
Citation: Gaglioti, G.; Nieus, T.R.;

Massimini, M.; Sarasso, S.

Investigating the Impact of Local

Manipulations on Spontaneous and

Evoked Brain Complexity Indices: A

Large-Scale Computational Model.

Appl. Sci. 2024, 14, 890. https://

doi.org/10.3390/app14020890

Academic Editor: Giulia De Bonis

Received: 21 December 2023

Revised: 10 January 2024

Accepted: 16 January 2024

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Investigating the Impact of Local Manipulations on Spontaneous
and Evoked Brain Complexity Indices: A Large-Scale
Computational Model
Gianluca Gaglioti 1,2,*,†, Thierry Ralph Nieus 3,*,† , Marcello Massimini 1,4,5 and Simone Sarasso 1

1 Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
marcello.massimini@unimi.it (M.M.); simone.sarasso@unimi.it (S.S.)

2 Department of Philosophy ‘Piero Martinetti’, University of Milan, 20122 Milan, Italy
3 Core Facility Indaco, University of Milan, 20122 Milan, Italy
4 IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20162 Milan, Italy
5 Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research,

Toronto, ON M5G 1M1, Canada
* Correspondence: gianluca.gaglioti@unimi.it (G.G.); thierry.nieus@unimi.it (T.R.N.)
† These authors contributed equally to this work.

Abstract: Brain complexity relies on the integrity of structural and functional brain networks, where
specialized areas synergistically cooperate on a large scale. Local alterations within these areas can
lead to widespread consequences, leading to a reduction in overall network complexity. Investigating
the mechanisms governing this occurrence and exploring potential compensatory interventions is a
pressing research focus. In this study, we employed a whole-brain in silico model to simulate the large-
scale impact of local node alterations. These were assessed by network complexity metrics derived
from both the model’s spontaneous activity (i.e., Lempel–Ziv complexity (LZc)) and its responses to
simulated local perturbations (i.e., the Perturbational Complexity Index (PCI)). Compared to LZc,
local node silencing of distinct brain regions induced large-scale alterations that were paralleled
by a systematic drop of PCI. Specifically, while the intact model engaged in complex interactions
closely resembling those obtained in empirical studies, it displayed reduced PCI values across all local
manipulations. This approach also revealed the heterogeneous impact of different local manipulations
on network alterations, emphasizing the importance of posterior hubs in sustaining brain complexity.
This work marks an initial stride toward a comprehensive exploration of the mechanisms underlying
the loss and recovery of brain complexity across different conditions.

Keywords: brain complexity; whole-brain modeling; node silencing; perturbations; Lempel–Ziv
complexity; Perturbational Complexity Index

1. Introduction

Over the years, the concept of brain complexity has gained traction within neuro-
scientific research. In this general framework, brain networks strike an optimal balance
between the requirement for functional specialization (differentiation) and that for tight in-
teractions (integration) across modules [1–3]. Within a continuum ranging from segregated
subsystems to an entirely homogeneous macrosystem, the brain would fall in between, in a
complex regime where functionally differentiated groups of neurons are able to engage in
tight reciprocal interactions so that the whole is more than the sum of its parts [4,5].

Recently, this theoretical notion has drawn extensive empirical attention with several
human and animal studies proposing empirical estimates of brain complexity [6]. Specifi-
cally, a growing body of experimental literature has demonstrated a reliable correlation
between complexity measures and the presence or absence of consciousness across different
conditions, confirming early theoretical principles [7].
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Recently, structural human brain networks, also known as ‘connectomes’ [8,9], became
available thanks to different initiatives like the Human Connectome Project and the UK
Biobank Imaging project [10–12]. When such networks are endowed with mathematical
models of local excitability in each node, they allow the development of computational
models to simulate whole-brain dynamics [13–15]. These models provide a controlled and
mechanistic framework to explore a broad spectrum of parameters that are potentially
relevant for better understanding global brain properties such as those implicated in brain
complexity [2,16].

Most empirical and computational investigations have explored network complexity
based on spontaneous neural activity [6]. Such an observational approach can be usefully
complemented by a causal approach, whereby stimulations are used to assess the complex-
ity of neuronal interactions from a causal, rather than correlational, perspective. Along
these lines, the Perturbational Complexity Index (PCI) [17] empirically estimates the joint
presence of differentiation and integration by quantifying the richness of the spatiotemporal
patterns of cortical activity extracted from the electroencephalographic (EEG) response to a
brief local perturbation with transcranial magnetic stimulation (TMS). PCI has provided
a reliable index to assess the loss and recovery of consciousness in both physiological
and pathological conditions [18]. Supported by a series of multiscale experiments in cell
cultures [19,20], cortical slices [21], animal models [22–24], and intracranial and extracranial
human studies [17,18,25–29], this perturb-and-measure approach has also recently been
applied in silico. This computational neuroscience implementation can further elucidate
the mechanistic link between brain complexity and anatomic-physiological brain properties.
Specifically, the relationship between brain complexity and structural connectivity [30,31]
as well as functional network properties [32] have been investigated. In addition, the
modulations of brain complexity dependent on global neuromodulation [33] as well as
local node properties [34] have been recently addressed.

Crucially, it is also possible to link single node properties to large-scale network
dynamics [35,36] and explore the global effects of local manipulations, such as virtual
lesions [37] and silencing [38].

Previous computational investigations have shown that large-scale spontaneous net-
work dynamics change considerably upon local connectivity alterations (i.e., local node
deletion within spatially defined regions) [39]. Along these lines, a strong reduction of
brain-wide activity was observed particularly when simulating the regional inactivation of
posterior areas [40]. These results are particularly relevant in view of a postulated critical
role of posterior regions of the cortex [41,42] in supporting complexity and consciousness.
So far, however, computational studies relating local properties to global brain states have
focused mostly on spontaneous activity [37] and have not explored the complexity of
neuronal interaction from a causal perspective (i.e., using controlled model perturbations).

Here, we exploited direct perturbations and investigated the large-scale impact of
controlled local manipulations (i.e., local node silencing) on network activity and brain
complexity in a whole-brain computational model. Specifically, using “The Virtual Brain”
platform [13,43], we extensively and systematically varied the topology of the stimulated
and the silenced nodes and performed a direct comparison between metrics derived
from observational (Lempel–Ziv complexity) [44] and perturbational approaches (PCI). In
addition, we explored critical properties governing the network information flow [45] and
linked specific features of network organization (i.e., integration and segregation) to the
above-mentioned network complexity metrics.

Our intact model exhibited complex spontaneous patterns emerging from the struc-
tural links of the connectome and engaged in complex and enduring cortical interac-
tions following focal exogenous perturbations closely resembling the empirical TMS-EEG
responses. Importantly, node manipulations revealed an overall reduction of network
complexity measures, underlining interesting dissociations between observational and
perturbational metrics. Interestingly, the impact of local manipulations was highly het-
erogeneous, and the comprehensive spatial sampling of the implemented node silencing
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allowed assessing relevant regional aspects with respect to the role of posterior cortical
regions for brain complexity.

Overall, our results aim at better characterizing the effects of local manipulations on
large-scale network dynamics and may serve as a useful tool to systematically assess the
mechanisms underlying the loss and recovery of brain complexity in pathological conditions.

2. Materials and Methods
2.1. Model Simulations
2.1.1. Structural Connectivity

For the main results of this study, we employed a connectome composed of 76 areas
available in the TVB simulator (2.7.2) (named “Default” connectome, Dconn). Dconn is
based on an anatomical tracing reconstruction (CoCoMac) [46] with directional connections
and is therefore well suited to investigate propagating activities in brain networks [47].
Additionally, we implemented a subset of analyses on a connectome with finer parcellation
consisting of 998 areas (named “Hagmann” connectome, Hconn [48]), as described in
Section 2.1.5.

2.1.2. Neural Mass Model

To model the mesoscopic dynamics of cortical regions, we used the Larter and Breaks-
pear model [49], a conductance-based neural mass model widely employed for simulating
whole-brain dynamics in intact networks [50–58] and lesioned networks [39,59]. According
to the model, the dynamics of a node k are governed by the following ordinary differential
equations (ODEs):

dVk

dt = −
(

gCa + (1 − C) rNMDA aee QV + C rNMDA aee Qnetwork
V

)
mCa(V − VCa)

−
(

gNa mNa + (1 − C) aee QV + C aee Qnetwork
V

)
(V − VNa)

− gKW(V − VK)− gL(V − VL)− aie Z QZ + aneI

(1)

dZk

dt
= b(aniI + aie V QV) (2)

dWk

dt
=

Φ(mK − W)

τK
(3)

where V is the mean membrane potential of the excitatory pyramidal neurons, Z is the
mean membrane potential of the inhibitory interneurons, and W is the average number of
open potassium ion channels. The term rNMDA is the ratio of NMDA receptors to AMPA
receptors, and axy is the synaptic strength originating from population x (e.g., e, i, n, where
e refers to the excitatory population, i to the inhibitory one, and n denotes a nonspecific
input) to population y (e.g., e, i). The rate terms b and ϕ govern the time scales of Z and W,
respectively. The term gion is the maximum conductance (i.e., when all channels are open)
of the corresponding ion species. The voltage-dependent fractions of open channels for a
given ion is determined by mion and is modeled by a sigmoidal shape function:

mion = 0.5
(

1 + tanh
(

V − Tion

δion

))
(4)

where Tion is the mean threshold membrane potential of a given ion channel population,
and δion is its standard deviation. The mean firing rates of the excitatory and inhibitory
populations are determined by the voltage-dependent activation functions QV and QZ,
respectively, modeled as:

QV = 0.5 QVmax (1 + tan h
(

V − VT

δV

)
) (5)
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QZ = 0.5 QZmax (1 + tan h

(
V − ZT

δZq

)
) (6)

where QVmax and QZmax are the maximum firing rates of the excitatory and inhibitory
populations, respectively. Their corresponding thresholds for action potential generation
are given by the terms VT and ZT, with standard deviations δV and δZ, respectively. The
network input to node k is given by:

Qnetwork
V = ∑

j
G ukjQV

(
Vj

(
t − τkj

))
(7)

where ukj is the connection weight from node j to node k, τ is the input delay time, and G is
the global coupling that scales the connection weights. The parameter C in Equation (1)
ranges within [0, 1] and balances the strength of the self-connections against those of the
rest of the network.

The ODEs were solved starting from random initial conditions with the stochastic
Heun integration method available in TVB (with additive Gaussian noise, standard devia-
tion SD = 10−7) and an integration time step of 0.1 ms. A pre-processing step was performed
to reduce the amount of data by temporally resampling the data to a resolution time of
1 ms (i.e., averaging over each 1 ms time step). In addition, the first 3 s of simulations were
discarded (first 14 s in Hconn) to remove the initial transient activities in the model.

In order to improve the responsiveness of the nodes (e.g., propagating activities) to
stimulation, we varied a set of parameters (indicated in bold in Table S2) with respect
to other studies that investigated only the model’s spontaneous activity (e.g., [39]). In
addition, we set the global coupling G (Equation (7)) in such a way as to maximize the
overlap between the functional and the structural connectivity (Figure 1c, see also [60]).
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Figure 1. Whole-brain model for investigating brain complexity in silico. (aI) Each node of the 
whole-brain network is modelled by the Larter and Breakspear (LB) neural mass model (NMM), 
describing the interaction between excitatory (E) and inhibitory (I) neurons. The weights connecting 
the nodes are reported in the structural connectivity (SC) matrix. (aII) The output of the model of a 
given node is the mean membrane potential of the excitatory population (green trace), and the 
timing of the spikes (red dots), detected with a hard threshold on the voltage, are then converted to 
an instantaneous firing rate (IFR) (black overlay trace). (b) The working point of the model (i.e., set 
of model parameters) was obtained based on the spontaneous and evoked activity following three 
steps. First (bI), the correlations between the spontaneous IFR traces were computed to estimate a 
functional connectivity (FC) matrix. Then, the similarity between the FC and SC matrices was 
assessed through the Pearson correlation coefficient. Second (bII), by stimulating a node of the 
connectome (here rPCi), the propagation of activity in the network was quantified in terms of ΔIFRSH 
(ΔIFR averaged over the nodes of the stimulated hemisphere), and some representative trials of 
ΔIFRSH are reported. The evoked area is obtained as the integral after stimulation (red line, between 
0 and 500 ms) of ΔIFRSH averaged across trials. Third (bIII), the SC-FC correlation and the evoked 
area are reported for different global couplings (i.e., a scaling factor of the SC), and both metrics 
reached a peak at G = 4 (working point). The dashed blue lines and arrows illustrate the matches 
between the FC and the SC maps for different G values. The dashed green lines and arrows illustrate 
the evoked area by the stimulus. (cI) We simulated control and local manipulation conditions. Local 
manipulations were implemented by silencing selected nodes. (cII) To assess the impact of local 
node silencing on spontaneous complexity, we calculated Lempel–Ziv complexity (LZc) on ongoing 
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Figure 1. Whole-brain model for investigating brain complexity in silico. (aI) Each node of the
whole-brain network is modelled by the Larter and Breakspear (LB) neural mass model (NMM),
describing the interaction between excitatory (E) and inhibitory (I) neurons. The weights connecting
the nodes are reported in the structural connectivity (SC) matrix. (aII) The output of the model of
a given node is the mean membrane potential of the excitatory population (green trace), and the
timing of the spikes (red dots), detected with a hard threshold on the voltage, are then converted to
an instantaneous firing rate (IFR) (black overlay trace). (b) The working point of the model (i.e., set
of model parameters) was obtained based on the spontaneous and evoked activity following three
steps. First (bI), the correlations between the spontaneous IFR traces were computed to estimate
a functional connectivity (FC) matrix. Then, the similarity between the FC and SC matrices was
assessed through the Pearson correlation coefficient. Second (bII), by stimulating a node of the
connectome (here rPCi), the propagation of activity in the network was quantified in terms of ∆IFRSH

(∆IFR averaged over the nodes of the stimulated hemisphere), and some representative trials of
∆IFRSH are reported. The evoked area is obtained as the integral after stimulation (red line, between
0 and 500 ms) of ∆IFRSH averaged across trials. Third (bIII), the SC-FC correlation and the evoked
area are reported for different global couplings (i.e., a scaling factor of the SC), and both metrics
reached a peak at G = 4 (working point). The dashed blue lines and arrows illustrate the matches
between the FC and the SC maps for different G values. The dashed green lines and arrows illustrate
the evoked area by the stimulus. (cI) We simulated control and local manipulation conditions. Local
manipulations were implemented by silencing selected nodes. (cII) To assess the impact of local
node silencing on spontaneous complexity, we calculated Lempel–Ziv complexity (LZc) on ongoing
network activity. Furthermore, we separately stimulated different connectome nodes under different
local manipulations and calculated the Perturbational Complexity Index (PCI) to gauge the impact of
local silencing on the evoked activity.

2.1.3. Spontaneous Activity and Stimulation Protocol

For the analysis of spontaneous activity, each condition was run for 4000 s, and the
time-series were split into 10 segments of 400 s.

On the other hand, to examine the model’s evoked response, a square wave pulse
of 5 ms and amplitude 1 was applied to a single connectome node, specifically targeting
the excitatory pyramidal cells (as an additive term to Equation (1)). In our study, we
individually stimulated a total of 12 nodes located in the right hemisphere (see Section 2.1.4
below for details), homogeneously sampling all cortical lobes (Table 1).

In all conditions (control and lesions) a stimulus was delivered to the same node (i.e.,
same stimulus) 500 times (500 trials) by reinitializing each simulation. We also jittered the
onset of the stimulus within a range of 2 s. Note that in the Larter–Breakspear model, all
quantities are dimensionless except for time [56], which allows a straight comparison with
the experimental time courses.
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Table 1. Labels of the cortical nodes and their description in Dconn. The stimulated nodes are
reported in bold.

Label Description

A1 Primary auditory cortex

A2 Secondary auditory cortex

Amyg Amygdala

CCa Anterior cingulate cortex

CCp Posterior cingulate cortex

CCr Retrosplenial cingulate cortex

CCs Subgenual cingulate cortex

FEF Frontal eye field

G Gustatory area

HC Hippocampal cortex

IA Anterior insula

IP Posterior insula

M1 Primary motor area

PCi Inferior parietal cortex

PCip Cortex of intraparietal sulcus

PCm Medial parietal cortex (i.e. precuneus)

PCs Dorsal parietal cortex (superior parietal lobule)

PFCcl Centrolateral prefrontal cortex

PFCdl Dorsolateral prefrontal cortex

PFCdm Dorsomedial prefrontal cortex

PFCm Medial prefrontal cortex

PFCorb Orbitofrontal cortex

PFCpol Pole of prefrontal cortex

PFCvl Ventrolateral prefrontal cortex

PHC Parahippocampal cortex

PMCdl Dorsolateral premotor cortex

PMCm Medial premotor cortex (i.e. supplementary motor area)

PMCvl Ventrolateral premotor cortex

S1 Primary somatosensory cortex

S2 Secondary somatosensory cortex

TCc Central temporal cortex

TCi Inferior temporal cortex

TCpol Pole of temporal cortex

TCs Superior temporal cortex

TCv Ventral temporal cortex

V1 Primary visual cortex

V2 Secondary visual cortex
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2.1.4. Local Manipulation Modeling

Building upon prior modeling studies [38,40,61], we simulated local network alter-
ations by reducing the excitability of selected nodes. This silencing was achieved by hyper-
polarizing the manipulated nodes (Figure 1c) to an extent which completely suppresses
their firing activity (mean firing rate = 0). To achieve this, we abolished the excitatory
nonspecific input (ane = 0) and increased the nonspecific inhibitory input (ani = 0.6). We
implemented the different manipulations in one hemisphere (the right hemisphere) to
simulate an affected hemisphere and an intact one (left hemisphere). Consistent with
empirical studies [27], we stimulated the affected hemisphere to assess cortical reactivity
following perturbation near the silenced node.

In line with previous work where 5% of the nodes were lesioned [39], in our study
each manipulation involved approximately 4% of the connectome nodes (three nodes).
As in [39], each local manipulation was defined by first choosing a central node (center
of the manipulation) to be silenced and then selecting the remaining nodes to silence
based on a geometrical distance criterion (Euclidean distance) from the central node.
Manipulation details are reported in Table 2. Whenever the stimulated and manipulated
nodes overlap, the latter were replaced with the closest non-manipulated nodes to the
center of the manipulation. For instance, when stimulating rPCip, which was also part of
local manipulation 1 (L1), we spared rPCip and silenced the next closest node (rV2). For a
fair comparison across conditions between spontaneous and evoked metrics, non-identical
manipulations were excluded whenever a correlation was performed (e.g., in Table S4 in
Supplementary Material).

Table 2. Local manipulation labels in the Dconn connectome. The labels of the local manipulations
and the corresponding nodes silenced in the Dconn connectome. The ranking is based on the MFR
difference (from lowest to highest). Note that when a stimulus overlaps with a silenced node (in
bold), the latter is replaced by a nearby node.

Local Manipulation Label Nodes Ranking (MFR∆)

L1 PCip, PCs, PCm 10

L2 PFCcl, PFCdl, PMCvl 7

L3 TCc, TCs, TCi 4

L4 V2, V1, CCr 18

L5 CCs, PFCorb, Amyg 19

L6 CCa, CCp, CCr 13

L7 M1, S1, PMCdl 5

L8 PCm, PCip, CCp 15

L9 PFCdm, CCa, PFCm 11

L10 A1, A2, S2 16

L11 Amyg, PHC, CCs 17

L12 HC, PHC, TCv 2

L13 PFCpol, PFCm, PFCdm 9

L14 PFCvl, G, PMCvl 8

L15 TCpol, Amyg, PFCorb 20

L16 CCa, PFCdm, PFCdl 12

L17 IP, TCs, S2 14

L18 S1, M1, PCs 3

L19 PFCdl, CCa, PFCcl 6

L20 TCv, PHC, TCi 1
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This procedure resulted in a total of 12 control conditions (stimulations without any
node manipulation) and 240 manipulation conditions (silencing of 20 different nodes for
each stimulation, 12 × 20).

2.1.5. Validation on a Larger Connectome (Hconn)

As a proof of concept aimed at confirming the validity of the observed findings, we
repeated the analysis pertaining to PCI using a connectome endowed with finer parcellation
(Hconn) consisting of 998 areas [48]. Hconn corresponds to a human connectome, with
symmetric bidirectional connections, and has been used in several studies [39,51,56,62].
We tested a control condition and 20 local node manipulations, which are detailed in
Table S3 (Supplementary Material). Each of them involved approximately 4% of the nodes
(40 nodes), and the implementation procedure was the same as in Section 2.1.4 (with
the only exception being that in Dconn, ani = 0.6, while in Hconn, ani = 0.65, as more
inhibition was required to suppress firing activity). In Hconn, we limited the number of
stimulations to one performed over a portion of the superior parietal cortex (SP, Table S1
in Supplementary Material) of the manipulated hemisphere. In particular, to maintain
a comparable fraction of stimulated nodes with the Dconn connectome (1/76 = 0.013), a
total of 14 nodes of SP were simultaneously stimulated (14/998 = 0.014) that were chosen
based on their adjacency to a central node, following the same geometrical approach used
in Section 2.1.4. As in Dconn, the stimulus was delivered 500 times (500 trials) in each
condition (see Section 2.1.3).

2.2. Analysis of Network Simulations
2.2.1. Firing Activity Analysis

The first step of all analysis consisted in the detection of spiking activity of all nodes
of the network. Spike timing was established as the passage of membrane potential of the
nodes above a fixed threshold (−0.05, Figure 1a).

We defined the mean firing rate for each region/node of interest (MFRROI) as the
amount of spikes divided by the time window of observation.

To characterize the global/population activity of the model (MFR), we averaged the
MFRROI values across nodes (either all nodes or, when specified, the ones of the intact or
the manipulated hemisphere):

MFR = ⟨MFRROI⟩nodes (8)

Then, to quantify the impact of the local manipulation on activity, we defined the MFR
difference (MFR∆) as:

MFR∆ = MFR(local manipulation)− MFR(control) (9)

where MFR(condition) refers to the MFR in a condition of interest. Note that the MFR∆
involved only the nodes not affected by the local manipulation (i.e., excluding the silenced
nodes also in the control condition).

Then, for each node we defined the time-dependent Instantaneous Firing Rate (IFR(t),
in Hz) as the frequency of spikes in a time window of 25 ms, and the temporal dependence
was obtained by sliding the time window by 10 ms on the simulated data. We varied the
size of the time window (e.g., 50 ms) and found qualitatively similar results.

In order to quantify the impact of the stimulation on the node’s activity, we defined
the quantities:

∆IFR(t) = IFR(t, trial)− ⟨IFR(t, trial)⟩(t <0) (10)

⟨∆IFR(t)⟩ = ⟨∆IFR(t, trial)⟩trials (11)

where <IFR(t, trial)>(t<0) is the average IFR over the time prior to stimulation, and
<∆IFR(t)>trials is the average ∆IFR across trials.
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The level of network synchrony was quantified through the averaged pairwise cross-
correlation between the spontaneous IFR signals:

CCIFR =

〈
Cov

(
IFRi, IFRj

)
σ(IFRi) σ

(
IFRj

)〉 (12)

where <. . .> denotes the average over all possible pairs of nodes (excluding silenced nodes),
Cov(IFRi, IFRj) is the covariance between two spontaneous IFR signals (IFRi, IFRj), and
σ(IFRi), σ(IFRj) are the corresponding standard deviations of the IFR signals

2.2.2. Network Analysis

We employed graph metrics based on the weighted degree to assess the centrality
of a node in the network [63]. In the Dconn connectome, we computed the weighted
out-degree (WD) of each node (sum of weighted outgoing connections of a node) in order
to analyze the relationship between network centrality and complexity index topographies
(see below, Sections 2.2.3 and 2.2.4). Notice that in symmetrical graphs, such as Hconn and
non-directional functional connectivity (see below), the out-degree of a node is equal to
its in-degree.

We computed the same quantities on the spontaneous functional connectivity (FC) in
the control condition. The strengths of the functional connections between node pairs were
obtained as the pairwise Pearson’s correlation coefficient between their spontaneous in-
stantaneous firing rates (IFRs). In addition, to corroborate our findings, we computed
the FCBOLD on the BOLD signal, a widely used approach in the literature with this
model [39,50,51,56–58]. The BOLD signal was estimated from the model’s output fol-
lowing [39]. We used the nonlinear Balloon–Windkessel hemodynamic model [64], and the
input to the model was the absolute value of the time derivative of the excitatory mem-
brane potential within each node. All the hemodynamic parameters were taken from [64].
Lastly, the estimated BOLD signal was sampled every 2 s. The FCBOLD is defined as the
Pearson correlation coefficient between each pair of BOLD signals. Then, similar to the SC
analysis, we used the WD from the FCIFR and the FCBOLD to investigate the relationship
between node centrality and complexity topographies. We also conducted the analysis by
performing global signal regression (GSR) on the BOLD signal [51].

2.2.3. Complexity Indices

- Lempel–Ziv Complexity

The spatiotemporal differentiation of the spontaneous instantaneous firing rate was
calculated by the Lempel–Ziv complexity (LZc) [44]. The optimal time window to compute
LZc was examined by selecting temporal segments of variable lengths (from 1 s to 800 s).
LZc decreased when increasing the temporal segments and reached a plateau around 200 s,
and starting from 400 s, the variability, quantified by the coefficient of variation (CV), was
less than 0.0004. For each condition, we calculated LZc over 10 segments of spontaneous
activity (400 s each) and reported its mean ± SD.

- Perturbational Complexity Index

The Perturbational Complexity Index (PCI) quantifies the spatiotemporal complexity
of brain activity evoked by an external perturbation [17]. To compute PCI, we followed the
procedure outlined in [17], with the notable difference that we applied it to the IFR time
series of the brain nodes.

In short, the significant evoked activities of each node, with respect to baseline, were
determined by applying a non-parametric permutation test to the IFR. The baseline activity
(pre-stimulus, time window = [−1000, 0 ms]) was used to determine, for each node,
thresholds of significance (significance level set to 0.01, 500 bootstraps) and accounting
for multiple comparison testing using the maximum test statistic. In this way, we derived
a spatiotemporal matrix of significant activity [SS(x,t)], where SS(x,t) = 1 for significant
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activity in node x at time t, and SS(x,t) = 0 otherwise. The SS matrix was then sorted
according to the amount of significant activity during the post-stimulus interval of each
node (e.g., most/less active at the bottom/top rows). Then, the Lempel–Ziv complexity
(CL) was calculated on the binary matrix [SS(x,t)] of the significant IFR (first 500 ms after
the pulse).

Finally, PCILZ is defined as the normalized CL of the evoked spatiotemporal patterns
SS(x,t):

PCI = CL·
log2(L)

(L·Hsrc(L))
(13)

where L is the size of the matrix [SS(x,t)] (L = number of nodes × number of time samples),
and Hsrc is the source entropy given by:

Hsrc(L) = −p1· log2(p1)− (1 − p1)· log2(1 − p1) (14)

where p1 and (1 − p1) are the fraction of “1” (significant activity) and “0” (non-significant
activity) in the binary matrix.

Spatial temporal maps were represented based on SS and the <∆IFR(t)> (Equation (10)).
In particular, for each time point t, the ∆IFR(t) of the nodes with significant activity (i.e.,
SS(., t) = 1) were reported.

In all conditions (control and manipulations), each stimulus was repeated 500 times.
Then, 10 resamples of 300 trials (without repetitions) were formed, and the PCI was
computed on each subgroup. We assessed the stability of PCI versus the number of trials
(ranging from 10 to 500 trials) and observed that the PCI values reached a plateau around
200 trials, and starting from 300 trials, the variability (CV) was less than 0.01.

2.2.4. Complexity Topographies

The contribution of each node to the complexity indices used was investigated by
performing linear regressions between the complexity values (LZc and PCI) and the spon-
taneous activity of each node (MFRROI) for different conditions (local manipulations and
control). The coefficient of determination (R2) for each node was then computed and
mapped onto the brain topographies. Thus, LZc-R2 and PCI-R2 topographies were derived.
Given the 12 stimulation sites for PCI, 12 topographies were generated, which were then
averaged into a single PCI-<R2> topography.

2.2.5. Statistical Analysis

Statistical analyses were performed using Python 3.7, employing the SciPy (1.9.3),
statsmodels (0.13.5), and scikit-posthocs (0.8.1) packages. The data are expressed as mean
± standard deviation (SD) unless otherwise indicated. The boxplots report the first and
third quartiles (lower/upper line of the box), the mean of the distribution (horizontal
line in the box), and the whiskers (5th and 95th percentiles). The data were checked for
normal distribution and homogeneity of variance using Shapiro–Wilk test and Levene test,
respectively. According to the results, either parametric (e.g., one-way ANOVA and t-test) or
non-parametric (e.g., Kruskal–Wallis H-test and Dunn’s test) tests were performed. p values
were adjusted for multiple comparisons using the Benjamini–Hochberg method to control
the false discovery rate. Multiple one-sample t-tests were conducted with Bonferroni–
Holm p-values correction to test the impact of each local manipulation compared with the
control. Linear correlation between the metrics was computed with the Pearson correlation
coefficient and its associated two-sided p-value. We conducted simple and multivariate
linear regressions, calculating the coefficient of determination (R2, and R2

adjusted to account
for multiple regressors) and the p-value of the F-statistic. Additionally, we computed the
slope coefficients of the regressors and their corresponding two-sided 95% confidence
intervals (95% CI). For all statistical analyses, alpha = 0.05.



Appl. Sci. 2024, 14, 890 11 of 23

3. Results
3.1. Spontaneous Activity
Impact of Local Node Silencing on Spontaneous Complexity Measures

We first investigated the impact of local silencing on the model’s spontaneous activity
by quantifying the mean firing rate difference (MFR∆) on the nodes within the manipulated
hemisphere, the intact one, as well as in the entire model compared with the same nodes in
the control condition (Figure 2a). This analysis revealed that the MFR decreased the most in
the affected hemisphere (MFR∆ = −3.621 ± 1.629 Hz, mean across all manipulations ± SD)
and to a lesser extent in the intact hemisphere (−1.431 ± 0.992 Hz).
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Figure 2. Impact of local manipulations on whole-brain spontaneous activity. (a) Mean firing
rate difference (MFR∆, see Methods) for each silencing condition of the manipulated hemisphere
(green), the intact one (yellow), and overall nodes (black). Note that the ranking (i.e., ranked local
manipulations, see Table 2) is based on the black curve. (b) The Lempel–Ziv complexity (LZc)
metric is reported versus the same ranked local manipulations. The red horizontal lines mark
the average value of LZc in the control condition. Error bars represent one standard deviation
and asterisks indicate a statistically significant difference from the control condition (* p < 0.05,
** p < 0.01, *** p < 0.001; Kruskal–Wallis and Dunn post hoc test with Benjamini–Hochberg correction).
(c) Linear regressions relating the mean firing rate of all nodes (MFR) to LZc (r = 0.69; p = 0.0005).
(d) Linear regression relating the averaged pairwise cross-correlation (CCIFR) to LZc (r = −0.55,
p = 0.009). (e) Multivariate regression of LZc with respect to the independent variables MFR and
CCIFR (R2 = 0.98, R2

adjusted = 0.98, p = 2 × 10−16).

We then quantified the impact of local node silencing on the complexity of spontaneous
brain dynamics by computing Lempel–Ziv complexity (LZc) on the instantaneous firing
rate (IFR) derived from the model time-series (Figure 2b). Notably, in 12 out of 20 local
manipulations, LZc was not statistically different from control (Kruskal–Wallis and Dunn
post hoc test with Benjamini–Hochberg correction). As a consequence, even though LZc
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positively correlated with MFR (LZc: r = 0.69; p = 0.0005, Figure 2c), it did not reflect the
changes of network complexity with respect to control condition.

Further exploring the network properties relevant for complexity, we computed the
averaged pairwise cross-correlation (CCIFR, see methods) between nodes as a measure
of the synchrony of network interactions. CCIFR was lower across local manipulations
when compared to control (control: 0.067, average across manipulations: 0.061 ± 0.007;
Figure 2d), which corresponds to a larger segregation of the network patterns. We found a
negative correlation between LZc and CCIFR (r = −0.55, p = 0.009; Figure 2d).

Considering the combined role of brain activity levels (MFR) and network interactions
(CCIFR) in shaping brain complexity, we performed a multivariate regression between
MFR and CCIFR in explaining LZc across all conditions (Figure 2e). This model effectively
captured the variance of LZc (R2 = 0.98, R2

adjusted = 0.98, p = 2 × 10−16). Confirming the
results obtained with the univariate analyses, a positive relationship was found for LZc
with respect to MFR (slope coefficient, βMFR = 0.0072, 95% CI [0.0066, 0.0078]), while CCIFR
was found to be negatively correlated with LZc (βCC = −1.2, 95% CI [−1.3, −1.1]).

3.2. Evoked Activity
3.2.1. Local Node Silencing and PCI

We performed an extensive investigation of the responses to different stimuli for
different node silencing within the connectome (12 stimuli × 20 manipulations). The
impact of local node silencing on stimulus-evoked spatiotemporal activity was quantified
by the Perturbational Complexity Index (PCI).

All manipulations caused a decrease of PCI with respect to the control condition (PCI∆)
across stimuli (for each local manipulation p < 0.01, one sample t-test with Bonferroni–Holm
correction; Figure 3a), albeit with a great variability depending on the specific stimulus-
silencing pair (individual PCI values and statistical comparisons with respect to the control
condition are reported in Figure S2).

In this respect, the responses of the model to stimulation of the right inferior parietal
cortex (rPCi) for the control and two highly segregated local manipulations (L4 and L17,
see Table 2 for a description of the manipulated nodes) serve as an illustrative example of
such variability.

Specifically, the spatiotemporal distribution of the significant activities (see Methods)
elicited by the stimulation pulse in the control and in the two representative manipulations
displayed marked differences (Figure 3b). In particular, compared to the control condition,
in the case of L4 silencing, the response was sustained in time but spatially redundant
(i.e., the significant activities often involved the same areas), and it did not involve the
non-stimulated hemisphere as confirmed by the <∆IFR> temporal profile (Figure 3c top
panel). On the other hand, in the case L17 silencing, significant evoked activity extended to
the non-stimulated hemisphere (Figure 3c top panel) but was short-lived. The richness of
the significant spatial-temporal patterns evoked by a stimulus can also be described by the
SS matrices (see Methods, Figure 3c bottom panels). Compared to the control condition, the
SS matrix of both L4 and L17 were either restricted in space (i.e., evoked activity remained
more local, as in L4) or in time (i.e., the significant evoked activity decayed rapidly, as in
L17). Interestingly, in L4, the significant activity described by the source entropy (Hsrc) was
comparable to the control (0.79 ± 0.03 and 0.79 ± 0.02, respectively), but the evoked activity
was more redundant in time (compare Figure 3a), confirming the dissociations between PCI
and Hsrc (Supplementary Results, Section S2, Figure S3) also found in empirical studies [17].
Consistent with these observations, we found a significant reduction of PCI (p < 0.00001,
ANOVA and post hoc pairwise T t-test with Benjamini–Hochberg correction) for both L4
and L17 (Figure S2, grey arrows. Control: 0.49 ± 0.03; L4: 0.25 ± 0.01; L17: 0.37 ± 0.04).

Furthermore, to corroborate our results, we performed a similar analysis with the
more detailed connectome, Hconn (Figure S4A,B). Again, we found a significant reduction
of PCI (Figure S4C) in all manipulation conditions (for each p < 0.000001, ANOVA and post
hoc pairwise T t-test with Benjamini–Hochberg correction). The higher reduction of PCI
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with Hconn compared to Dconn is likely due to a larger impact of node silencing on the
local connectivity (i.e., areas surrounding the manipulation) as well as on the long-range
connections reducing the communication between areas that are far apart.
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Figure 3. Impact of local manipulations on evoked activity. (a) Each box, corresponding to a
local manipulation (ordered according to the ranking in Figure 2), displays the difference in PCI
compared to the control (PCI∆) for a given stimulation site (12 values per box, e.g., stimulation of
rPCi: PCI∆ (local manipulation) = <PCIlocal manipulation> − <PCIctrl>, where <. . .> indicates mean
across resamples). For each local manipulation, p < 0.01 (one sample t-test against mean zero with
Bonferroni–Holm correction). (b) Spatiotemporal distribution of the areas with significant changes of
their firing rate with respect to baseline activity following stimulation. Representative snapshots are
reported at time t = 5 ms, t = 145 ms, t = 245 ms, t = 285 ms, t = 375 ms, and t = 485 ms in the control
condition (top row), for the local manipulations L4 (middle row), and L17 (bottom row). (c) Top: the
temporal courses of the instantaneous firing rate (<∆IFR>) are reported for all nodes and separately
for the representative conditions: ctrl (grey), L4 (dark blue), and L17 (light blue). For each condition,
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the highest five <∆IFR> (quantified as the total activity in the interval [0, 500] ms) of the non-
stimulated hemisphere (orange traces) are also reported. The horizontal brown line indicates the
mean baseline (defined as <∆IFR(t)> averaged over the interval [−1000, 0] ms and over the latter
highest five <∆IFR(t)>). The vertical dotted black line marks the time of the stimulus, and the vertical
continuous black lines are relative to the snapshots reported in panel b. Bottom: the corresponding
sorted binary spatiotemporal matrices of significant activities highlight the impact of the local
manipulations with respect to the control condition (the red line is the sum of significant activity over
time). The Perturbational Complexity Index (PCI) decreases significantly (p < 0.00001, ANOVA and
post hoc pairwise T test with Benjamini–Hochberg correction) in L4 and L17 compared with control
(see Figure S2).

3.2.2. The Impact of Regional Silencing on PCI

By taking advantage of the systematic and extensive investigation of stimulation/silencing
pairs, we further explored the variability of the impact of local silencing on both spontaneous
and evoked metrics and investigated the contribution of individual region activity (i.e., MFR)
to PCI across all conditions. Thus, for each stimulation, we performed a linear regression of
the PCI values (i.e., mean across resamples) versus the spontaneous mean firing rate of
a node/region of interest (MFRROI) across all conditions (including the control condition
and all local manipulations). Figure 4a shows the linear regressions for two representative
ROIs (right posterior cingulate cortex; rCCp and right parahippocampal cortex; rPHC),
corresponding to the ROIs showing the third highest and third lowest average correlations
across stimuli, respectively. For each of the two ROIs, we show two representative stimula-
tions delivered to the inferior parietal cortex (PCi; R2 = 0.59, p = 5 × 10−5 and R2 = 0.02,
p = 0.58) and the dorsolateral prefrontal cortex (PFCdl; R2 = 0.23, p = 0.03 and R2 = 0.01,
p = 0.60). We found that PCI correlated well with MFRROI (CCp) for most stimulations
(F-statistic of R2, 11 with p < 0.05, one with p = 0.051), ranging from 0.19 to 0.59 (0.41 ± 0.14)
(Figure 4b). On the other hand, MFRROI (PHC) was always non-significantly correlated
with PCI across the 12 stimulations (p > 0.05).
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Figure 4. Topological aspects of perturbational complexity. (a) Linear regressions relating PCI to the
spontaneous mean firing rate of the ROIs/nodes rCCp and rPHC for two representative stimulation
sites (red boxes: rPCi; green boxes: rPFCdl). (b) Boxplot of the R2 relative to the PCI versus MFRROI

(rCCp) and PCI versus MFRROI (rPHC) linear regressions for all stimulation sites. Note that the
reduced plots of panel A are reported on the right of the boxplot to highlight the corresponding
R2 value. (c) Brain topography of the average R2 across stimulation sites (<R2>). For each ROI in
the topography, the corresponding <R2> is derived as in panel (b). (d) Distributions of the Pearson
correlation coefficients computed across the R2 topography maps of LZc with PCI and separately for
all ROIs (all), intact hemisphere ROIs (IH), and manipulated hemisphere ROIs (MH). Each square
and X symbol is relative to a stimulation site, and X markers indicate nonsignificant p values (>0.05).

The 12 regional maps of R2 coefficients for each stimulation are presented topograph-
ically in Figure S5A, and the average topography across all stimulations is presented in
Figure 4c. Interestingly, the three ROIs with the highest average R2 across stimulations (i.e.,
CCr, <R2> = 0.51 ± 0.13; PCm, <R2> = 0.45 ± 0.14; CCp, <R2> = 0.41 ± 0.14) were located
in the posterior cortex of the manipulated hemisphere. In addition, the ROIs with the
three highest R2 values across all stimulations were predominantly located in the posterior
regions (~89%, Figure S5B,C).

Consistently, we repeated the same analysis for the single stimulation on Hconn and
found a similar regional specificity, with the highest R2 values located in posterior regions
of the manipulated hemisphere (Figure S4D).

3.2.3. Assessing Regional Similarity between Spontaneous and Evoked Complexity Metrics
We performed separate linear regressions for MFRROI versus LZc (Figure S6A,B) and

computed the similarity between the R2 topography maps of these and the 12 R2 PCI
topographies for each stimulation (Figure 4d). We found that the correlations between PCI
and LZ topographies were anti-correlated (−0.1 ± 0.23), though many correlations were not
significant (5 out of 12). Similar results were obtained when restricting the analysis to either
the intact or the manipulated hemisphere (−0.29 ± 0.11 and −0.19 ± 0.12, respectively).

3.3. Assessing the Relationship between Complexity Measures and Graph Properties

We explored the relationship between the R2-topographies derived from spontaneous
(LZc) as well as perturbational complexity (PCI) measures and basic graph properties. To
this aim, we correlated the weighted degree (WD) of each node (an index of network cen-
trality calculated both on SC and FC) with the corresponding values of the complexity-R2

topographies (Figure 5). The WD computed on the SC showed a weak, albeit signifi-
cant, correlation with the PCI average-R2 topography across the 12 stimulations (r = 0.34,
p = 0.0026; Figure 5a). Conversely, we did not find a significant correlation with the LZc-R2

topography (p = 0.063, Figure 5b). Similarly, we found a significant correlation between the
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WD computed on the SC and the PCI-R2 topography applied to Hconn (r = 0.44, p = 2·10−49;
Figure S7A). Further, we found even more robust correlations between WD calculated on
FC and the average PCI-R2 topography (r = 0.6, p = 10−8, Figure 5c). Again, no significant
relationship was found between WD and the LZc-R2 topography (p = 0.5, Figure 5d). Sim-
ilar results (Figure S7B–E) were obtained when using WD calculated on the FC derived
from BOLD signals (FCBOLD; see Section 2).
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Figure 5. Graph properties and complexity topographies. (a) The weighted degree (WD) of structural
connectivity (SC) nodes correlated with the PCI-<R2> topography (r = 0.34, p = 0.0026) but (b) not
with the LZc-R2 topography (p = 0.063). (c) The WD of the nodes of the functional connectivity
(FCIFR) correlated with the PCI-<R2> topography (r = 0.6, p = 10−8) but (d) not with the LZc-R2

topography (p = 0.5). Each point is representative of an ROI/node in the network. The regression
lines are reported in red.

4. Discussion

The present study employed whole-brain computer simulations, systematic local
manipulations (i.e., node silencing), and perturbations (i.e., brief pulses applied to local
nodes) to assess the circuit-level properties underlying estimates of brain complexity. Our
model has proved to be particularly suitable for investigating the mechanisms underlying
brain complexity using various metrics commonly employed in empirical studies. In the
present implementation, we were able to obtain spontaneous network activity as well as
complex and enduring cortical interactions upon exogenous perturbations (Figure 1b),
reminiscent of empirical observations [17,36]. Unlike in previous simulation works [33]
and in line with experimental data, in the present model, brief local pulses were effective in
evoking responses that propagated across distant nodes while spanning more prolonged
time intervals. The presence of the non-linear NMDA current as implemented in the Larter
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and Breakspear model [49] likely explains this important difference. Additionally, the same
model has been shown to exhibit complex wave patterns, including traveling waves during
spontaneous activity [56], thus arguably making it suitable for investigating complexity
metrics that rely on activity propagation evoked by an external stimulus.

4.1. Impact of Local Silencing on Complexity Measures: The Role of Global Activity Levels and
Network Dynamics/Interactions

All the local manipulations (i.e., node silencing) explored in this study showed an
overall MFR decrease compared to the intact model (MFR∆), with a large variability de-
pending on the manipulated nodes (Figure 2a). A similar trend was also observed for
spontaneous complexity quantified with LZc, indicating a correlation between LZc and the
global activity levels (MFR; Figure 2c). However, LZc often remained unchanged or even
increased as compared to the control condition (Figure 2b), suggesting that the observed
effects of local silencing on LZc were not merely explained by changes in global activity
levels. Crucially, local manipulations resulting in a reduction of functional connectivity
(i.e., segregation of network interactions) as captured by the correlation of activity across
nodes (CCIFR) tended to exhibit higher LZc values (Figure 2d). Thus, we tested the inter-
play between global activity levels (MFR) and network interactions (CCIFR) in sustaining
complex dynamics (LZc) through a 3D linear model (Figure 2e). This model, rooted in
simple network activity variables, effectively described LZc, corroborating (1) the role
of an optimal global activity level in shaping spontaneous complexity values and (2) the
negative relationship of LZc with respect to network interactions. Importantly, this result
underscores a significant limitation of various complexity metrics based on spontaneous
activity, such as LZc, as they assume a priori network integration [6] and yield high values
in systems composed of independent/segregated elements [41]. Here, we confirm, in a
whole-brain connectome endowed with neural mass models, previous studies illustrating
an imbalance of LZc towards network segregation [44].

A promising method to overcome this limitation and assess brain complexity, defined
as the coexistence of integration and differentiation within a system, involves adopting
a causal/perturbational approach [6]. This can be achieved empirically by employing
local stimulations with TMS and estimating, with PCI, the information content of the
causally generated interactions characterizing the integrated EEG response [17]. Unlike
LZc, PCI is expected to decrease in systems with a loss of network interactions, given the
restricted integrated response. Furthermore, PCI would be equally low in systems where
the integrated response is redundant (i.e., undifferentiated), thus capturing an effective
balance between functional integration and functional differentiation.

By the same token, in addition to the spontaneous complexity metric discussed above,
we simulated this empirical approach by employing local perturbations (i.e., brief local
pulses), extensively varying the stimulation site across different conditions (i.e., silencing
different nodes). Each local manipulation had a detrimental effect on PCI, albeit with
a heterogeneity influenced by the specific stimulus-silencing pair (Figures 3a and S2).
An even more substantial impact of local manipulations on PCI was found in Hconn
(Figure S4A–C).

A marked difference between spontaneous and perturbational estimates of complexity
was further confirmed by the lack of a correlation between LZc and PCI across conditions
(Table S4). Such divergence, already observed in experimental studies [65,66], was particu-
larly evident upon local manipulations leading to segregated network dynamics (reduced
CCIFR). This resulted in a less complex evoked response (as quantified by PCI; Figure 3b,c)
despite increased LZc (Figure 2b). This result is also in line with several empirical findings
across a variety of conditions where a disruption of effective connectivity across widespread
brain networks results in a spatially constrained, short-lived EEG response to direct cortical
stimulations with TMS and, in turn, in a significant reduction of PCI [17,18,25,67,68].

Overall, the comparison between LZc from spontaneous activity and PCI confirms that
the latter more coherently hinges on an actual balance between functional integration and
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functional differentiation. This intuition is further suggested by the 3D model relating MFR
and CCIFR applied to PCI. In this case, compared to LZc, the 3D model does not describe
PCI values across conditions resulting in a slope coefficient for CCIFR not significantly
different from 0 for most stimulations (8 out of 12; Supplementary Results, Section S3).

4.2. Regional Aspects of Complexity Indices: The Role of Posterior Regions

We observed an association between complexity indices and global activity levels,
highlighting the crucial role of suitable network activity in sustaining complex model
dynamics (Table S4). However, we found a significant heterogeneity in how various
local manipulations affected complexity, and this variation could not be straightforwardly
accounted for by the global activity levels. As outlined in previous works [41], local, rather
than global, activity features might underlie network complexity. Indeed, experimental
EEG and fMRI studies conducted on humans, monkeys, and rats (during sleep, anesthesia,
and following severe brain injuries) have linked the loss and recovery of consciousness
to brain complexity based on the activity of posterior regions [69–71]. In this regard, a
recent whole-brain modeling study [40] identified a few key nodes centered around the
‘posterior hot zone’ (i.e., precuneus and posterior cingulate cortex) that were pivotal for
maintaining the model in an awake-like state. Reducing the activity of these nodes led to a
shift in model dynamics, akin to unconscious states.

While LZc was largely explained by the activity of the most firing nodes irrespective of
their spatial location (Supplementary Results, Section S4 and Figure S6), our model showed
a similar dependency of PCI on the activity of posterior regions (Figures 4 and S5). Specifi-
cally, our analysis revealed that the regional spontaneous activity (MFRROI) displaying the
highest correlations with PCI included the retrosplenial cingulate cortex, the medial parietal
cortex (precuneus), and the posterior cingulate cortex. Similar findings, encompassing
a similar set of posterior regions, were found for the Hconn model (Figure S4D). These
results nicely complement recent empirical observations involving rats under ketamine
anesthesia [72], which found a strong correlation between PCI and activity in posteromedial
regions. This study demonstrated that deactivation of these posteromedial regions was
associated with disruptions in long-lasting and widespread cortical interactions following
electrical stimulation. Altogether, these findings suggest the central hub role of posterior
regions for long-range communications in cortical networks. Consistently, we have ob-
served a positive correlation (Figures 5 and S7) between the weighted degree (a metric
quantifying hub centrality), particularly when applied to functional connectivity estimates
(Figures 5c,d and S7B,C) and the PCI-R2 topographies (but not for LZc-R2).

4.3. Limitations and Future Directions

This work represents a first attempt to characterize the large-scale determinants of
brain complexity and to assess the relationship between observational and causal ap-
proaches towards its estimation. Given the intrinsic limitation imposed by in silico models
of brain dynamics and by the use of surrogate estimates of brain complexity, more bio-
physically plausible node equations [32,73], as well as simulations including subcortical
structures [74], should be considered for future implementations. In addition, the introduc-
tion of an appropriate forward model [75] to obtain EEG-level dynamics would allow for a
more direct comparison between our findings and those obtained in empirical studies.

Along these lines, our implementation of the Hconn model (Figure S5) represents
a proof of concept of the robustness of the observed findings tested on a connectome
with a finer parcellation including short-range connections and serves as a promising
springboard to expand the investigation to more realistic brain models such as vertex-based
simulations [76].

Concerning the local manipulations conducted in this study, forthcoming research
could incorporate alterations in local node dynamics that go beyond simply suppressing
node activity. This could involve activity-dependent adaptation [34,77]. Indeed, in addition
to the direct effect of the local silencing (either performed by activity or connectivity
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manipulations), empirical evidence suggests the occurrence of an alteration in the activity
of structurally intact cortical regions surrounding [78,79] or remotely connected [80] to the
site of structural damage (i.e., regions with suppressed activity). Specifically, the activity
of such regions switches to a sleep-like mode characterized by the tendency to display
EEG slow waves. This activity is promptly revealed by direct cortical perturbations even
when not directly present in the spontaneous EEG, thus confirming its activity-dependent
nature [27,81,82]. Using a simple model, Cattani and colleagues [34] recently showed
the key role of activity-dependent adaptation mechanisms in shaping the responses to
perturbations and affecting the build-up of complex cortical interactions. Embedding
such local alterations within a large-scale, connectome-based simulation, such as the one
here implemented or similar [33,83], would allow one to more realistically simulate the
large-scale network consequences of local node alterations.

4.4. Conclusions

Our work for the first time extensively integrates a perturbational approach with local
node manipulations in a whole-brain computational model. This approximation marks
an initial step towards a more detailed in silico exploration of the mechanisms behind the
loss of brain complexity. Their translation may be relevant in real-world scenarios such
as pathological conditions, as well as for therapeutic interventions aimed at recovering
brain complexity.
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