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Abstract: The Sanshandao Gold Mine is currently in the deep mining stage. The ground pressure on
the surrounding rocks is gradually becoming more considerable, and at the same time, threatened
by the overlying seawater, the possibility of mine water inrush accidents is increasing. In this study,
the MTS815 rock triaxial seepage test system was employed for the triaxial compression testing and
stress–seepage coupled testing of granite under different confining pressures. The results show that
granite’s pre-peak mechanical evolution under different confining pressures is divided into four
stages (the crack closure stage, linear elasticity stage, stable crack expansion stage, and unstable
crack expansion stage). With the increase in the confining pressure, the crack initiation threshold,
crack damage threshold, and peak threshold gradually increased, but the closure threshold had no
corresponding change. Moreover, in the loading process, the permeability curve first decreased and
then increased, and the confining pressure suppressed the peak permeability of granite. Finally, based
on the test results, stress sensitivity analysis was carried out, and it was found that polynomials fit the
relationship between permeability and effective stress better. Granite’s permeability showed strong
stress sensitivity at medium confining pressures. The stress sensitivity of the permeability of granite
decreased with increasing effective stress at medium and high confining pressures, while it tended to
increase at low confining pressures.

Keywords: granite; pre-peak mechanical characteristic; stress threshold; pre-peak seepage characteristic;
permeability; stress sensitivity

1. Introduction

With the increasing depletion of land-based easy-to-exploit resources, mineral resource
extraction is moving in the direction of the sea. The Sanshandao Gold Mine is the first metal
mine in China to engage in underground mining of coastal deposits on the continental
shelf [1]. The ore body is mainly hosted in the granitic bedrock of the fault zone [2]. Accord-
ing to statistics, water inrush accidents related to fracture zones account for more than 80%
of all water inrush accidents [3]. In agreement with the literature [4], the current mining
of the Sanshandao mine is in the deep mining stage, and the hydrogeological conditions
have become more complex. The mining of the ore body not only has a disturbing effect
on the underground stress field but also alters its fissures, which, in turn, creates water-
conducting channels and increases the possibility of water inrush accidents. In conclusion,
the occurrence of a water inrush accident is a process in which the stress field and the
seepage field interact and couple with each other.

The progressive failure of rocks is associated with many rock engineering problems [5].
It responds to the gradual development, expansion, and connectivity of new cracks, which
can reveal the mechanical evolution characteristics of the rocks. In recent years, many schol-
ars have conducted extensive research on the progressive failure of rocks: Wang et al. [6]
studied the influence of bedding on the progressive failure process of rocks and carried
out triaxial compression tests on different beddings. It was found that the pre-peak failure
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process of shale was divided into an elastic stage, a stable crack propagation stage, and an
unstable crack propagation stage. Xue et al. [7] found that the crack closure threshold, crack
initiation threshold, and damage threshold can divide the failure process of rock samples
into different stages. At the same time, the ratio of the threshold to uniaxial compressive
strength can be used as an important index to predict the degree of rock failure. Nicksiar [8]
proposed a new method of LSR to determine the crack initiation threshold of rock with low
porosity. At the same time, it was compared with the other five strain-based methods to
determine the crack initiation threshold. It was found that the former eliminated the inter-
ference of human factors. Li et al. [9] studied the influence of anisotropy on the initiation
mechanism and evolution of cracks in the progressive failure process of shale and found
that the ratio of the stress threshold to peak strength can provide meaningful information
about the anisotropic deformation and failure mechanism of shale. Wei et al. [10] carried
out uniaxial and triaxial compression tests on hard sandstone, proposed an improved
crack initiation criterion to determine the crack initiation threshold of rock samples and
verified the triaxial compression test data of different rock types. Xiao et al. [11] conducted
conventional triaxial tests on red sandstone at different seepage pressures and found that
the stress threshold decreased with increasing seepage pressure. Amann et al. [12] used
the acoustic emission technique to determine the crack initiation threshold and damage
threshold. It was found that the crack initiation threshold was 30% of the fracture stress
and the crack damage threshold was 70% of the fracture stress. Song et al. [13] proposed
a structural evolution theory based on energy evolution, microscopic characteristics, and
rock burst initiation to reveal the rock’s progressive failure process and rupture mechanism.
Luo et al. [14] explored the progressive rock failure mechanism from the perspective of
energy accumulation and dissipation and found that the eigenvalue of the elastic strain
energy increased quasi-linearly with an increase in the confining pressure. The eigenvalue
of the dissipation energy steadily increased with the increase in the confining pressure. The
above researchers have conducted many positive investigations on the progressive failure
analysis of rocks, but there are few reports on the pre-peak progressive failure analysis
of rocks.

With the increasing depletion of land-based mineral resources, the exploitation of
marine mineral resources has become a new direction of development. Compared with the
exploitation of land-based mineral resources, due to the threat of the underlying seawater,
the exploitation of marine mineral resources is very complex [15]. In recent years, stress–
permeability coupling has also gradually become prevalent, and many researchers have
conducted a lot of research in the field of fluid–solid coupling. Jia et al. [16] found that
with an increase in effective stress, the permeability and porosity of granite decrease
gradually. The relationship between effective stress and permeability can be described via
the exponential and power law. Chen et al. [17] showed that the permeability with stress
differences showed four stages: slow decline, smooth development, slow increase, and
rapid increase. Wang et al. [18] carried out stress–seepage coupling tests under different
pore pressures and found that the permeability of granite increased with the increase in the
initial pressure difference. Souley et al. [19] and Oda et al. [20] studied the evolution of the
permeability of brittle intact rocks during conventional triaxial compression tests, revealing
the coupling mechanism between rock permeability and damage processes. The effects of
seepage pressure, confining pressure, and rock microstructure on permeability evolution
have been investigated [17,21,22]. Some tests have shown that deviatoric stress leads to the
development and expansion of cracks in brittle rocks, leading to a significant increase in
permeability [19,23]. Meng et al. [24] conducted solid–flow coupling tests on calcareous
sedimentary rocks and proposed a corresponding weakening mechanism based on the law
of the evolutionary process of permeability and microstructures. Xiao et al. [11] found that
the peak permeability of sandstone lagged behind the peak stress under different seepage
pressures and showed a sudden jump near the peak stress. Most of the previous studies
have focused on the effects of seepage pressure, confining pressure, and microstructure
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on rock permeability, and little has been reported on the evolution of pre-peak stress–
permeability, which is of engineering concern.

In summary, there are few studies on granite’s mechanical and seepage pre-peak
characteristics. The MTS815 rock triaxial seepage test system was employed to test the
triaxial compression–seepage conditions under different confining pressures to reveal
granite’s mechanical and seepage pre-peak characteristics. Based on the test results, stress
sensitivity analyses were carried out to show the permeability stress sensitivity of granite
under different confining pressures. The results of this study will be helpful for the
establishment of a coupled flow–solid model for the safe mining of bedrock deposits on the
seabed of Sanshandao and provide corresponding data support.

2. Test Methods and Principles
2.1. Stress–Seepage Coupling Test

Considering granite as a low-permeability rock, the transient method was used in
the MTS815 rock triaxial seepage test system to determine the permeability of the rock
samples, as shown in Figure 1. During the seepage test, the change in the seepage pressure
difference ∆P was the only indicator of the permeability of the rock [24,25]. Combined with
the data automatically collected with the computer in the test, the following formulation
was used to calculate the permeability of the rock:

K =
1

5A

A

∑
I=1

m lg [∆P(I − 1)/∆P(I)] (1)

where A is the number of data collection lines; m = 526 × 10−6 is the value of the test
parameter [26,27]; and ∆P(I − 1) and ∆P(I) are the seepage pressure differences in rows
I − 1 and I, respectively. K is the permeability (m2) (1 Darcy = 0.986923 × 10−12 m2).
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Figure 1. Rock triaxial seepage test system.

The working principle diagram of the test is shown in Figure 2. σ1, σ3, P1, P2, and ∆P
are the stress pressure, confining pressure, the water pressure on the specimen, the water
pressure under the specimen, and the water pressure difference, respectively. The method
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of the stress–seepage coupling test was to apply a certain confining pressure σ3, an axial
pressure σ1, and the water pressure on the specimen P1, and then apply the water pressure
under the specimen P2, resulting in the formation of a seepage pressure difference between
the two ends of the specimen, where ∆P = P1 − P2.
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Figure 2. Schematic diagram of stress–seepage loading of rock samples.

Test Procedure

(1) The rock sample was wrapped in a heat-shrinkable tube and sealed with a blower.
(2) The confining pressure was applied with a loading rate of 0.5 MPa/s until the confining
pressure reached the set value. (3) Then, the axial pressure was applied with a loading
rate of 0.2 KN/s until the axial pressure reached the set value. (4) A pore loading system
was used to apply the water pressure on the granite P1 and the water pressure under the
specimen P2, respectively, at a loading rate of 0.2 MPa/s up to a set value, resulting in
an initial water pressure difference, ∆P. To avoid water leakage from the side wall of the
heat-shrinkable tube, the value of the confining pressure was more than 1 MPa, which was
larger than the water pressure during the test. (5) The value of the confining pressure was
changed, and steps (1)–(4) were repeated until all rock samples were tested. The specimen
test conditions are presented in Table 1.

Table 1. The test conditions of the specimens.

Specimen Number σ3/MPa P1/MPa P2/MPa ∆P/MPa

A00 5 4 1 3
B00 10 9 1 8
C00 20 18 3 15

2.2. Triaxial Compression Test
Test Procedure

(1) The rock sample was wrapped in a heat-shrinkable tube and sealed with a blower.
(2) Axial and circular strain meters were installed on the specimen to monitor the changes in
the axial and radial strains during loading. (3) The confining pressure (5 MPa, 10 MPa, and
20 MPa) was applied at a loading rate of 0.5 MPa/s until the confining pressure reached the
set value. (4) The axial pressure was applied at a 0.12 mm/min loading rate. The value of
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the confining pressure was changed, and steps (1)–(4) were repeated until all rock samples
were tested, as shown in Figure 3.
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3. Analysis of Test Results
3.1. Mechanical Characteristics
3.1.1. Pre-Peak Progressive Failure Analysis

In the loading process, the rocks showed different mechanical characteristics at differ-
ent stress stages. According to the deformation of the rocks and the development of cracks,
the concept of a stress threshold was introduced to characterize the stress–strain process of
the rocks before the peak into a gradual failure process and to analyze the change rule of
the rock stress threshold, which is of great significance for monitoring the stability of the
surrounding rock in seabed bedrock mining.

The characteristic thresholds in the pre-peak stress–strain process contain a crack
closure threshold σcc, crack initiation threshold σci, crack damage threshold σcd, and
peak strength σp [28,29]. The pre-peak stress–strain process in rocks can be divided into
four stages based on the stress threshold: (1) the crack closure stage (OA), (2) the linear
elasticity stage (AB), (3) the stable crack expansion stage (BC), and (4) the unstable crack
expansion stage (CD), as shown in Figure 4.

A lot of research has been conducted on the determination of stress thresholds.
Eberhardt et al. [30] used acoustic emission techniques to identify the crack initiation
strength (σci) and crack damage strength (σcd) and found that the number of acoustic
emission events captured starts to increase when the stress reaches σci. However, determin-
ing other stress thresholds is more ambiguous due to noise in the acquisition environment.
By observing the stress–volumetric strain curve, it was determined that the turning point
of the curve is the crack damage strength σcd. This method can determine the σcd more
intuitively, but it cannot accurately identify the σci [31]. Therefore, the crack initiation
strength (σci) is determined with the help of the crack volumetric strain, and the relevant
formulation is given as follows:

εv = ε1 + 2ε3

εcv = εv − (1−2µ)(σ1−σ3)
E

}
(2)
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where ε1, ε3, εv, and εcv are the axial strain, radial strain, volumetric strain, and crack
volumetric strain, respectively, where E and µ are the modulus of elasticity and Poisson’s
ratio, respectively.
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Considering that rock samples have greater randomness during the transition from the
crack closure stage to the elasticity stage, there will be a significant error if the stress–strain
curve is used to determine the crack closure strength [11]. Therefore, the axial strain
difference curve was used to determine the crack closure strength, as shown in Figure 5,
and its calculation formula [11] is as follows:

∆ε1 = ε1 −
σ1 − σ3

σcd
εcd (3)

where ∆ε1 and εcd are the axial strain difference and the axial strain corresponding to the
crack damage strength (σcd).
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According to the axial strain difference calculated using the above formulation, the
axial strain difference–stress curve can be plotted, as shown in Figure 6. The stress value
corresponding to the peak of the curve is the crack closure strength (σci). Stress–volumetric
strain curves, the crack volumetric strain, the axial strain difference, and stress–strain
curves were used to determine the crack damage strength (σcd), crack initiation strength
(σci), crack closure strength (σcc), and peak strength (σp), respectively, of the rock during
progressive rock failure under different confining pressures. The results are plotted in
Figure 7. By observing Figure 7, it is found that the crack initiation strength (σci), crack
damage strength (σcd), and peak strength (σp) are positively correlated with the confining
pressure, but the confining pressure has no effect on the crack closure strength (σcc). As
a dense rock, many primary cracks are in a high-degree-of-closure state in granite. It can
be concluded from Table 2 that the ratio of the crack initiation strength to peak strength at
different confining pressures ranges from 0.35 to 0.37. According to the researchers’ studies
in [32–34] on the cracking strength of brittle rocks, it was found that the ratio of the crack
initiation strength to the peak strength is between 0.3 and 0.5. The ratio of the rock damage
strength to the peak strength is in the range of 0.37 to 0.46 in this study, much lower than
the range of 0.7 to 0.85 reported in the relevant literature [35]. The reason is that granite, as
a dense rock, needs longer accumulation in the unstable crack expansion stage from the
damage threshold to the peak strength.
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Table 2. Stresses and stress ratios of granite under three confining pressures.

σ3 (MPa) σci (MPa) σci/σp (%) σcd (MPa) σcd/σp (%) σp (MPa)

5 74.26 37.16 90.58 45.33 199.85
10 85.87 35.23 109.28 44.84 243.74
20 110.27 34.68 120.58 37.92 317.97

3.1.2. Deformation Characteristics

According to the stress threshold, the corresponding stress–strain curve can be divided
into four parts: the crack closure stage I, linear elasticity stage II, stable crack expansion
stage III, and unstable crack expansion stage IV, as shown in Figure 8. To better demonstrate
the results, the stress–volumetric strain curve is divided into two parts, and the relevant
points are interpreted in Table 3.

Table 3. Volumetric strain curve of each point interpretation summary table.

σ3 (MPa) σcc σci σcd σp

5 a b c d
10 a′ b′ c′ d′

20 a′′ b′′ c′′ d′′

The characteristics of each deformation stage are analyzed as follows.
Crack closure stage I: As shown in Figure 8, it is found that the stress–strain curve

and the stress–volumetric strain curve are concave and highly coincident during the crack
closure stage, indicating that the rock volume gradually becomes dense when the confining
pressures and axial pressures start to act on the rock samples, and only longitudinal cracks
occur in response. The primary cracks in the rock samples are closed until the crack closure
strength (σcc).

Linear elastic stage II: The stress–strain curve of the rock samples shows a linear trend
until the crack initiation strength (σci), which reflects the internal deformation of the rock
samples as elastic deformation during the gradual increase in axial stress. Observing the
volumetric strain curve, the volume of the rock samples is found to be in compression, and
the primary crack continues to be closed.

Stable crack expansion III: As shown in Figure 8, when the axial stress starts to exceed
the crack initiation strength (σci), it is found that there is no significant change in the
volumetric strain, and the crack stability development stage is short. Martin [36] suggests
that only secondary cracks occur parallel to the load direction change in this stage.

Unstable crack expansion IV: This is the final stage of the progressive failure process,
the unstable expansion stage of cracks. According to Figure 8, it can be found that when
the stress in the rock specimen exceeds the crack damage strength, the direction of the
volumetric strain is deflected from positive to negative. This indicates that the volume
of the rock sample is transformed from compaction to expansion, and a large number of
secondary transverse and vertical cracks are developed in the inner part of the rock sample,
and the process lasts until the peak stress (σp).

3.2. Analysis of Seepage Evolution

Rock permeability is essential in determining the occurrence of water inrush in seabed
mining engineering. Many factors affect permeability, including stress, seepage pressure,
and confining pressure. Evidently, these factors affect the permeability characteristics of a
rock by altering its cracks. In this section, the results of the mechanical characteristics are
combined during the progressive failure of the granite in the previous section to reveal the
pre-peak evolution of the permeability of the granite.
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The Pre-Peak Evolution Characteristics of Permeability

The permeability of the granite was calculated according to Equation (1), and the
permeability pre-peak evolution curves under different confining pressures were plotted,
as shown in Figure 9.
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It should be noted that the four parts, I, II, III, and IV, divided in Figure 10 correspond
to the crack closure stage (I), linear elasticity stage (II), stable crack expansion stage (III),
and unstable crack expansion stage (IV), respectively. No stress point is set in this part,
considering that the stable crack expansion stage (III) is shorter in the whole progressive
failure process.
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According to Figure 9, The initial permeability of the granite at confining pres-
sures of 5 MPa, 10 MPa, and 20 MPa were 3.55 × 10−8 Darcy, 2.57 × 10−8 Darcy, and
2.07 × 10−9 Darcy respectively. The initial permeability of the granite under the different
confining pressures was the maximum throughout the loading process. It was found that
the initial permeability of the granite gradually decreased with the increase in the confining
pressure. Previous researchers have also concluded the same negative correlation between
the permeability of rock samples and the confining pressure [37]. It is noteworthy that
although the difference between the three levels of confining pressures was two times, the
permeability values of the rock samples at 5 MPa and 10 MPa were in the same order of
magnitude. In contrast, the difference between the rock samples at 20 MPa and those at
10 MPa was by one order of magnitude. The final permeability of the granite at the confin-
ing pressures of 5 MPa, 10 MPa, and 20 MPa were 5.80 × 10−9 Darcy, 1.08 × 10−9 Darcy,
and 1.28 × 10−9 Darcy, respectively. The final permeability of the granite under different
confining pressures was the minimum throughout the loading process. Interestingly, the
final permeability values of the granite at 5 MPa, 10 MPa, and 20 MPa were in the same
order of magnitude. Furthermore, comparing the initial permeability and final permeability
of the granite under different confining pressures, it was found that both were one order
of magnitude different. Therefore, the axial pressure and confining pressure were key to
the decrease in the permeability. By observing Figure 9, it can be concluded that when the
progressive failure process of the rock samples was in stage I, with the increase in the axial
pressure, the permeability of the granite as a whole showed a decreasing trend. The cracks
gradually closed at this stage, and the seepage channel slowly shrank. When the axial
stress crossed the crack closure threshold (σcc) and entered the linear elasticity stage (II),
the closure of the internal pore cracks in the rock was complete, and the seepage channels
were barren, leading to further attenuation of the permeability of the rock samples. It can
be observed in Figure 9 that when the axial stress crossed the crack initiation threshold
(σci) and entered into the stable crack expansion stage (III) and the unstable crack expan-
sion stage (IV), the permeability of the granite rose. This indicates that secondary crack
expansion was occurring within the sample and that the width of the seepage channels was
expanding and increasing in number, resulting in the gradual recovery of the permeability
of the granite. According to Figure 9, it can be found that the limitation of the permeability
of rock samples by the pressure was quite critical. Zheng et al. [38] suggested that this is
because the confining pressure acts to consolidate the pore and fissure pressures within the
rock sample.

3.3. Effective Stress Analysis under Stress–Seepage Coupling

The effective stress principle is essential in stress–seepage field coupling [39]. A great
deal of research has been conducted on this: Terzaghi [40] first proposed the concept of
effective stress to describe the geotechnical medium via the coupling of external stress and
pore water pressure. The formulation is as follows:

σ′ = σ −p (4)

where σ is the stress acting on the entire geotechnical medium, σ′ is the stress acting on the
particles of the geotechnical medium, and p is the fluid pressure between particles. The
formulation is widely used in the field of geotechnical solid–flow coupling. Researchers
have extended the formulation with further improvements: Biot [41] introduced an effective
stress factor α, which corrects the equation as follows:

σ′ = σ − αp (5)

A big controversy exists for the effective stress coefficient α value. The former also
proposed a number of calculation methods. The researchers of [42] consider the effective
stress factor α to be equal to the porosity of the porous medium φ. Geertsma [43] and
Skempton [44] proposed that the effective stress coefficient is related to the equivalent bulk
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modulus (K) and grain bulk modulus (Ks) of the porous medium. The literature indicates
that the effective stress coefficient does not directly depend on the porosity φ, and after
rigorous formulation derivation and experimental validation, the following expression
is obtained:

α = 1 − K/Ks (6)

In this paper, the volumetric modulus method proposed in the literature [45] was
applied. Based on the known volumetric modulus of the rock and the equivalent volumetric
modulus of the fractured rock mass, combined with the effective stress coefficients in
Equation (6) and substituted into Equation (5) to derive the effective stresses, the curves
between the permeability and the effective stresses are plotted in Figure 10.

Many researchers have carried out many experiments and studies to investigate the
relationship between permeability and effective stress in porous media and have put
forward different views and modeling relationships.

The literature [40] suggests that an exponential model can be used to describe the
relationship between permeability and effective stress in porous rocks:

K = K0e−βPc (7)

where K is the permeability of the porous rock, K0 is the initial permeability of the porous
rock, β is the regression coefficient, and Pc is the effective stress acting on the porous rock.

Civan et al. [46] and Ghabezloo et al. [47] used a power law relationship to characterize
the permeability of porous rocks as a function of the confining pressure:

K = A(σc)− B + C (8)

where A, B, and C are the regression coefficients, and σc is the confining pressure.
Meng et al. [48] found that the relationship between permeability and confining

pressure for cohesive sandstones can be expressed as a polynomial:

K = aσ2
c + bσc+C (9)

where a, b, and c are the regression coefficients.
Xiao et al. [49] proposed the use of a logarithmic model to characterize the relationship

between permeability and effective stress:

(K/Kre f )1/3 = 1 − SIn
(

σe f f /σe f f 0

)
(10)

where σe f f and Kre f are the initial effective stress and corresponding initial permeability,
respectively, and σe f f and K are the effective stress and related permeability, respectively.
The literature [50] gives s =

√
2h/αre f via the derivation of the formula, where h is the

height of the convex body on the microcracks.
Combining the data obtained from the tests and the bulk modulus method described

in the previous section, the permeability was calculated and plotted against the effective
stresses. To investigate the relationship between permeability and effective stress, the test
data were fitted using the three types of appropriate equations described above, and the
accuracies of the three fitting equations are summarized in Table 4. Combined with Table 4
and Figure 10, the cubic polynomial better defines the relationship between permeability
and effective stress in terms of fitting accuracy.

3.4. Stress Sensitivity under Different Confining Pressures

In order to study the coupling mechanism of stress and seepage fields in granite
during the seepage process, the stress sensitivity under different confining pressures was
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investigated. In this paper, the proposed stress sensitivity factor [51] formulation was used
to evaluate the stress sensitivity of granite as follows:

Ss =
1 − (K/K0)

1/3

lg
(

σe f f /σe f f 0

) (11)

where Ss is the stress sensitivity factor, σe f f is the effective stress, σe f f 0 is the initial effective
stress, K0 is the permeability corresponding to σe f f , and K is the permeability corresponding
to σe f f 0.

Table 4. Three kinds of relationship fitting effects summary.

σ3 (MPa) Equation R2 Equation R2 Equation R2 Equation R2

5

Polynomial fit

0.94932

Logarithmic fit

0.62738

Index fit

0.64015

Power fit

0.4146

10 0.99965 0.88102 0.66066 0.42554

20 0.93995 0.58227 0.85959 0.37178

According to Equation (11), the effective stress sensitivity coefficients for the effective
stresses under different confining pressures curves are plotted in Figure 11. Combined with
the stress sensitivity evaluation criteria proposed in the literature [49], as shown in Table 5,
it was concluded that at a confining pressure of 10 MPa, the effective stress sensitivity
coefficients were all greater than 0.4. It shows strong stress sensitivity, indicating that the
permeability of the rock samples was greatly affected by the effective stress. The effective
stress coefficients at 10 MPa and 20 MPa were in the range of 0 to 0.4, showing general
stress sensitivity, indicating that the permeability of the rock samples was less affected by
the effective stress.

Table 5. Stress sensitivity evaluation criteria based on sensitivity coefficient [49].

Stress Sensitivity Coefficient Ss < 0.25 0.25 ≤ Ss ≤ 0.4 0.4 < Ss

Sensitivity degree Weak Medium Strong
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4. Conclusions

In this paper, triaxial compression tests and stress–permeability coupling tests were
carried out on granite to analyze the evolution laws of characteristic thresholds, deforma-
tion, and permeability in the progressive failure process of granite under different confining
pressures, in addition to calculating the effective stresses of the granite under different con-
fining pressures and carrying out the evaluation of the sensitivity of the effective stresses.
The main conclusions are as follows:

1. The closure threshold, crack initiation threshold, damage threshold, and peak strength
divide the evolution process of granite’s pre-peak mechanical characteristics into a
crack closure stage, linear elasticity stage, stable crack expansion stage, and unstable
crack expansion stage. The confining pressure is positively correlated with the closure
threshold, peak strength, and damage threshold.

2. In the evolution of the pre-peak permeability characteristics of granite, when the
confining pressure is certain, the permeability decreases and then increases with the
increase in axial stress, which is more in line with the four phases of the crack change
in the progressive damage analysis. The confining pressure is negatively correlated
with the peak permeability of granite. Especially, the peak permeability at a high
confining pressure differs by one order of magnitude from the peak permeability at a
medium confining pressure.
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3. The polynomial model can better fit the relationship between effective stress and
the permeability of granite. The effective stress sensitivity coefficients of granite are
differently reflected at different confining pressures. At a medium confining pressure,
the permeability of granite is more affected by the effective stress, while at low and
high confining pressures, the effective stress has less effect on the permeability of
granite. At medium and high confining pressures, with the increase in the effective
stress, the stress sensitivity of the permeability of granite gradually tends to diminish,
while at a low confining pressure, the trend is to increase.

Based on previous research, the closure threshold, crack initiation threshold, and dam-
age threshold of granite were determined with the axial strain difference, crack volumetric
strain curve, and volumetric strain curve, and the evolution law of progressive failure
of granite under different confining pressures was obtained. The evolution law of the
permeability of granite with stress under different confining pressures was obtained by
combining progressive failure analysis with stress–seepage coupling analysis. The stress
sensitivity analysis of granite permeability under different confining pressures was carried
out, and the relationship between effective stress and permeability and the stress sensitivity
coefficient of granite permeability under constant confining pressure was obtained.

The bedrock of submarine deposits is a complex hydrogeological environment. There
are some shortcomings in the design of this experiment, and the hydrological environment
of its occurrence was not fully reflected. The stress–seepage coupling direction of granite
after corrosion can be further explored.
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