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Abstract: Introduction: Apical periodontitis (AP) is an inflammatory disease of the periapical tis-
sues that is often asymptomatic and diagnosed through radiographic examination. A challenge in
traditional endodontics is disinfection of the root canal system (RCS), which anatomically presents
numerous variations, often leading to persistent infections. Antimicrobial photodynamic therapy
(aPDT) and photobiomodulation therapy (PBMT) offer promising adjuncts, due to their antimicrobial
and tissue-healing properties. Objective: The aim of this article was to report five cases of teeth with
pulp necrosis and asymptomatic apical periodontitis (AAP) treated with aPDT and PBMT proto-
cols. Materials and Methods: Five cases of pulp necrosis and AAP were treated with conventional
endodontic therapy supplemented with aPDT and PBMT. The treatment protocol included chemome-
chanical preparation (CMP), aPDT using a 660 nm diode laser (DL) with methylene blue (MB) as a
photosensitizer (5 min pre-irradiation time), and PBMT using a 940 nm DL. Treatment results were
evaluated through cone-beam computed tomography (CBCT)-based evaluation over 1 year of clinical
follow-up. Results: All cases showed significant bone regeneration and tissue healing, demonstrating
the efficacy of the combination of aPDT and PBMT. Post-operative pain did not occur in any of the
patients, suggesting a possible analgesic effect of PBMT. Conclusions: The combination of aPDT and
PBMT in endodontic therapy promoted tissue recovery and improved the prognosis of AAP. Further
research and randomized control trials are needed to optimize treatment protocols and evaluate the
long-term effects.

Keywords: photobiomodulation therapy; antimicrobial photodynamic therapy; laser; bone regeneration;
apical periodontitis; root canal system

1. Introduction

Apical periodontitis (AP) is an inflammatory disease of the periapical tissues, which
develops as a host immune response to microbial infection inside the root canal system
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(RCS) [1]. AP is typically asymptomatic and diagnosed through radiographic examinations.
Its etiology is associated with the commensal oral microbiota, which invades and multiplies
in the RCS following pulp necrosis due to factors such as caries, tooth trauma, defective
restorations, or unsuccessful endodontic procedures [2]. Necrotized root canals are quickly
inhabited by diverse bacterial communities, which extend to the surrounding connective
tissues via the apical foramen, leading to the development of a periapical lesion [3].

Endodontic therapy seeks to reduce the bacterial load to levels that permit the model-
ing and healing of the affected bone tissue. However, to date, it has not been possible to
find a therapeutic combination that is effective in every case. Existing endodontic treatment
methods have been inadequate in lowering endodontic pathogens below detectable levels.
In fact, AP remains notably prevalent [4]. This shortfall is likely due, in part, to the complex
anatomy of the RCS, which hinders the elimination of bacteria in areas that are difficult
for antimicrobial agents to reach, such as apical deltas, accessory canals, isthmuses, and
dentinal tubules [5]. Additionally, the effectiveness of sodium hypochlorite (NaOCl) (the
irrigant of choice in conventional endodontic therapy) can be limited by factors such as
its concentration, exposure time, and volume within the root canals [6]. Consequently,
it is evident that more advanced disinfection techniques are necessary for the thorough
eradication of endodontic microbial biofilms.

In this context, antimicrobial photodynamic therapy (aPDT) has been suggested
to complement conventional endodontic therapy, in order to combat a wide range of
endodontic infectious diseases [7]. The inactivation of micro-organisms by aPDT is based
on the use of a chromophore or photosensitizer (PS)—a harmless natural or synthetic
chemical solution—which is activated by low doses of visible light in the presence of
oxygen to cause targeted cellular damage. The photodynamic process begins when an
electron in the PS is excited to a higher energy level, leading to the formation of an excited
state. This state is transient, as the energy can be dissipated as fluorescence or transferred
to nearby molecular oxygen through an inter-system crossing mechanism [8] (Figure 1A).
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Figure 1. Schematic representation of mechanisms of antimicrobial photodynamic therapy:
(A) When light is absorbed, the PS is activated, shifting from its ground state to an excited singlet
state. This excited state may undergo inter-system crossing, where the spin quantum number
changes, resulting in a lower-energy, longer-lasting triplet state. The triplet state can then react
through one or both of the oxygen-dependent mechanisms, known as Type I and Type II photo-
processes; (B) in the type I pathway, electron transfer reactions occur from the triplet PS state,
involving a substrate to form radical ions (free radicals), which can then interact with oxygen to
generate cytotoxic species such as superoxide, hydroxyl radicals, and lipid radicals. In contrast, in
the Type II pathway, energy transfer from the triplet PS state to ground-state molecular oxygen
occurs, producing singlet oxygen which can oxidize biological molecules such as proteins, nucleic
acids, and lipids, leading to cytotoxic outcomes.

When a PS is excited by an affine wavelength, it generates a cascade of photochemical
reactions, causing the generation of reactive oxygen species (ROS), such as hydroxyl
radicals, hydrogen peroxide, and superoxide (type 1 reaction) and singlet oxygen (1O2)
molecule (type 2 reaction) (Figure 1B), which have toxic effects on bacteria and fungi [9].
The cytotoxic effects of aPDT are primarily due to the oxidative stress induced by light



Appl. Sci. 2024, 14, 9341 3 of 14

(photo-oxidative stress), which leads to severe damage to bacteria cell membranes and
nucleic acids [10].

Various light sources have been mentioned for aPDT, including light-emitting diodes
(LEDs), halogen lamps, and lasers [11]. Among these, diode lasers (DLs) are particularly
favored due to their portability, ease of use, and lower cost. Additionally, the wavelength
range emitted by DLs aligns well with the electronic absorption spectrum of the majority
of available PS [12]. The wavelength for irradiating a PS is determined by its absorption
coefficient. It has been specified that appropriate wavelengths are 620–700 nm for tolu-
idine blue O (TBO) and methylene blue (MB), 600–805 nm for cyanine, 620–650 nm for
hematoporphyrins, 300–500 nm (ultraviolet/blue light) for curcumin and its derivatives,
and 660–700 nm for phthalocyanines [13].

Several aPDT protocols have been published for the disinfection of root canals in
patients with endodontic infections; however, there is noticeably high variability in the
parameters used among them. Despite this wide variation in parameters, aPDT has been
shown to be effective in reducing the bacterial load within the root canal [14,15].

On the other hand, photobiomodulation therapy (PBMT) involves using non-thermal
light at wavelengths ranging from 650 to 1350 nm to induce a biological response through
photonic energy transfer. This non-ablative energy modulates the biological processes of
the target tissue, directing its action mainly to tissue repair and pain reduction [16]. PBMT,
also called low-level laser therapy (LLLT), operates through a photochemical effect, where
the absorbed light triggers a chemical reaction known as photobiostimulation. This process
influences the release of various growth factors, which are essential for the development of
epithelial cells, fibroblasts, collagen, and vascular proliferation [17]. The effects generated
can be described as anti-inflammatory, analgesic, and accelerated wound healing, while also
stimulating the synthesis of enzymes that play roles in lysosomes and mitochondria [18].
Visible and infrared laser radiation produces photophysical effects that alter intracellular
activities, impacting the respiratory chain by boosting ATP within the mitochondrial
membrane (Figure 2A). Promising results have been reported for PBMT on human gingival
fibroblast proliferation [19,20] or in bone tissue regeneration processes [21,22] (Figure 2B). It
is believed that LLLT reduces post-operative pain primarily by stimulating the production
of endorphins, which, in turn, mitigates discomfort [23].
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Figure 2. Schematic of the mechanisms of action and clinical effects of photobiomodulation:
(A) Cytochrome C oxidase (CCO), the primary chromophore located in complex IV of the mito-
chondrial respiratory chain, plays a critical role in PBMT. When CCO absorbs light (particularly
in the red and near-infrared wavelengths), it leads to the photodissociation of nitric oxide (NO).
This process reduces oxidative stress and subsequently boosts the production of reactive oxygen
species (ROS), ATP, and calcium ions (Ca2+). As a result of increased ATP and protein synthesis, the
growth factor response within cells and tissue occurs. These changes promote the desired biological
responses, including anti-inflammatory, analgesic, and healing effects, while also enhancing cellular
processes such as differentiation, proliferation, and migration. For these effects to occur, light must
be absorbed by chromophores, which are interrelated molecules (e.g., enzymes, cell membranes, and
extracellular substances) that have the capacity to absorb light. (B) Extraoral application of laser
(red/infrared) directed toward the apical area of the affected tooth. By irradiating this area as a
supplement to the endodontic treatment, accelerated bone tissue regeneration can be achieved.
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As far as we are aware, there is limited information available regarding treatments
that incorporate both aPDT and PBMT as adjunct therapies in in vivo studies. The case
reports presented here contribute to the documentation of the effectiveness of laser-based
therapies, showing results obtained in real clinical situations. Moreover, most of the
previously reported in vivo methodologies lack three-dimensional cone-beam computed
tomography (CBCT) imaging controls, which introduces bias in the analysis of the therapy’s
outcome [24–27].

Therefore, the aim of this paper was to present a series of five cases involving pulp
necrosis and asymptomatic apical periodontitis (AAP), which were managed with con-
ventional endodontic therapy, supplemented by aPDT and PBMT, and evaluated through
CBCT imaging.

2. Case Report

The study was carried out in accordance with the Helsinki Declaration, and all patients
signed the informed consent. The study was also conducted in accordance with the CARE
guidelines (https://www.care-statement.org/) (accessed on 3 July 2023). The approval for
the study protocol was granted by the Scientific Ethics Committee of Universidad de La
Frontera (062/21). Table 1 summarizes the clinical and medical history of each of the five
treated patients.

Table 1. Summary of relevant clinical information of the five cases presented.

Tooth Endodontic
Diagnosis

Painful Symp-
tomatology Age Gender

Relevant
Medical
History

Ethnicity Weight Height Cigarette
Smoking

Alcohol
Con-

sumption

Case 1 1.2 Pulp necro-
sis/AAP No 27 Male No Amerindian 90 kg 180 cm No Yes

Case 2 1.1/2.1 Pulp necro-
sis/AAP No 33 Female No Amerindian 61 kg 160 cm No Yes

Case 3 1.2 Pulp necro-
sis/AAP No 43 Male No Amerindian 76 kg 162 cm No No

Case 4 3.3 Pulp necro-
sis/AAP No 41 Female No Amerindian 55 kg 157 cm No Yes

Case 5 2.7 Pulp necro-
sis/AAP No 33 Female No Amerindian 61 kg 160 cm No Yes

2.1. First Case

The first case is a male patient, 27 years old, with no relevant medical history. Panoramic
and periapical radiography showed a radiolucent lesion associated with tooth 1.2. CBCT
examination showed an osteolytic lesion of dimensions 14 × 11 × 9 mm, causing expansion
and fenestration of the vestibular table (Figure 3A–C).

Clinical examination revealed normal soft tissues, and both percussion and sensitivity
tests (gutta-percha and ethyl chloride) were negative. The diagnosis was pulp necrosis
and AAP. Endodontic treatment of tooth 1.2 was performed in two sessions. The root
canal was prepared in the first session using the mechanized instrumentation Reciproc
#40/0.06 (VDW, Munich, Germany). Between each instrumentation, an irrigation volume
of 10 mL of 2.5% NaOCl was delivered through a 30-gauge side-vented needle (Becton
Dickinson, Madrid, Spain) at a 1 mm working length (WL). The canals were irrigated
with ethylene-diaminetetraacetic acid (EDTA) 17% (Ultradent, South Jordan, UT, USA)
for 1 min, followed by 1 mL of saline and 1 mL of 2.5% NaOCl successively. The final
disinfection protocol consisted of Passive Ultrasonic Activation (PUI) (Ultra X, Eighteeth,
Changzhou, China) of 2.5% NaOCl, 3 cycles of 20 s, with the ultrasound tip positioned
2 mm from the WL. Subsequently, ultrasonic activation (Ultra X, Eighteeth, Changzhou,
China) of 0.005% MB (Chimiolux, DMC, Sao Paulo, Brazil) was performed for 30 s and
the pre-irradiation time was 5 min (Figure 4A). The PS supernatant was aspirated before
performing photoactivation. Afterward, intracanal disinfection was carried out using

https://www.care-statement.org/
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aPDT with a DL (Therapy EC, DMC, Sao Paulo, Brazil) set to the following parameters: a
wavelength of 660 ± 10 nm, a power output of 100 mW, and a total energy of 9 J (Figure 4B).
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Figure 4. Intracanal disinfection with aPDT was conducted utilizing a DL with the following
specifications: wavelength 660 ± 10 nm, power 100 mW. (A) MB inside the root canal and pulp
chamber; (B) the laser used for all cases was therapy EC; (C) activation of MB using laser light inside
the root canal; (D) the PBMT treatment entailed employing a wavelength of 940 ± 10 nm, one spot
measuring 0.2 cm2, and a power of 0.1 W.
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The laser tip was positioned at WL and activated by performing helical movements
to ensure an equal light distribution for 90 s (Figure 4C). Finally, 5 mL of 2.5% NaOCl was
activated using PUI to remove the PS. Once dry, the canal was treated with calcium hydroxide
(Ca(OH)2) (Ultracal XS, Ultradent, USA) and provisionally restored with ionomer glass (Ketac
Molar). Then, PBMT using a DL at 940 ± 10 nm (Biolase, EpicX) was applied. The treatment
involved using one spot with a size of 0.2 cm2 and a power of 0.1 W. Each point was treated
for 40 s in continuous mode [22]. The treatment was distributed to 1 extraoral buccal point
per lesion, resulting in a total energy of 4 J. The energy density used was 20 J/cm2 (Table 2). A
tipless surgical handpiece was used for PBMT extraoral therapy (Figure 4D).

Table 2. Laser parameters used for PBMT.

Wavelength (nm) Power (W) Energy Per Point (J) Time (s) Energy Density
(J/cm2) Number of Points Spot Size (cm2)

940 0.1 4 40 20 1 0.2

After 7 days, a second disinfection and aPDT session were carried out, following the same
protocol as in the first session. After completion, the canal was irrigated with 10 mL of 2.5%
NaOCl (activated using PUI for 60 s), dried, and obturated using the synchronized hydraulic
technique with Bioroot bioceramic sealer (Septodont, Saint-Maur-des-Fossés, France). The
PBMT protocol described above was then applied. After the second session, a weekly session
of PBMT was applied for the following 4 weeks, resulting in a total of 6 applications. Three-
dimensional images were obtained using a Promax 3D CBCT (Planmeca, Helsinki, Finland),
with parameters of 90 kV, 12 mA, FOV 8 × 8 cm, and voxel size 0.15 mm, and analyzed using
the Romexis 4.5.1.R software (Planmeca, Helsinki, Finland). The defect and bone volume were
measured initially and at 1-year follow-up (Figure 3D–F).

2.2. Second Case

The second case is a female patient, 33 years old, with no relevant medical history.
Panoramic and periapical radiography showed an apical lesion associated with teeth 1.1
and 2.1. The CBCT showed an osteolytic lesion of dimensions 11 × 10 × 8 mm, causing
expansion and fenestration of the vestibular table (Figure 5A–C).
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Clinical examination revealed normal soft tissues, and both percussion and sensitivity
tests (gutta-percha and ethyl chloride) were negative. The diagnosis was pulp necrosis and
AAP. Endodontic treatment was performed in two sessions, and the root canal preparation
was carried out with an instrument of size #40/0.06 (Reciproc, VDW, Germany). The
protocols used for chemomechanical preparation (CMP), disinfection by aPDT, and PBMT
were the same as in case 1. The defect and bone volume were measured initially and after
1-year of follow-up (Figure 5D–F).

2.3. Third Case

The third case is a male patient, 43 years old, with no relevant medical history.
Panoramic and periapical radiography showed an apical lesion associated with tooth
1.2. The CBCT revealed an osteolytic lesion of dimensions 10 × 10 × 8 mm in tooth 1.2,
causing expansion and fenestration of the vestibular table (Figure 6A–C). Both the percus-
sion and sensitivity tests (gutta-percha and ethyl chloride) were negative. The diagnosis
was pulp necrosis and AAP. The protocols used for the CMP, disinfection by aPDT, and
modulation by PBMT were the same as in case 1. The root canal preparation was conducted
with an instrument of size #40/0.06 (Reciproc, VDW, Germany). The defect and bone
volume were measured initially and after 1-year follow-up (Figure 6D–F).
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Figure 6. CBCT images of tooth 1.2: (A–C) Coronal, Sagittal, and axial pre-treatment images revealed
an osteolytic lesion measuring 10 × 10 × 8 mm, resulting in expansion and fenestration of the
vestibular table and (D–F) coronal, sagittal, and axial post-treatment images. Notice the gain of bone
tissue throughout the affected area.

2.4. Fourth Case

The fourth case is a female patient, 41 years old, with no relevant medical history.
The CBCT revealed an osteolytic lesion measuring 10 × 9 × 8 mm in the anteroinferior
region of the mandible, associated with tooth 3.3. The lesion´s expansion caused significant
bone loss, directly affecting the buccal cortical and resulting in fenestration (Figure 7A–C).
Sensitivity and percussion tests yielded negative results. Ethyl chloride and gutta-percha
were used for the sensitivity tests. The diagnosis was pulp necrosis and AAP. It was decided
to proceed with conventional endodontic treatment, instrumenting up to size #40/0.06
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(Reciproc, VDW, Germany), using the same CMP and obturation protocol as explained in
case 1. To supplement the endodontic treatment, aPDT was used for disinfection and PBMT
for modulation. The laser parameters were the same as in case 1. To ensure standardized
monitoring, the patient was asked to undergo a CBCT to evaluate the defect and bone
volume initially and after 1 year of follow-up (Figure 7D–F). It is important to highlight
that, in this case, significant bone gain was observed at the 6-month follow-up.
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Figure 7. CBCT images of tooth 3.3. Coronal, axial, and transverse CBCT views at pre-treatment
(A–C) and post-treatment (D–F). The apical lesion initially measured 10 × 9 × 8 mm. A clear recovery
of trabecular and buccal cortical bone can be observed, when comparing images C and F, after using
conventional endodontic therapy combined with laser therapy in both its aPDT and PBMT modalities.

2.5. Fifth Case

The fifth case is a female patient, 33 years old, with no relevant medical history, and
clinically asymptomatic. Radiographic examination revealed a lesion associated with the
mesiobuccal and distobuccal roots of tooth 2.7. The CBCT study provided a more detailed
view of the lesion´s volume in three dimensions (Figure 8A–C), measuring 9 × 9 × 6 mm.
The treatment of choice was conventional non-surgical endodontics, combined with aPDT
disinfection and PBMT. In this case, the buccal roots were instrumented up to a size of #35.06
(Zenflex, Kerr, EE.UU), and the palatal root up to #40/0.06 (Reciproc, VDW, Germany).
The protocols used for both the endodontic treatment and laser therapy were the same
as those described in case 1. After 1 year of follow-up, there was clear evidence of bone
tissue gain in the affected area (Figure 8D–F). The patient remained asymptomatic. It is
important to highlight that, in this case, significant bone gain was observed at the 3-month
post-treatment follow-up.
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Figure 8. CBCT images of tooth 2.7. Coronal, sagittal, and axial CBCT images before (A–C) and after treat-
ment (D–F). The three-dimensional CBCT study reveals an osteolytic lesion measuring 9 × 9 × 6 mm at
the apical level, affecting the mesiobuccal and distobuccal roots. Comparing images C and F, it can be
observed that, after 1 year of laser therapy, the lesion had satisfactorily resolved.

2.6. Control Periapical X-rays

X-rays play a key role in diagnosis, treatment planning, execution, and follow-up.
As part of the endodontic protocol applied in the five cases presented here, conventional
periapical X-rays were taken to complement the information provided by CBCT (Figure 9).
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Figure 9. Control periapical X-rays of the five cases treated with conventional non-surgical endodon-
tics supplemented with aPDT and PBMT: (A) Case 1, Tooth 1.2. An apical puff can be observed.
(B) Case 2, Teeth 1.1 and 2.1. The root canals appear fully obturated. (C) Case 3, Tooth 1.2. A straight
root canal is completely sealed. (D) Case 4, Tooth 3.3. The tooth is obturated in the cervical, middle,
and apical thirds. (E) Case 5, Tooth 2.7. Endodontic obturation of the mesiobuccal, distobuccal, and
palatal canals is visible. In all cases, bone tissue regeneration can be observed at the apical level.
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3. Discussion

The prevalence of AP continues to increase, despite technical and technological ad-
vances in endodontic procedures. It has recently been reported that more than half of the
world’s adult population presents at least one tooth with AP, making its resolution a critical
issue from a public health point of view [28].

aPDT has been presented as a valuable, non-invasive, and promising alternative for
the eradication of bacterial infectious diseases [29]. Some articles have used planktonic
models to evaluate the antimicrobial activity of aPDT [30]. However, biofilms have been
proven to be much more resistant to antimicrobial agents than planktonic bacteria (even
up to 1000 times more resistant). Including patients as cases makes it possible to truly
evaluate the efficacy of aPDT against complex and mature bacterial organizations. aPDT
has been reported to be highly effective against endodontic biofilms. Chrepta et al. [31] have
reported, in their systemic review, that aPDT can reduce the bacterial load by 91.3% to 100%.
Another study has demonstrated that aPDT effectively removes E. faecalis biofilm from the
RCS before or after reciprocating instrumentation [32]. A recent randomized controlled
study has assessed the ability of PUI and Ca(OH)2 dressings to reduce bacterial counts in
45 single canal anterior teeth with medium-sized periapical lesions, comparing them to
aPDT. While aPDT yielded higher and more promising results than Ca(OH)2 dressings,
it did not show a statistically significant advantage over PUI [33]. Furthermore, in vitro
studies have not revealed comparative advantages in using aPDT [34,35]. This could be
due to the short pre-irradiation time used and the low production of ROS species.

In the cases presented here, the PS used was MB, due to its proven ability to inactivate
Gram-negative and -positive bacteria [11], including E. faecalis [36]. The literature has
reported that, in addition to eliminating bacteria, aPDT can accelerate bone formation
processes in the periradicular zone and modulate bone healing [24]. Similarly, one of the
main outcomes of PBMT is collaborating with bone remodeling [21]. The results reported
here demonstrate that, through jointly employing aPDT and PBMT using wavelengths of
660 and 940 nm, an evident and sustained bone regeneration process was achieved after
3, 6, and 12 months of follow-up. These observations complement the results reported
by Firmino et al. (2016) [24], who observed bone regeneration and periodontal ligament
restructuring at 6 months after applying PBMT and aPDT using 660 nm DLs. On the
other hand, Rubio et al. (2022) [22] have also reported bone repair at 6 months using dry
disinfection with a 940 nm DL and PBMT. The resolution of the lesion was associated with
the local application of aPDT, which has shown great potential in significantly reducing
the presence of bacteria and effectively disrupting biofilms. However, longer follow-up
periods are recommended to obtain more accurate conclusions [37].

While the parameters for pre-irradiation and irradiation times have been extensively
discussed in the literature, a consensus has not yet been reached. Typical pre-irradiation
times vary between 5 and 15 min [22,24,38–40], while the irradiation time ranges between
30 and 60 s [22,27,32,41,42]. These observations are consistent with the protocol used in the
present study. However, it is important to note some limitations of the use of PS in aPDT.

The first limitation is the potential discoloration that the PS can cause in the treated
tooth, particularly in anterior teeth [43]. Several reports have indicated that 5 min of
pre-irradiation with MB or TBO is enough to generate a color change at day 30 [43] and
day 60 [44], compared to the baseline measurement. Some authors have reported that the
combination of Endo-PTC cream with 2.5% NaOCl is effective in removing MB or TBO
from the RCS [45,46]. It should be noted that, in the present study, 2.5% NaOCl was used
as the final irrigation, which was activated with an ultrasonic system. No discoloration
was observed in any of the teeth in follow-ups beyond 60 days. The second limitation is
the volume of residual PS at the time of light activation. For optimal performance, it is
necessary to aspirate the excess PS, as was performed in our protocol. This prevents the
excess solution from absorbing the applied light, thereby making the disinfection process
more effective.
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Post-operative pain is a fundamental variable to analyze when evaluating new an-
timicrobial therapies. LLLT combined with PBMT is recognized as one of the most potent
non-pharmacologic methods for alleviating pain [47]. Several articles have reported that
applying aPDT in endodontic treatments does not ensure a decrease in post-operative
pain [48–50]. In contrast, Lopes et al. (2019) [25] concluded, through a randomized con-
trolled clinical trial, that PBMT after endodontic treatment had a significant effect on
post-operative pain. Yildiz et al. (2018) [51] observed a decrease in pain within the LLLT
group on both the first and third days. Similarly, Nabi et al. (2018) [52] and Asnaashari
et al. (2011) [53] found that pain following endodontic treatment was notably reduced in
the LLLT group at intervals of 4, 8, 12, 24, and 48 h post-treatment. Additional studies have
confirmed significant pain relief from 4 to 48 h in LLLT groups [25,54,55].

Similarly, none of the patients in this study reported signs of pain after completing
the therapeutic regimen. This may be due to the analgesic action that PBMT can exert.
However, characteristics such as wavelength, energy and power density, beam spot area,
and the time and number of irradiations should be taken into consideration, as they may
affect the outcomes.

Research has suggested that the analgesic effects are attributed to the anti-inflammatory
and neurological actions of LLLT, such as enhancing lymphocyte and nerve cell respiration,
stabilizing membrane potentials, and releasing neurotransmitters into inflamed tissues [53].
Moreover, LLLT significantly increases fibroblast activity, accelerates the healing of connec-
tive tissues, and exerts anti-inflammatory properties [56].

4. Future Perspectives and Conclusions

Interestingly, phenothiazines—which are synthetic non-porphyrin compounds (like
MB and TBO)—are among the most extensively researched PS in the endodontics field.
However, traditional PSs face significant drawbacks, including limited water solubility,
an unpredictable drug release profile, inadequate target specificity, and a low extinction
coefficient, all of which impede their clinical effectiveness. As a result, encapsulating these
PSs in nanostructured materials has emerged as a promising strategy to enhance their
performance within the RCS [57].

In summary, our results demonstrated that aPDT combined with PBMT using 660 nm
and 940 nm DL has a dual effect of promoting tissue recovery in cases of AAP and improv-
ing the overall prognosis, even after 1 year of follow-up. However, further research and
randomized control trials are needed to fully understand the optimal protocol parameters,
as well as the long-term effects of these therapies.
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19. Sterczała, B.; Grzech-Leśniak, K.; Michel, O.; Trzeciakowski, W.; Dominiak, M.; Jurczyszyn, K. Assessment of Human Gingival
Fibroblast Proliferation after Laser Stimulation In Vitro Using Different Laser Types and Wavelengths (1064, 980, 635, 450, and
405 nm)—Preliminary Report. J. Per. Med. 2021, 11, 98. [CrossRef]

20. Kocherova, I.; Bryja, A.; Błochowiak, K.; Kaczmarek, M.; Stefańska, K.; Matys, J.; Grzech-Leśniak, K.; Dominiak, M.; Mozdziak,
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