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Abstract: The allocation of biogas between power generation and heat supply in traditional kitchen
waste power generation system is unreasonable; for this reason, a biogas prediction method based on
feature selection and heterogeneous model integration learning is proposed for biogas production
predictions. Firstly, the working principle of the biogas generation system based on kitchen waste
is analyzed, the relationship between system features and biogas production is mined, and the
important features are extracted. Secondly, the prediction performance of different individual learner
models is comprehensively analyzed, and the training set is divided to reduce the risk of overfitting by
combining K-fold cross-validation. Finally, different primary learners and meta learners are selected
according to the prediction error and diversity index, and different learners are fused to construct the
stacking ensemble learning model with a two-layer structure. The experimental results show that the
research method has a higher prediction accuracy in predicting biogas production, which provides
supporting data for the economic planning of kitchen waste power generation systems.

Keywords: ensemble learning; kitchen waste power generation; biogas prediction; features correlation
analysis; K-fold cross-validation

1. Introduction

Unlike coal, oil, natural gas, and other energy sources, biomass energy has the charac-
teristics of a low energy flow density and a wide range of sources, making it suitable for
building combined heat and power systems with a high energy utilization efficiency and
significant economic benefits [1]. Biomass energy is of great significance in the process of
promoting the low carbon development of power systems [2]. However, the accuracy and
efficiency of the data analysis are affected by the many dimensions and complexity of the
data from new energy systems, such as wind power, photovoltaic, and biomass [3]. Thanks
to the rapid development of artificial intelligence technology, more machine learning al-
gorithms have been applied to the field of electric energy [4]. Artificial intelligence and
machine learning algorithms, such as back propagation (BP) neural network models [5],
eXtreme Gradient Boosting (XGBoost) [6], recurrent neural networks (RNN) [7], support
vector machines (SVM) [8], and other methods, are widely used in the research of renewable
energy forecasting and load forecasting.

The above methods are only a single technique used in data prediction, and there is
still a lot of room for improvement in the prediction problem. In order to avoid the problem
of poor generalization performance due to the randomness of a single model, much research
has used combinatorial models. Qu et al. [9] designed a multi-step prediction model by
stacking bagging, long short-term memory (LSTM), and random forest (RF) algorithms
together, and obtained relatively accurate wind power prediction results. Pan et al. [10]
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used a combined model approach to fuse the light gradient boosting machine (LightGBM),
RF, and SVM algorithms with stacking ensemble models to achieve high recall and accuracy
in the classification problem. Liu et al. [11] used a stacking model to fuse multiple XGBoost
models and used a two-layer stacking prediction model to maximize the performance of
XGBoost, which achieved better results on short-term bus load prediction data, but the
prediction results on biogas data were poor, and further analysis of the ensemble model is
needed to improve the prediction accuracy.

Aiming at the problem that existing algorithms are not accurate in predicting biogas
production, the biogas power generation system studied in this paper centers on the
biogas produced by the fermentation of kitchen waste, and proposes a biogas prediction
method from the physical state data of each part of the gas production system. The specific
contributions are as follows:

e  We analyze the correlation coefficients between system features and target features,
combine the working principle of the system, screen out the features with strong
correlation, and obtain the optimal number of input model features based on the
preliminary prediction.

e  We use the K-fold cross-validation method to divide the dataset proportionally to
avoid the overfitting problem.

e A stacking ensemble learning model is constructed based on different models for
training and prediction, and the stacking model with the best prediction effect is
obtained under different base learners and meta learners.

The paper is structured as follows: In Section 2, the kitchen waste power system
studied in this paper is introduced, and the structure of the proposed biogas prediction
model is described in detail. In Section 3, the actual operational data of the kitchen waste
system is used for experiments and the results are presented and discussed. In Section 4,
the conclusion is presented.

2. Materials and Methods
2.1. Biogas Power Generation Systems
2.1.1. System Introduction

Food scraps and garbage produced in families, restaurants, and other places, known
as kitchen waste, can be harmful to the environment if not handled properly [12]. Studies
have shown that kitchen waste contains a variety of energy sources, such as carbohy-
drate polymers, which can be used for renewable energy production [13]. The kitchen
waste power generation system is based on the multi-energy complementary technology
of coupling cold, heat, electricity, and gas multi-energy streams, and uses information
and communication technology to collaboratively dispatch controllable energy sources to
achieve safe and stable operation of the system [14]. The kitchen waste power generation
system studied in this paper uses anaerobic fermentation to produce biogas. Anaerobic
digestion technology is environmentally friendly and has the advantages of low carbon
emissions, low operating costs, low secondary pollution, and is suitable for large-scale
centralized treatment. It is of great significance in the process of achieving carbon peaking
and carbon neutrality. The energy system for achieving the harmless treatment of kitchen
waste with biogas power generation is shown in Figure 1. The system collects and treats
food waste produced by major catering industries and centralizes it for harmless treatment.
The specific processing steps are: kitchen waste is entered into the system and is cooked by
steam in the cooking kettle to separate the solid, liquid, and oil in the waste wastewater.
The oil is processed into industrial oil and soap raw materials. The solid waste is used as
high protein animal feed. The liquid separates into the buffer tank and finally ferments in
the anaerobic tank to produce biogas. The biogas enters the biogas generator set and gas
boiler after dehydration, desulfurization, and cooling. The biogas is used in the generator
to generate electricity for production purposes, and in the boiler system to produce heat
and steam to meet its own production conditions.
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Figure 1. Kitchen waste power generation system.

2.1.2. The Necessity of Biogas Production Forecasting

At the present stage, the biogas power generation system lacks a link to a biogas
production prediction, and the distribution of biogas between the boilers and the generator
sets relies on manual experience. In order to further improve the construction of biogas-
based Internet of Things and to improve the control and energy efficiency of the power
generation system [15], it is necessary to forecast the biogas output. At the same time, the
analysis and prediction of the internal characteristics of the system are a key prerequisite for
the collaborative system scheduling, and the accuracy of the prediction affects the economy
and reliability of the system scheduling. The main manifestations are: the production
activities in the steaming kettle are driven by steam, and the demand for steam should
be matched with the amount of steam generated by the boiler to achieve the synergistic
cooperation of all parts of the system, and improper control will result in an unnecessary
waste of energy. Workers control the input of raw materials to the system by switching
on and off the waste water tank, and a lack of consideration of the relationship between
the internal demand of the boiler and the biogas production will lead to a reduction in the
energy efficiency of the system. The production of biogas as a key part in these problems
affects the generation of electricity by the generator and heat production by the boiler, as
well as the amount of steam that subsequently enters the steaming kettle. The production
of biogas is closely related to the allocation of system resources and the energy utilization
rate, so an accurate prediction of the biogas production is the main prerequisite for rational
resource allocation and the maximization of benefits.

2.1.3. Feature Selection

The kitchen waste power generation system consists of a water and gas treatment
part, a generator system and a boiler system, which contains many kinds of data, but the
information expressed by each data source is limited, and not all data sources provide
value for the model. If all influencing factors are taken as the input of the model, it will
lead to a complex model structure and reduce the model performance. Therefore, feature
selection is used to find the data that can really affect the objective function, and then the
input and output of the model are reasonably selected to determine the structure of the
model to include as much valuable information as possible [16].

In order to explore the relationship between the features and biogas production,
the filter feature selection method [17,18] is used to calculate the correlation by the two-
dimensional vector Pearson correlation coefficient, and the features with stronger corre-
lations are retained. The Pearson correlation coefficient indicates the linear relationship
between the data, representing the linear correlation between two variables x and y, ex-
pressed by r. The value of r is between —1 and 1, and the larger its absolute value, the
stronger the correlation. Its calculation formula is shown in Equation (1):
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where 7 is the Pearson correlation coefficient, x; and y; is a pair of continuous correlation
variables, and X and ¥ are, respectively, the mean values of the variables x and y.

Sorting by the size of correlation coefficient, the features with a large absolute value
of the correlation coefficient are selected as strong correlation features. Then, a different
number of features are selected for prediction, and an error curve based on the number of
features is obtained. From this, the number of features to be input into the final model is
determined, and the extraction of important features is completed [19].

A total of 79 characteristics are chosen from the three components of the kitchen waste
power generation system. Combined with the analysis in Figure 1, it can be seen that
of the three components, biogas production is more correlated with the water and gas
treatment part. Twenty-one features of the water and gas treatment part are selected for
analysis, among which, the operating frequency and frequency setting features of the two
blowers do not change during system operation, while the change in the pressure regulating
value feature is directly reflected in the inlet pressure features. Therefore, the correlation
between the remaining 15 characteristics and the biogas production are discussed. Specific
correlation coefficient calculations are shown in Table 1. The retained features are selected
based on the data in Table 1, and the specific selection process is described in Section 3.2.

Table 1. System features and correlation coefficient.

Correlation Coefficient with Biogas
System Features

Production

Anaerobic tank: Inlet main line pressure 0.1994
Anaerobic tank: Outlet main line pressure 0.1731

Blower A: Inlet pressure —0.3835
Blower A: Current 0.3130

Blower B: Inlet pressure —0.3152
Blower B: Current 0.3143

Anaerobic tank A: Pressure —0.0471
Anaerobic tank A: Water inlet 0.2837
Anaerobic tank A: Gas flow rate 0.6860

Anaerobic tank B: Pressure —0.0414
Anaerobic tank B: Water intake 0.2999
Anaerobic tank B: Gas flow rate 0.7231
Anaerobic tank C: Pressure 0.1121
Anaerobic tank C: Water inlet 0.3270
Anaerobic tank C: Gas flow rate 0.6860

2.1.4. Prediction Model Structure

The flow chart of the biogas prediction model studied in this paper is shown in Figure 2,
and the research method adopted has the following characteristics: (1) the working principle
of the biogas system is analyzed for the features of water and gas treatment systems with a
high correlation to ensure the correlation and validity of the model input features; (2) the
optimal number of model input features is determined based on the preliminary prediction
results to simplify the model structure; (3) the K-fold cross-validation is used to alleviate
the overfitting problem of the model; (4) a combination of many different single methods is
analyzed to select the best combination of learners using an error and a Pearson correlation
index to build the stacking ensemble learning model, which further improves the prediction
accuracy of the model.
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Figure 2. Biogas production forecast flow chart.

2.2. Biogas Prediction Based on Heterogeneous Ensemble Learning

An ensemble learning algorithm is a meta-algorithm that accomplishes the learning
task by combining multiple algorithms together, which itself does not belong to a separate
machine learning algorithm [20]. Currently, based on different learning purposes, ensemble
learning algorithms mainly include bagging algorithms with minimum output variance, a
boosting algorithm with minimum deviation, and a stacking algorithm with an improved
forecasting effect. In ensemble learning, choosing the best combination strategy can avoid
the problem of low generalization in a single learner. For the regression problem, the
more common combination strategies are averaging and learning. The averaging method
includes simple averaging and weighted averaging, but the averaging method simply
combines the prediction results obtained by the learners, assigning the corresponding
weights to each learner by some specific conditions, without effectively using the data
space [21]. The learning method is to learn the results further by another learner, of which
the stacking algorithm is a representative of the learning method.

2.2.1. Stacking Ensemble Learning Algorithm

The purpose of the stacking algorithm is to train and build a model for combining other
models. In general, stacking ensemble learning with a two-layer structure can enhance
the learning effect and simplify the model [22,23]. The learner in the first layer is the
primary learner, and the learner in the second layer is the meta-learner. The basic idea is as
follows: firstly, the data is divided into a training set, a validation set, and a test set, and
the K-fold cross-validation method is used to train the primary learner from the original
dataset. Then, the output obtained from the primary learner is combined as features with
the corresponding tokens of the initial training set to form a new dataset for training the
meta-learner. In this way, the diversity among different learners is preserved and the
learning effect is strengthened by the different learning strategies. The structure of the
two-layer stacking ensemble learning is shown in Figure 3.
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Figure 3. Two-layer stacking ensemble learning model.

2.2.2. K-Fold Cross-Validation

Generally, in model evaluation, the data is divided into a training set, a validation set,
and a test set, and then the data set is put into the model for training, and the data from
the test set is input into the model after training, and the results obtained will be used to
judge the merits of the model. If the trained model gets a small error in the training set and
a large error in the test set, it indicates that the model is overfitting. In stacking ensemble
learning, the data used to train the primary and meta-learner may lead to a higher risk of
overfitting if they are duplicated. The reason for overfitting is that the tuning process of
model hyperparameters relies on the performance of the validation set on the model as
feedback, and each tuning will leak more information into the model, and multiple cycles
of this process will cause the model to be overfitted on the test set. In order to effectively
avoid the impact of information leakage on the model and reduce the risk of overfitting the
model, K-fold cross-validation is used. The training set is randomly divided into K subsets
of the same size, and when training the model, each subset is selected in turn as the test set,
while the other K-1 subsets are used as the training set. The number of training tests for
each learner is K, and the result of the last K tests is used as the final return value.

In K-fold cross-validation, the value of K is generally 2 < K < 10, and the specific
value is shown in Equation (2).

{ K~InN

N/K > 3d )

where N is the total number of samples and d is the number of features.

2.2.3. Construction of the Heterogeneous Ensemble Learning Model

For the regression problem, the prediction performance of the learner is the starting
point, and the selection of a model with a strong learning ability helps to improve the
overall prediction effect of the model. LSTM, SVR (support vector regression), RF, XGBoost,
LightGBM, and CatBoost (gradient boosting and categorical features) are chosen as the first
layer learners in the stacking model. Among them, the single learner LSTM has a mature
theory and good practice, and is widely used. SVR is an important application branch
of SVM, which uses a support vector in performing the fitting and a Lagrange multiplier
style to analyze the data regression. RF uses the ensemble learning method of bagging.
XGBoost, LightGBM, and CatBoost use the ensemble learning method of boosting. These
methods have found wide application and practice in various fields. In order to prevent
the model from overfitting on the training set, the selection of the second layer stacking
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model should not be too complicated, and a model with a strong generalization ability
and simplicity should be selected. In summary, LSTM, SVR, RF, XGBoost, LightGBM, and
CatBoost are initially selected as primary learners, and XGBoost, LightGBM, and CatBoost
as meta-learners. The biogas prediction model based on model fusion stacking ensemble
learning is shown in Figure 4.
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Figure 4. Biogas prediction based on stacking heterogeneous ensemble learning model.

Further, different models are built from different data perspectives and the algorithmic
principles of the models themselves. For the first layer of primary learners, while consid-
ering the prediction performance, in order to obtain a better fusion model effect and give
full play to the advantages of different models, the complementary characteristics between
the different models need to be considered, that is, there needs to be certain differences
between models. The stacking model relies on the differences between sub models to
maximize the advantages of the integration algorithm [24].

2.2.4. Evaluation Metrics

In order to verify the prediction effect of heterogeneous ensemble learning, the two-
dimensional vector Pearson correlation coefficient is used as an analytical evaluation
index to comprehensively analyze the distribution of prediction errors among the different
primary learners. By calculating the Pearson correlation coefficient of the errors generated
by the prediction between each primary learner, the learners with larger differences are
then filtered as the primary learners of the stacking model.

The prediction accuracy and performance of the prediction models are mainly evalu-
ated by the error between the predicted value and the true value, and the main evaluation
indexes are the MSE (mean squared error), the MAE (mean absolute error), and the MAPE
(mean absolute percentage error). The MSE is used to detect the deviation of the predicted
value from the true value and has a better interpretation, and the larger the value is, the
larger the prediction error is. The MAE reflects the mean of the absolute error, which
can better reflect the actual situation of the error of the predicted value. The formulas for
calculating the correlation error are as follows:

1
MSE = ) (9 — yi)° 3)
i=1
18
MAE = Y |9; — i )
i=1
MAPE — 100/0Z -
=1 l

where 7; is the predicted biogas yield, y; is the actual biogas yield, and # is the length of the
predicted biogas yield series.
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3. Results and Discussion
3.1. Data Sets

The analyzed data are selected from a science and technology project using multi-
energy complementary cooling, heating, and power technology based on kitchen waste
with an intelligent management system. The real-time sampling values of the operating
data from the system from 1 to 23 May 2022 are selected as the raw data, with a sampling
interval of 5 min to predict the biogas production in the coming week. The raw data
contains a total of 79 data characteristics from three parts of the kitchen waste power
generation system, as well as final biogas production data and power generation data.

3.2. Feature Analysis

XGBoost is used to make a preliminary prediction of the biogas production. The
features with the top ranked Pearson correlation coefficients are selected as the most
influential features, and then different numbers of features are selected for prediction
to obtain the error curve based on the number of features. The number of features is
determined based on the error curve, and Figure 5 shows the change curve of the XGBoost
model’s error for different numbers of features.
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Figure 5. Error curve for different number of features.

As can be seen from Figure 5, when the number of selected features is greater than
or equal to 4, the error curve decreases significantly. Therefore, it is determined that four
features should be selected as input to the data. Combined with the data in Table 1, in
this paper, the gas flow rate of the three anaerobic tanks and the inlet pressure of blower
A are selected as the basic features, and the absolute values of their Pearson correlation
coefficients with the biogas production are 0.6860, 0.7231, 0.6860, and 0.3835, respectively.
Taking these four features as inputs to the model improves the prediction effect and reduces
the complexity of the model.
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3.3. Individual Learner Prediction Performance Analysis

The prediction analysis of each weak learner is performed before building the stacking
model, and LightGBM, XGBoost, CatBoost, RF, SVR, and LSTM models are selected to
analyze the learning ability of each model and the degree of correlation between models.
The pre-processed data combined with the cross-validation method are predicted separately
on each base learner. Figure 6 shows the histogram comparison of the error frequency
distribution for each algorithm predicted separately, with the horizontal coordinate being

the prediction error and the vertical coordinate being the frequency of error occurrence.
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Figure 6. Histogram of the frequency distribution of prediction errors for different models.

As can be seen from Figure 6, the overall prediction error frequency distribution of
CatBoost is concentrated in the interval [-5, 5] when each learner model independently
predicts the biogas yield. CatBoost is improved under the gradient boosting decision tree
(GBDT) [25] algorithm with a symmetric decision tree as the base learner, and the indexes
of the leaf nodes on each layer of the decision tree are encoded as binary vectors with a
length equal to the tree depth, which improves the prediction speed while being less prone
to overfitting. Considering that the biogas production data is a set of time-series data, the
biogas generation is not only related to the production state input at the current moment,
but also related to the past input features. An LSTM neural network can make full use of
the data information from a past time, so the LSTM prediction error is also relatively small,
and most of the errors are concentrated in the [—4, 5] interval. There are small outliers in the
prediction structure of other models, and these outliers reduce the prediction effectiveness.

In order to screen the best model as the primary learner, the distribution among the
errors obtained by each base learner’s individual prediction is compared. The diversity
among the models is examined while considering the prediction effect, and the Pearson
correlation coefficient index is used to analyze the degree of variation among the models.
Figure 7 shows the LightGBM, XGBoost, CatBoost, RF, SVR, and LSTM based learners’
prediction error correlation metrics on the original dataset.

From Figure 7, it can be seen that the error correlation is higher for LightGBM, XGBoost,
and CatBoost. This is because they are all representative algorithms based on boosting,
they all belong to the ensemble algorithms of decision trees, and there is a certain degree
of similarity in their way of processing data. The error correlation is lower for the neural
network-based LSTM model, SVR, and RF. This is because there are some differences in the
mechanism of data training among these methods. In summary, CatBoost, LSTM, SVR, and
RE, having lower error correlations, are selected as primary learners.
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3.4. Meta-Learner Selection

The meta-learner of the stacking model can reduce the risk of overfitting while im-
proving the deviation of various types of learners and enhance the generalization ability of
the model. To verify the feasibility of the model proposed in this paper to predict biogas
production, the meta-learner is selected as XGBoost, LightGBM, and CatBoost models to
verify the prediction effectiveness of different meta-learners. Table 2 shows the prediction
performance of different meta-learners on the stacking model.

Table 2. Evaluation metrics for the different meta-learner stacking models.

Meta-Learner MSE MAE MAPE
XGBoost 74.489 3.658 0.220
CatBoost 80.054 3.699 0.223

LightGBM 86.994 4.709 0.238
LSTM 107.86 5.07 0.3022
RF 98.64 4.21 0.2520
SVR 118.03 5.19 0.3244

From Table 2, the stacking fusion model has been improved to some extent in its
bio-gas prediction effect compared with the single model, and when the meta-learner
is selected as XGBoost, the stacking model has the lowest error with an MSE of 74.489
and an MAE of 3.658. The stacking fusion model studied in this paper has a learner
configuration of CatBoost, LSTM, SVR, and RF as the primary learners and XGBoost as the
meta-learner in a two-layer stacking structure, so as to maximize the accuracy of the biogas
production prediction.

3.5. Prediction Performance Analysis

Theoretically, the stacking ensemble model should have a lower prediction error than
a single model. This is because the stacking model combines the strengths of multiple
primary learners and the combined strategy based on the learning method learns the data
further on the meta-learner for better results. As a result, the stacking model improves the
poor generalization performance of the data using a single model. At the same time, during
the model training process, there is a situation where a single model falls into local minima.
However, the stacking ensemble model can effectively reduce the risk of falling into local
minima by combining the operating effects of multiple models. In summary, the stacking
ensemble model improves the prediction accuracy and model generalization ability.
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To further assess the impact of the variability among primary learners on the overall
prediction effect of the stacking model, the prediction errors of the stacking model for other
combinations of primary learners are given in Table 3. The meta-learner of each model
in Table 3 is XGBoost, and the combination of models with a high correlation of different
Pearson errors is chosen. The average error correlation coefficient is the average of the error
Pearson correlation coefficients between the meta-learner and the primary learner. Model 1
is the best combination of primary learners obtained from the previous analysis.

Table 3. Evaluation metrics for different combinations of primary learners.

Average
. Error
Model Primary Learner Set . MSE MAE MAPE

Correlation

Coefficient
Model 1 (proposed method) CatBoost, LSTM, SVR, RF 0.68 74.489 3.658 0.220
Model 2 CatBoost, LightGBM, XGBoost, SVR 0.86 117.08 4.72 0.280
Model 3 CatBoost, LightGBM, LSTM, SVR 0.745 84.54 4.63 0.224
Model 4 LightGBM, XGBoost, LSTM, RF 0.8 104.97 4.20 0.254
Model 5 CatBoost, XGBoost, LSTM, SVR 0.755 98.61 4.03 0.242

From Table 3, different combinations of primary learners have a certain degree of
influence on the overall prediction effect of the stacking ensemble model. The lower the
average error correlation coefficient is, the smaller the prediction error of the obtained
model. So, choosing a less correlated learner as the primary learner can make the prediction
performance of the stacking ensemble learning model better. There are two reasons for this
analysis: choosing the learner with a smaller error for integration can improve the overall
prediction ability of the ensemble model; and different models are trained to process the
data from different perspectives, so choosing the model with greater variability as the
primary learner can give full play to the advantages of different models and improve
the prediction effect of the stacking ensemble model. Figure 8 shows the histogram of
the prediction error distribution obtained by the proposed method. After comparing
Figure 8 with Figure 6, the prediction error of the stacking ensemble learning model is
concentrated in the interval [ -4, 4], and the overall prediction accuracy is higher than that
of a single method.

Freg/times Stacking Model Prediction Error Distribution

L Ty g

6 Bias

Figure 8. Histogram of the prediction error frequency distribution of stacking model.

4. Conclusions

In this paper, a biogas prediction model based on feature selection and heterogeneous
ensemble learning is proposed and applied to the prediction of biogas in anaerobic tanks in
biogas power generation systems for the problem of ensemble planning and rational re-
source allocation. The correlation between the internal features of the system and the biogas
production is analyzed, while different single-prediction models are trained and tested, and
the variability of different primary learner combinations and the influence of meta-learners
on the prediction performance of the model are comprehensively analyzed and compared.
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The results show that the prediction model gives full play to the advantages of different
learners, improves the accuracy of the prediction model, more accurately responds to the
change trend of system parameters, solves the problem of optimal results from a single
model being difficult to obtain, and provides data support for the reasonable allocation of
system resources and optimization of system structure in biogas power generation systems.
In the future, the research on the number of primary learners selected can be continued in
the prediction model selection to further optimize the prediction performance.
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