limited to, Aflatoxin, Aspergillus niger, Streptomyces
griseus, Penicillium, etc. The seeds need to be infected with fungi in advance to meet
the requirements, and pictures of the seeds at various stages of mildewing were taken.
There are a lot of nutrients stored inside maize, which can be well preserved at 12.5% water
content, but when the water content is 15%, mold may grow and multiply. With the increase
in water content, the probability of mold also increases. When the water content is 45% to
60%, the maize itself will germinate. In order to simulate the actual environment of maize
storage in a warehouse, the maize samples were dried to meet the storage requirements,
and then the mildew experiment was carried out.

The species of Zhengdan 958 maize seed has the advantages of having a stable yield
and high yield, strong adaptability, and wide planting area, and it is widely planted in
China. Therefore, Zhengdan 958 kernels were used for the fungal infection experiment.
During the experiment, Aspergillus niger, Penicillium, Aspergillus flavus, and other molds
were inoculated to ensure mildew formation, while external bacteria were introduced to
ensure the diversity of mold species. The experimental environment was set to a constant
temperature of 23 °C and in a humidity chamber of 40%. In order to maintain the diversity
of samples, maize samples were divided into 6 batches, and 300 maize seeds were taken
out every 7 days for treatment, and the phenomena of mold infection were observed by
taking photos. After obtaining a large number of sample data, the experimental data were
divided and calibrated.
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2.2. Image Acquisition System

In order to obtain the surface mildew images of maize seeds, a maize seed detection
platform was designed according to the existing conditions of the laboratory (Figure 2).

450mm
365mm

Figure 2. Image acquisition device (a) and its internal LED light strip (b).

The system primarily consisted of a digital camera (DSC-H10, SONY, Tokyo, Japan)
with an 8-megapixel sensor with 8.1 million effective pixels and a maximum of 8.3 million
pixels. The camera supports a maximum resolution of 3264 x 2448 and USB 2.0 connectivity.
It was mounted on a platform 500 mm above the detection platform to ensure stable image
capture. The inspection platform was modeled using SolidWorks 2021 (Dassault Systemes,
Waltham, MA, USA) and a 3D printer (Aurora A6 Industrial, Aurora Innovation, Shenzhen,
China). The platform measures 200 x 200 x 7 mm (Length x Width x Height) and
contains 100 grooves arranged in a 10 x 10 grid. Based on the initial measurements
of the maize seeds, the grooves were designed with dimensions of 15 x 15 x 6 mm
(Length x Width x Height), with a 5 mm spacing between adjacent grooves.

The quality of an image is of great consequence to the training of the model; the
quality of the light source is similarly a significant factor affecting the quality of the data
set and subsequent experiments. The light source was used to provide an environment
conducive to achieving the desired imaging effect of the target, increasing the brightness
of the environment and the target itself. Two LED strips with a size of 365 x 45 mm
(Length x Width) and a power of 37.2 W were used. The LED strips were protected by a
three-dimensional aluminum housing, and the angle of the light source could be adjusted
by rotating slots on both sides of the strips. The adjustment results are shown in Figure 2b.
A LED dimming studio with a size of 400 x 400 x 400 mm (Length x Width x Height) was
used as a light source obscura (Figure 2a). This can guarantee the closure of the collection
environment, prevent the interference of natural light and other stray light, and ensure the
uniformity of lighting. A total of 100 maize seeds were imaged at a time, with all seeds
positioned on the detection platform. The camera was situated in a fixed position to obtain
images of the maize seeds through a designated aperture at the summit of the light source
box. Subsequently, the captured images were transferred to a personal computer (PC) via a
USB cable for further analysis and processing.

2.3. Imaging Processing
2.3.1. Image Preprocessing and Image Enhancement

The image segmentation algorithm based on the threshold value was adopted in this
paper. The overall steps were divided into 8 parts: grayscale image processing, median
filter denoising, image binarization, open operation, close operation, connected domain
extraction, mark extraction, and image segmentation. Grayscale image processing is a
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fundamental operation that forms the basis for a number of subsequent image processing
operations. The images captured by the acquisition system were initially represented
in RGB format. Subsequently, OpenCV converts the images to BGR format and then
transforms them to grayscale.

From the images provided (Figure 3), the details of the maize kernel appearance
remained clearly visible, allowing for an accurate observation of its surface characteristics.
However, owing to environmental conditions and hardware accuracy limitations, there
were some noises in the image, which showed the contrast and overall quality of the
image. In order to enhance this phenomenon, image enhancement technology was used
as a requisite processing step. This technology serves to augment the visual impact of the
image, thereby accentuating the information pertinent to the observer. By using image
enhancement techniques, it is possible to reduce noise interference while maintaining the
integrity of the original data. This allows the contrast and distribution of the images to
be improved, thereby enhancing the readability of the maize kernels within the image. In
the context of image enhancement, image filtering represents a common technique [16].
Mean filtering can smooth an image by calculating the average value of the pixel neigh-
borhood but may blur the details while removing noise. Median filtering is a nonlinear
filtering method based on ranking statistical theory, which is particularly well suited for the
removal of salt-and-pepper noise. By selecting a window containing the target pixel and its
neighboring pixels, the pixel values within the window are sorted, and the middle value is
taken as the new value of the target pixel. This effectively removes isolated noise points.
The Gaussian filter can use the Gaussian function as the convolution kernel and assigns
different weights according to the distance between the pixel and the center pixel to achieve
image smoothing. After comparing the effects of different filtering methods, we found
that median filtering performed the best in removing salt-and-pepper noise from maize
kernel images, significantly reducing the number of white dots in the images. Accordingly,
median filter technology was selected for the purpose of reducing image noise processing,
which has the potential to effectively suppress noise, enhance the clarity of maize kernels
in the image, and provide a more robust foundation for subsequent image recognition.

u
DL

Figure 3. Raw image of maize seeds.
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Following the application of a filtering technique to reduce noise, the Otsu binary im-
age algorithm was employed to transform the image into a binary representation [17]. The
method is uncomplicated and reliable, rendering it one of the most efficacious techniques
for determining thresholds for image segmentation. As illustrated in Figure 4, the Otsu
method resulted in the retention of numerous minor noises within the image, as well as the
division of several maize kernels into multiple segments. To circumvent this problem, the
image used open and close operations on several occasions.
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Figure 4. Otsu method image binarization.

In image processing, open operation and close operation are two important mor-
phological operations [18]. The open operation first carries out the corrosion operation,
followed by the expansion operation, utilizing the same structural elements. The etching
operation can effectively remove the edge pixels of the image and smooth the outline of the
object, but usually, the number of edge pixels removed is small. The expansion operation
can fill small holes inside the object, connect the neighboring object, and also smooth the
boundary of the object. By using the open operation, the object outline of the image can be
smoothed, long and thin curves will be broken, and small protrusions can be eliminated,
which can help eliminate noise and isolate pixels in the image. In contrast to the open
operation, the closed operation first performs the expansion operation, followed by the
corrosion operation, again using the same structural elements. The closing operation can
make up for the narrow break curve in the image, eliminate small holes, and fill the break
in the contour line, which can also help connect broken objects and recover details that may
have been lost due to filming or processing.

Following the application of open and close operations, it became evident that the
isolated minor points surrounding the stage were eradicated, and the initially divided maize
particles were reunified. This processing effect was very useful in image analysis, which
could obviously improve the quality of the image and the accuracy of subsequent processing
(Figure 5). As illustrated in Figure 4, the images were grouped together following the
completion of the open and close operations. Despite the Otsu algorithm dividing the
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maize seeds into disparate sections, the open and close operations were still able to reunite
them, effectively removing noise pixels while simultaneously rectifying image defects.
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Figure 5. Image after open and close operations.

When processing maize images for accurate cutting, the minimum external rectangle
method was adopted in this study. This method is a classical computational geometry
technique that aims to determine the smallest rectangle that can tightly surround a specific
area in an image, such as a maize seed. By applying the minimum external rectangle
method, we were able to accurately locate the central point of the maize and obtain the
coordinates of its four vertices, thus achieving an efficient division of the maize seeds
(Figure 6). In order to ensure the integrity of each kernel image and adapt to the processing
requirements of the subsequent network model, a certain number of pixels were expanded
from the initial minimum external rectangle. This step was conducted to avoid losing any
important features or details of the maize seed during cropping, thus ensuring that the
resulting single-case maize seed image was complete and suitable for further analysis. By
this method, the image of a single maize seed could be effectively extracted from the original
image to provide a high-quality data set for the subsequent processing and recognition.

2.3.2. Data Annotation

In this study, the YOLOv5s DL framework used the Labellmg annotation tool to anno-
tate and classify the data set. The maize seeds were categorized and numbered accordingly.
Just to make sure that we set all samples on the same page with the molding process, we
took out a batch of maize every week to process into images. We cut seeds into three
images, with 100 maize seeds in each. We divided the samples into three groups: the
Train (samples 1-60), the Test (samples 61-80), and the Val (samples 81-100). We ended
up with six batches of seeds, with a total of 1800 images. We ended up with 1080 train
images, 360 validation images, and 360 test images. This partitioning method ensured
consistency in the timing of mold development among the training, validation, and test
sets, minimizing errors. The maize seeds were classified according to their visual charac-
teristics. Seeds exhibiting optimal health and appearance were designated as “Sound”,
while those displaying slight mold growth were classified as “Mild”, and those with severe
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mold infestation were designated as “Severe”. This classification system was utilized for
the final model performance evaluation. The individual maize seeds were then subjected
to segmentation, and the resulting data set is presented in Table 1. We did not use over-
sampling or loss re-weighting. The focus of our study was the early mildewing of maize
seeds. The characteristics of severe maize are easily discernible, whereas the mild maize
forms of the disease are more difficult to identify. Additionally, in real-world scenarios, the
prevalence and meaning of maize exhibiting only early mild symptoms are significantly
higher than those of maize with severe symptoms. This makes the detection of early-stage
disease in maize a highly practical objective. Consequently, our study incorporated a
greater proportion of corn exhibiting only early mild symptoms.

Figure 6. Maize external matrix.

Table 1. Sample numbers of maize data set.

Class Train Val Test Total

Sound 274 112 105 491
Mild 534 152 171 857

Severe 272 96 84 452

2.4. Evolution and Advantages of DL in Object Detection

The DL algorithm can overcome feature subjectivity in the feature extraction method
of the traditional algorithm and improve the universality of model application scenarios.
In particular, the application of CNNs can not only significantly improve the accuracy of
detection but also make a qualitative leap in processing speed and efficiency [19]. CNNs
are DL models that belong to a branch of ANN. In the field of computer vision, CNNs are
widely used in image classification, image generation, target detection, and other tasks and
have achieved good results. The application of CNNs in the field of object detection marks
a major revolution in the field of DL.

CNNs comprise several layers, including the input layer, convolutional layer, pooling
layer, activation layer, and fully connected layer. By using local perception, weight sharing,
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and spatial context, they can effectively extract image features. The advantages of CNNs
include the following: The use of convolutional layers and pooling layers to extract local
image features reduces the number of model parameters and the amount of calculation,
thereby reducing the complexity and degree of overfitting in the model and optimizing it.
Moreover, CNNs can better extract all kinds of features in image processing and improve
the robustness of the model. It is generally believed that in the past 20 years, target detection
has experienced two stages: The first is that of the traditional target detection method
before 2014. In the second, in the period of object detection based on DL after 2014, there
are two major branches, i.e., the CNN represented by Faster R-CNN and the single-stage
object detection algorithm represented by YOLO.

Two-stage object detection algorithms usually include two main stages. The first
stage is the generation of candidate target regions, usually through a Region Proposal
Network (RPN) or other methods. The second stage consists of classifying and refining
these candidate regions. Two-stage algorithms generally excel in the accuracy of target
detection tasks. They can provide high-quality target detection results and are especially
suitable for complex scenarios and applications requiring high precision. However, due
to the need for two independent phases, two-phase algorithms generally require more
computational resources and time. As a result, their reasoning speed is relatively slow.

3. Results and Discussion
3.1. Surface Mildew Detection of Maize Seeds Based on YOLOuv5s

With the continuous progress of target detection technology, the YOLO series, as a
representative of single target detection methods, has made remarkable achievements in
the field of real-time target detection by virtue of its unique design concept and superior
performance. The single-stage target detection algorithm completes the target detection task
in a single forward propagation without generating candidate regions. This algorithm can
predict the category and location of the target directly through a dense grid or anchor box.
Single-stage algorithms usually have faster inference speed and are suitable for real-time
applications or scenarios with high-speed requirements. While single-stage algorithms
have advantages in terms of speed, they are generally slightly less accurate than two-
stage algorithms. However, some advanced single-stage algorithms have made significant
progress in accuracy [20].

As the fifth version of the YOLO algorithm, YOLOvV5 has made many innovations and
improvements on the basis of the previous version and is also widely used in the current
single target detection algorithm, with relatively high accuracy and detection speed. At
present, YOLOVS has five network structures: YOLOv5s, YOLOv5m, YOLOv5], YOLOvSx,
and YOLOv5n. The traditional YOLOvVS5 algorithm is mainly composed of input, backbone,
neck, and head networks [21]. In this study, maize seed surface mildew detection was
conducted using YOLOV5s, a lightweight version of the YOLOVS5 series. The YOLOvV5s
model was trained specifically for this task.

3.2. ShuffleNetV2 Convolutional Neural Network

ShuffleNetV2 is a deep neural network architecture for efficient and accurate object
recognition tasks. The network model was proposed in 2018 and proved to be more
accurate than ShuffleNetV1 and MobileNetV1 at the same complexity [22]. The main role of
ShuffleNetV2 is to reduce the computational cost of CNNs while maintaining high accuracy,
and it achieves this by using a novel channel shuffle operation and a packet convolutional
strategy. Channel shuffle operation is designed to exchange information between different
channel groups. By mixing channels, ShuffleNet facilitates the flow of information across
groups, helping to reduce parameters and computation without losing performance [23].
The packet convolution strategy divides the input channels into multiple groups, and
convolution operations are performed separately within each group. This approach further
reduces computational costs by reducing the number of connections and computations
within the convolution layer.
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The researcher points out that floating point operations per second (FLOPs) can only
be used to evaluate the complexity of the model theoretically in current studies; instead
of only being used as an evaluation criterion to judge the quality of the model, it should
also start from the actual reasoning speed of the model and put forward four criteria for
building the model: (1) The output and input channels of the convolutional channel layer
should be consistent so that the memory consumption is minimal and the running speed
is the fastest. (2) The convolution of the number of convolution groups should not be too
large. Otherwise, the performance will be affected. (3) Reducing the number of network
branches will improve the running speed of the model. (4) The influence of element-level
operations on network speed cannot be ignored. Based on the above four criteria, this
researcher designed the ShuffleNetV2 network model.

The ShuffleNetV2 model has a new and lighter basic unit. The basic block consists
of two different structures; as shown in Figure 7, one is a structure with a stride of 1;
another is a structure with a stride of 2. The main branches of these two structures are
composed of three convolution layers, namely, 1 x 1 ordinary convolution, 3 x 3 depth
separable convolution, and 1 x 1 ordinary convolution. But the composition of the input
and side branches is different. In the structure with step size 1, the input side performs
channel segmentation, and the side branch directly splices the channel segmentation image
with the main branch image in dimension. In the structure with step size 2, the image is
directly entered into the input end and processed by two branches, whose side branches
are composed of 3 x 3 depth separable convolution and 1 x 1 ordinary convolution. In
these two structures, the information communication between the two branches can finally
be carried out through channel mixing.

™\ N
‘K\ ‘ Input

‘L; ‘ Input
Channel split l l
v
3<3 DWConv X
1x1 Conv (Stride=2) 1x1 Conv
BN RELU BN RELU
3x3 DWConv 3x3 DWConv
(Stride = 1) (Stride =2)

BN BN

‘ 1x1 Conv 1<1 Conv 1x1 Conv

BN RELU BN RELU

Concat

Channel shuffle

‘:/ \‘ Output

o

Figure 7. ShuffleNet V2 basic unit.

3.3. CBAM: Convolutional Block Attention Module

CBAMs combine spatial attention mechanisms and channel attention mechanisms to
overcome the limitations of traditional CNNs in processing information of different scales,
shapes, and directions [24]. Compared with the traditional channel attention mechanism,
the CBAM pays special attention to the sequential relationship between feature graph
channels. At the spatial level, the CBAM enables the neural network to focus on the pixel
regions in the image that play a decisive role in the classification result while focusing less
on regions that contribute to the classification. At the channel level, the CBAM is used
to process the weight distribution between the feature graph channels to ensure that the
model can effectively use the information of different channels. The CBAM significantly
improves model performance when applied simultaneously at both the spatial and channel
levels. Compared with the SE (Squeeze-and-Excitation) attention mechanism, the CBAM
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attention mechanism not only adopts average pooling but also adopts maximum pooling,
which reduces the information loss caused by pooling to a certain extent, making the CBAM
more advantageous when dealing with complex problems [25].

As shown in Figure 8, the CBAM attention mechanism first conducts a global maxi-
mum pooled downsampling and a global average pooled downsampling for input feature
F, and F changes from the original H x W x C to two 1 x 1 x C feature maps, and then
these two feature maps are input into the fully connected multilayer perceptron, and finally,
two 1 x 1 x C feature maps are output. After obtaining these two feature maps, the sigmoid
activation function is used to limit the maps” amplitude between 0 and 1, which is the same
as that in channel attention, i.e., M, in the figure; the size is 1 X 1 x C, and the formula is
as follows:

M (F) = oc(MLP(Avgpool (F) + MLP(Maxpool(F))) (1)
Channel Attention Module
F
MaxPool
— — A )
< o T
— —
Shared MLP
Input feature Spatial Attention Module
Foy

Conv M s
[ [ s |
[MaxPool, Avgpool]

Figure 8. Convolutional block attention module.

Refined feature

After the feature graph M, is obtained, it is not directly input into the spatial attention
mechanism, but the feature graph F_ is obtained by multiplying F and M,. The size of F, is
the same as F, both of which are H x W x C. Then, the spatial attention mechanism obtains
an H x W x 2 feature graph through a global maximum pooling subsampling and a global
average pooling subsampling and then obtains an H x W x 1 feature graph through a
convolution and finally limits its amplitude between 0 and 1 through a sigmoid activation
function to obtain the final M;. Its dimensions are H x W X 1. Finally, the resulting F_ is
multiplied by M; to obtain the final output feature Fs, the size of which is also H x W x C.

M;(F) = o(f77( Avgpool (F) + MLP(Maxpool (F))) ()

7x7

where 7/ represents the convolution kernel of 7 x 7.

3.4. Replacement of Model Backbone Networks and Addition of Attention Mechanisms

The initial step is to register the ShuffleNet module in the ‘common.py’ file. Sub-
sequently, the module is incorporated into the ‘yol.py’ file. A duplicate of the YOLOv5
configuration file, designated “YOLOv5s-ShuffleNet”, was generated, and the underly-
ing network was substituted. The replacement YOLOv5s-ShuffleNet model comprised
193 layers and 849,882 parameters. In comparison to the direct application of the YOLOv5s
model, while the number of layers exhibited a slight increase, the number of parameters
was merely 12% of that of the original model.
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Subsequently, the “YOLOv5s-Shufflenet-CBAM” configuration file was generated
based on the “YOLOvV5s-ShuffleNet” model, resulting in the final model. Figure 9 shows
the YOLOvb5s-Shufflenet-CBAM network framework. In comparison to the original model,
this model comprises 221 layers and 1,066,428 parameters. It is slightly superior to the
“YOLOvb5s-ShuffleNet” model, exhibiting a 15.2% improvement.
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Figure 9. YOLOv5s-ShuffleNet-CBAM model.

In the context of CNNs, the number of parameters has a direct impact on computa-
tional speed, as it represents the number of parameters that the network must calculate.
Reducing the number of parameters significantly improves the network computational
speed. In terms of memory consumption, memory resources are crucial. During training, a
large number of parameters require the network to store weights and intermediate states,
which places a high demand on storage space. This is of particular importance for embed-
ded or mobile devices, where memory limitations can impact the viability of the model
for implementation. Furthermore, the number of parameters affects the model complexity
and expressiveness. Incorporating additional parameters can improve the model ability to
learn, but it can also lead to overfitting, which reduces the model accuracy. In conclusion,
the substitution of the YOLOv5s backbone with ShuffleNet-CBAM results in a notable
reduction in the number of parameters, thereby reducing both the computational and
memory requirements. This renders it an optimal choice for deployment on embedded or
mobile devices.

3.5. Model Parameter Selection and Training for Recognition

In this study, the computer utilized an Intel® Xeon® Platinum 8352V central processing
unit (CPU) with a frequency of 2.10 gigahertz (GHz) and an NVIDIA® RTX 4090 graphical
processing unit (GPU). The operating system utilized was Ubuntu 20.04, and the program-
ming language employed was Python 3.8. The deep learning frameworks employed were
PyTorch 1.10.0 and CUDA 11.3. The network parameter settings employed the stochastic
gradient descent (SGD) loss minimization algorithm, with a batch size of 16. This entailed
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the random selection of four images and their corresponding labels from the input images
per batch for training purposes. The learning rate was set to 0.01, with a learning rate decay
factor of 0.001, and the momentum parameter was configured to 0.937. The improved
model completed 1000 training epochs.

3.6. Model Evaluation Metrics

In this study, the performance of the model in detecting maize seed surface mildew
was evaluated from the following aspects:

(1) Precision refers to the proportion of true positive predictions out of all the instances
that were predicted as positive. The formula is as follows:

TP

P .. __
recision TP + FP

®G)
where True Positives (TP) refer to instances where the model correctly predicts the positive
class. False Positives (FP) refer to instances where the model incorrectly predicts the
positive class.

(2) Recall measures the proportion of actual positive cases that the model cor-

rectly identifies.

TP
Recall = TPLEN 4)

where False Negatives (FN) refer to instances where the model incorrectly predicts the
negative class.

(8) mAP50 provides an overall measure of a model precision and recall across different
classes and Intersection over Union (IoU) thresholds. The formula is as follows:

TP, + TP, +--- TP,
TP, + TP, + --- TP, + FP, + FP, + - - - FD,

mAP50 = )
where TP; represents the number of correct predictions for the i-th category, and FP;
represents the number of incorrect predictions for the i-th category.

(4) Five-fold cross-validation is a pretty common method for assessing models. It helps
improve a model generalization ability and reduce overfitting. To ensure the final model is
stable, the following steps were applied: As shown in Figure 10, the entire data set was
randomly divided into five distinct subsets. Subsequently, the models were trained and
tested five times, with four parts of the data set utilized as the Train and the remaining part
as the Val each time. Ultimately, the results were averaged to obtain the final evaluation.

Splitl Train Train Train Train Val
Splitl Train Train Train Val Train
Splitl Train Train Val Train Train
Splitl Train Val Train Train Train
Splitl Val Train Train Train Train
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 10. Five-fold cross-validation.
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3.7. Model Comparison Analysis

To ensure the final enhanced model meets the desired specifications, a series of exper-
iments were conducted, and three lightweight model backbones (GhostNet, ShuffleNet,
and MobileNet) were integrated into the YOLOv5s model. Concurrently, to address the
diminution of feature values resulting from model lightweighting, three attention mech-
anisms were incorporated: the Shuffle Attention (SA), Coordinate Attention (CA), and
CBAM mechanisms were employed.

As can be seen from Table 2, the YOLOv8s model outperforms YOLOv5s in terms of
performance and mAP50. However, YOLOvSs has a larger size, which makes it too bulky
for model lightweighting. Also, YOLOv5s can effectively improve the Precision, Recall, and
mAP50 of model for the same model improvement, but YOLOv8s does not show the same
performance improvement. In the final model, with the same improvement, we found that
YOLOv5s-ShuffleNet-CBAM could obtain similar results to YOLOv8s-ShuffleNet-CBAM
while being much smaller, so we decided not to choose the improved YOLOv8s model, but
instead, the YOLOV5s was finally chosen.

Table 2. Results of YOLOv5s model.

Class Precision [%] T Recall [%] 1 mAP50 [%] T Size (MB) |
YOLOv8s 86.7 90.9 95.9 21.48
YOLOv8s-ShuffleNet 89.6 90.7 96.3 12.45
YOLOv8s-ShuffleNet-CBAM 87.5 93.2 96.6 13.11
YOLOv5s 88.3 88.0 94.3 13.80
YOLOv5s-ShuffleNet 87.0 87.4 92.8 1.97
YOLOv5s-ShuffleNet-CBAM 90.2 88.0 95.5 2.40
YOLOv5s-MobileNet-CBAM 86.9 90.3 94.8 3.46
YOLOv5s—MobileNet-CA 87.3 88.1 93.6 3.05
YOLOv5s-MobileNet-SA 86.7 89.9 94.5 3.04
YOLOv5s-ShuffleNet-CA 86.8 85.5 929 1.99
YOLOv5s-GhostNet-CBAM 83.3 90.9 95.7 11.82

Note: (1) means the higher value is better; () means the lower value is better and the most accurate item are
shown in bold.

Additionally, compared with the original model (YOLOvb5s), the improved YOLOv5s
models all have reduced model sizes compared to the original model, with the YOLOv5s—
ShuffleNet—-CA model being the smallest but not having a good improvement. While the
YOLOv5s—MobileNet—-CBAM model is the most balanced, the Recall and mAP50 values
have a good improvement, and the model size is greatly reduced but not as significantly
compared to other models. Meanwhile, YOLOv5s—ShuffleNet-CBAM has higher mAP50
values and has the highest Precision value and has a small model size. YOLOv5s-GhostNet-
CBAM has the highest mAP50 value, but the model size is not significantly reduced.

Also, through Figure 11, we could see that with 1000 rounds of training, the models
YOLOv5s-MobileNet—-CBAM, YOLOv5s-MobileNet-SA, YOLOv5s-ShuffleNet—-CA, and
YOLOv5s-GhostNet-CBAM had mAP50 values that eventually converged to 0.93, and
considering a combination of model size and mAP50 values, we decided to choose the
YOLOv5s-ShuffleNet-CBAM model as the final model. It can be seen that the YOLOv5s
model finally stabilized at around 85%. The YOLOv5s-ShuffleNet-CBAM model was stable
at 0.946, and the stability of the improved model was greatly improved [26].

Gradient-weighted Class Activation Mapping (Grad-CAM) is a powerful technique
used to visualize the regions in an image that contribute the most to the predictions made
by a CNN. This method helps in understanding how models make decisions, particularly in
tasks like image classification and object detection. As shown in Figure 12, it was observed
that Grad-CAM in the “Sound” seeds exhibited smooth isotherms. In contrast, the “Mild”
and “Severe” seeds displayed irregular isotherms. The “Mild” seeds exhibited the presence
of small black spots, whereas the “Severe” seeds displayed a predominantly deep red



Appl. Sci. 2024, 14, 10489 16 of 19

coloration. The Grad-CAM method proved to be an effective means of evaluating the
reliability of the model, due to the distinctive features it exhibited.
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Figure 11. Improved YOLOv5s model: (a) mAP50 growth curve, (b) Precision growth curve, and
(c) Recall growth curve in 1000 epochs.



Appl. Sci. 2024, 14, 10489 17 of 19

e)

>
9

. e

) &
£

) (h)

(c
(

(g
(i)
(k

)

Figure 12. Grad-CAM analysis: (a-d) “Sound”, (e-h) “Mild”, and (i-1) “Severe”.

Figure 13 illustrates the detection results of the YOLOv5s-ShuffleNet-CBAM model
for different degrees of maize Fusarium infection. It is evident that the model exhibits high
precision in identifying healthy maize, and it is also capable of detecting minor fungal
lesions that are often overlooked by human observers.

Figure 13. The detection of mold in maize: (0) “Sound”, (1) “Mild”, and (2) “Severe”.
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4. Conclusions

In this study, the improved YOLOv5s-ShuffleNet-CBAM model could greatly reduce
the model size, fully meet the lightweight requirements, and lay a software foundation for
the development and deployment of future mobile devices for the detection of maize seed
surface mildew [27]. The improved YOLOv5s-ShuffleNet-CBAM model has the potential
to markedly accelerate computational speed and reduce model size. In terms of evaluation
indicators, compared with YOLOvVS5s, the improved YOLOv5s-ShuffleNet-CBAM model
could not only have no loss in detection in Precision but also show improvement to a
certain extent, with a Precision rate of 90.2%, a recall rate of 88.0%, and a mAP50 of 95.5%.
Importantly, the model size was reduced from 13.8 MB to 2.4 MB with a decrease of 82.6%.
The model performs similarly to the enhanced YOLOv8s model but with only 18.3% of the
size. Additionally, the K-fold cross-validation proved the model stability, and Grad-CAM
validated the model effectiveness. The improved model not only preserves its high degree
of accuracy in identifying moldy maize seeds, but its overall complexity is also significantly
reduced, thereby facilitating its deployment on a diverse range of platforms, including
embedded devices, mobile devices, and online platforms within the specified application
domain. In future work, a further refinement of the improved YOLOv5s-ShuffleNet—
CBAM model will focus on ensuring a lightweight architecture while maintaining high
precision, with the aim of enhancing practical applications and streamlining deployment in
real-world scenarios.
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