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Abstract: Within the framework of isotropic materials, this paper introduces an efficient topology op-
timization method that incorporates fail-safe design considerations using a penalty function approach.
Existing methods are either computationally expensive or overlook fail-safe requirements during
optimization. This approach not only achieves optimized structures with fail-safe characteristics, but
also significantly enhances the computational efficiency of fail-safe topology optimization. In this
method, the minimization of worst-case compliance serves as the optimization objective, employing
the Kreisselmeier–stein Hauser function to approximate the non-differentiable maximum operator. A
sensitivity analysis, derived through the adjoint method, is utilized, and a universal fail-safe opti-
mization criterion is developed to update the design variables. During the optimization process for
fail-safe strategies, a density-based filtering method is applied, effectively reducing damage scenarios.
Finally, the effectiveness and computational efficiency of this method are validated through several
numerical examples.

Keywords: topology optimization; fail-safe design; damage scenario filtering; sensitivity analysis

1. Introduction

Topology optimization (TO) has the capacity to generate innovative designs without
assuming any structural connectivity, making it a powerful and beneficial driver to reduce
the structural weight while meeting specific performance requirements. TO optimizes
objective functions by distributing materials within the design domain, resulting in greater
economic efficiency and attracting increased attention from engineering designers. Various
topology optimization methods have been proposed since the pioneering work of Bendsøe
and Kikuchi [1], including the Solid Isotropic Material with Penalization (SIMP) approach
for solid isotropic materials [2,3], the Evolutionary Structural Optimization (ESO) and
Bi-directional Evolutionary Structural Optimization (BESO) methods [4,5], the Level Set
Method (LSM) [6–8], and feature-driven methods such as the Moving Morphable Compo-
nents (MMCs) method [9,10] and Moving Morphable Voids (MMVs) method [11]. On the
other hand, topology optimization focused on lattice structures has also garnered increasing
scientific interest [12–15]. In general, topology optimization methods emphasize altering
the macro-scale structure’s configuration to enhance its robustness. Another powerful way
to achieve this goal is by enhancing the material’s strength. However, overall, optimized de-
signs obtained through topology optimization often resemble statically structured designs.
For these structures, material utilization reaches its limits, and a lack of redundancy makes
them susceptible to stiffness loss due to material damage. Especially when facing structural
stiffness loss caused by material defects, vibrational impacts, and various environmental
factors, their elasticity becomes severely limited [16–18]. Even minor stiffness failures in
structures can lead to a sharp decline in the overall structural performance. In the field of
engineering, the demand for safety often far exceeds the need to reduce costs. Therefore,
there is a growing focus on research aimed at mitigating the sharp decline in structural
performance caused by local damage in engineering structures.
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Building upon the traditional topology optimization design, the fail-safe optimization
approach enhances a structure’s ability to withstand localized damage scenarios [19–23].
Considering the inherent fail-safe requirements, a simplified local damage model is intro-
duced into the topological optimization process for fail-safe design, simulating the intricate
phenomena of localized damage in a structure. Throughout the structural optimization pro-
cess, all potential impacts of local damage on a structure are taken into account. By mitigat-
ing the effects of localized damage on a structure, a robust and highly redundant optimized
design is achieved. In comparison to conventional topology designs [24–26], a fail-safe
optimization design demonstrates strong resilience against risks, allowing for continued
operation until the position of local damage is rectified or components are repositioned.

However, in the process of fail-safe optimization, numerous scenarios of local damage
must be considered. Given that each local damage scenario necessitates an individual finite
element analysis and sensitivity calculations, the computational workload is significantly
immense compared to that of traditional structural topology optimization algorithms.
For a given optimization model, the computational complexity of fail-safe optimization
algorithms is often many times that of traditional topology optimization algorithms. To alle-
viate the computational demands associated with fail-safe optimization design, it becomes
imperative to filter out redundant local failure scenarios while traversing through them.
This strategy aims to enhance the efficiency of fail-safe structural optimization by reducing
the computational load imposed by an excessive number of local damage scenarios.

In addressing some of the challenges inherent in the aforementioned research, scholars
have rigorously established a framework for the fail-safe topology optimization of general
three-dimensional structures and have developed computationally feasible solutions for
industrial applications. Subsequently, the effectiveness of this approach has been validated
through corresponding numerical examples. By employing the independent continuous
mapping method and incorporating discrete conditions involving topological variables
and fundamental frequency constraints, a fail-safe topology optimization model is for-
mulated and solved [27–29]. The numerical results indicate that, compared to traditional
frequency-based topology optimization designs, the optimized fail-safe structures exhibit
more intricate configurations and comprehensive material distribution, resulting in in-
creased redundancy and mitigating the sensitivity of structural frequencies to localized
damage. By leveraging the material characteristics of the von Mises stress interpolation
damage model, an optimization model for obtaining fail-safe structural designs is estab-
lished. Within the framework of optimization criteria methods, an extended variable update
scheme is proposed to suppress highly nonlinear stress behaviors and optimize oscillations.
Relevant benchmark tests demonstrate the effectiveness of the proposed strategy in the
process of achieving corresponding fail-safe designs [30–33].

To reduce the computational demands associated with fail-safe optimization designs,
by building upon the aforementioned research, this paper introduces a density-based
filtering algorithm. This algorithm filters out redundant local damage scenarios while
traversing through them, thereby diminishing the computational workload imposed by an
excessive number of local damage scenarios. Consequently, it enhances the efficiency of
fail-safe structural optimization methods. In comparison to traditional structural topology
optimization algorithms [34–38], the improved fail-safe optimization algorithm yields de-
signs with superior robustness. Furthermore, in contrast to conventional fail-safe topology
optimization algorithms, the computational workload of the entire optimization process is
significantly reduced while obtaining effective fail-safe structural designs.

The remaining organization of this paper is as follows: In Section 2, we provide a
detailed exposition of the theory of fail-safe topology optimization and the density-filter-
based fail-safe optimization method. In Section 3, the algorithm based on density filtering
is compared with standard fail-safe optimization algorithms to validate the effectiveness of
the density-filter-based fail-safe optimization method. Furthermore, the impact of density
thresholds on the fail-safe optimization method is investigated. Finally, in Section 4, an
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analysis and summary of the work presented in this paper are conducted, addressing
potential issues and outlining avenues for future research.

2. Theory of Fail-Safe Structural Topology Optimization

In this section, the fundamental principles of fail-safe topology optimization are
discussed. For the topological optimization of linear elastic materials, the Young’s mod-
ulus Ee can be obtained through the modified Solid Isotropic Material with Penalization
(SIMP) [39–41], as illustrated in Equation (1).

Ee = Emin + ρ
p
e (E0 − Emin) (1)

where the design domain of the continuous structure, Ω, is discretized into N finite elements,
each associated with the relative density variable ρe, which varies within the [0, 1] range.
Here, E0 represents the elastic modulus of the solid material, p is the penalization factor
for the void material, and η serves as the design variable in the optimization problem,
representing the unit density. Additionally, Emin denotes the elastic modulus of the void
material, serving the purpose of mitigating the singularity and non-zero entries in the finite
element stiffness matrix.

2.1. Theory of Fail-Safe Topology Optimization

The formulation for minimizing compliance in classical deterministic topology opti-
mization is as follows:

Find ρ = (ρ1, ρ2, · · · , ρN−1, ρN)
T

min
ρ

f (ρ)

s.t. Ku = F
V(ρ) − Vmax ≤ 0
0 < ρe ≤ 1

(2)

where ρ represents the vector of topological design variables for the structure, f denotes
the flexibility of the structure, and K signifies the stiffness matrix of the structure. The dis-
placement vector u is the result of the applied load vector F on the structure. Furthermore,
V and Vmax, respectively denote the material volume of the structural design domain and
the material volume after structural optimization.

To establish the mathematical model for fail-safe topology optimization, it is essential
to formulate the element stiffness matrix for the local damage model. By assigning the
material stiffness of components within pre-defined damaged regions as Emin and repre-
senting the corresponding set of elements as Nα, the remaining set of elements without
local damage is denoted as Ne\Nα. Here, Ne encompasses the collection of all elements
in the entire structure. Consequently, the overall stiffness matrix of the structure can be
expressed as

Kα
m = ∑

j∈Nα

Kj + ∑
j∈Ne\Nα

Kj (3)

Integrating the element stiffness matrices, with ∑
j∈Nα

Kj representing the damaged

region and ∑
j∈Ne\Nα

Kj representing the undamaged region, yields the overall stiffness

matrix Kα
m for the structure. Here, m represents the m-th localized damage scenario for

the structure, and j denotes the element number. Subsequently, by establishing the finite
equilibrium equations, the structure’s flexibility f (m) under the m-th damage condition is
determined through the following equation:

f (m)(ρ) = (um)TKα
mum (4)

Once the design domain and local damage zones are established, distinct local dam-
ages will have varying effects at different positions within the design domain. The fail-safe
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topology optimization method considers all potential impacts of local damage, enabling
the simultaneous attainment of an optimally designed structure that is insensitive to lo-
cal damages. This is defined here as the total number of local damage scenarios to be
considered during optimization iterations. For each structural design obtained through
optimization iterations, the most critical damage scenario is identified by comparing the
structural strain energy under different damage scenarios. The objective function is then set
as the minimum structural strain energy under the most severe damage scenario, thereby
obtaining the mathematical model for fail-safe structural topology optimization.

Kα
mum = F

fr(ρ) = log
(

m
∑

i=1
exp

(
γ f (i)(ρ)

))
/γ

(5)

where fr(ρ) represents the adjusted objective function, while F and um, respectively, denote
the nodal displacement vector and nodal load vector of the structure in the global coordinate
system. V(ρ) and Vmax represent the overall volume of the structure and the maximum
volume constraint in the optimization problem, respectively. K is the overall stiffness matrix
of the structure, obtained through the integration of the element stiffness matrix to establish
the equilibrium equation and subsequently derive the displacement field. Here, m signifies
the strain energy of the structure under the m-th damage scenario. γ is the regularization
parameter that determines the size of the envelope space composed of the variable ρe, with
the suggested values ranging from 1 to 100, as indicated in relevant studies in the literature:

Find ρ = (ρ1, ρ2, · · · , ρN−1, ρN)
T

min
ρ

fr(ρ) = max
i=1,...,m

fr(ρ) = log
(

m
∑

i=1
exp

(
γ f (i)(ρ)

))
/γ

s.t. Ku = f
V(ρ)− Vmax ≤ 0
0 < ρe ≤ 1

(6)

2.2. Sensitivity Analysis

In the context of the fail-safe topology optimization problem, there are numerous de-
sign variables that are typically addressed through finite element methods. In this process,
the restatement of the stiffness matrix and the solution of the multivariate equilibrium
equations are required with each analysis iteration. Therefore, using optimization criteria
methods proves to be an ideal choice. In this section, by leveraging the principles of simple
material interpolation theory, a detailed investigation of optimization criteria algorithms
for fail-safe optimization problems is conducted. Originating from the objective function
and constraint conditions, the optimization criteria formula for updating design variables,
described by the Lagrangian function, is derived. The construction of the Lagrangian
function for the optimization problem outlined in the preceding section is as follows:

L = fr(ρe) + λ(V − Vmax) +
m

∑
i=1

(
λi

1

)T(
Kiui − f

)
+

n

∑
e=1

λe
2(0 − ρe) +

n

∑
e=1

λe
3(ρe − 1) (7)

In Equation (7), λ, λ1, λ2 serve as Lagrange multipliers. For the fail-safe structural
topology optimization problem, ρ is a matrix composed of ρe. When ρ reaches an extremum,
the Lagrangian function described above satisfies the Kuhn–Tucker conditions as follows:

∂L
∂ρe

= ∂ fr
∂ρe

+ λ ∂V
∂ρe

+
m
∑

i=1

(
λi

1
)T ∂(Kiui)

∂ρe
− λe

2 + λe
3 = 0

V = Vmax
Kiui = f
λe

2(0 − ρe) = 0
λe

3(ρe − 1) = 0
λe

2 > 0 , λe
3 > 0 , e = 1, 2, . . . , n

(8)
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After establishing the mathematical model for the topology optimization of fail-safe
structures, similar to standard topology optimization, it is necessary to solve the sensitivity
information required when updating the design variables, that is, the sensitivity calculation
of the objective function obtained by the KS function with respect to the cell density.
According to the chain derivation rule, the partial derivative of the objective function with
respect to the unit density is expressed as follows:

∂ fr

∂ρe
=

m
∑

i=1

(
eγ f (i)(ρ) ∂ f (i)(ρ)

∂ρe

)
m
∑

i=1
eγ f (i)(ρ)

(9)

In Equation (9), for ease of description, assuming hi = eγ f (i)(ρ) and H =
m
∑

i=1
eγ f (i)(ρ),

the calculation of the sensitivity information of the volume fraction with respect to the
design variables for the constraint conditions is as follows:

∂L
∂ρe

=
m

∑
i=1

hi

∂
(
(ui)

T
(Ki)(ui)

)
∂ρe

H
+λve +

m

∑
i=1

(
λi

1

)T
(

∂
(
Ki)

∂ρe
ui +i ∂

(
ui)

∂ρe

)
(10)

In Equation (10), after consolidation, the aforementioned formula can be simplified as

∂L
∂ρe

= −
m

∑
i=1

hi

H
u

∂K
∂ρe

u + λve (11)

In Equation (11), setting the left side of the equation equal to zero yields the
following result:

m
∑

i=1

hi

H p
(

ρk
e

)p−1
qe

ve
= λ (12)

This represents the deformation energy of the structure under local damage and the
proportion of the second local failure scenario among all failure scenarios. Subsequently, we
can establish a density iteration scheme for the topology optimization of fail-safe structures
as follows:

Bk
e =

m
∑

i=1

hi

H p
(

ρk
e

)p−1
qe

λve
(13)

Compared to traditional topology optimization methods, the density iteration scheme
introduces the variable Bk

e . The presence of Bk
e in the fail-safe topology optimization method

prioritizes local damage scenarios that cause a significant increase in the structural strain
energy. It achieves this by adjusting the optimization direction to mitigate the adverse
effects of these damage scenarios.

2.3. Damage Scenario Filtering

In general, there are two main factors contributing to the high computational com-
plexity of the fail-safe structural topology optimization method. Firstly, it involves solving
the structural finite element equations to compute sensitivity information for each local
damage scenario. Secondly, the number of local damage scenarios to be considered during
the optimization process is a significant factor since optimization information needs to be
obtained for each of these scenarios. Figure 1 illustrates the optimization process for the nth
iteration, where mn represents the number of damage scenarios to be considered, mn

decrease
denotes the reduced number of damage scenarios, and mn

improved indicates the number of
damage scenarios to be considered after adopting the improved algorithm.
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For the first scenario, the combined approximation reanalysis method can be employed
to enhance the efficiency of obtaining optimization information. The second scenario
constitutes a primary focus of this study. Through the extension of the active set method,
this approach can be considered as a means of reducing the computational complexity of
fail-safe structural optimization by simplifying the number of local damage scenarios.

When addressing issues that are present in standard fail-safe topology optimization,
the use of density-based filters is employed to calculate the unit densities in the local
damage region. This, in turn, allows for the assessment of the impact of local damage on
the structure, eliminating situations where there are either no units or very few units in the
local damage region. This ensures that even with a loss in stiffness of certain materials in
the design domain, the structure’s overall integrity remains largely unaffected.

In the aforementioned context, there is no longer a need to perform sensitivity cal-
culations for local damage scenarios. It suffices to consider the sensitivity information
under the corresponding damage scenarios as the sensitivity information for the struc-
ture without local damage. Referring to Figure 2, one can comprehend the distinctions
among traditional topology optimization methods, fail-safe topology optimization meth-
ods, and the improved fail-safe optimization method employed in this study, especially
regarding the number of finite element analyses and sensitivity calculations during the
optimization process.

A0 =
∫

Ni∈Ω

ρ(xi)dΩ (14)

where A0 is defined as the sum of the unit density in the damaged area by comparing
it to the predefined density threshold, A, and regions where A0 ≤ A are considered to
contribute lower than the given threshold and are excluded from further optimization,
thus disregarding failure. Conversely, regions where A0 ≥ A are identified as failure areas
contribute higher than the threshold, and they are simulated for failure in subsequent
optimizations. Adjusting the threshold reasonably helps regulate the number of damage
scenarios, thereby enhancing the computational efficiency of the fail-safe optimization
method. To enhance readers’ comprehension of this approach, pseudo-MATLAB code will
be presented in Algorithm 1.
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Algorithm 1. Density Filtering Algorithm

Input: nelx (elements in the horizontal), nely (elements in the vertical) V(ρ) and rmin
Initializing material parameters: E (Young’s modulus), υ (Poisson’s ratio), A (density threshold);
loop = 0
while (loop <= 250) && (change > 0.01)

loop = loop + 1;
Solve the finite element problem Ku=f;
for i = 1: falepatch

Use (14) to compare the sum of patch failure densities A0 with the density threshold A;
Find all failed patches (falepatch) based on density filtering;

Stiffness matrix for assembly failure case Km;
Solve the finite element problem for the primary failure case Kmum=F;
Use (9) to calculate the sensitivity for each failure;

end
Integration gives total sensitivity information;
Update design variables using the F-S-OC method;

end
Output: physical density ρ
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3. Numerical Benchmarks

In this section, the performance of the proposed fail-safe improvement method will
be demonstrated through a comparison with traditional fail-safe topology optimization.
Henceforth, the conventional fail-safe topology optimization will be referred to as the
general fail-safe optimization method. It is worth noting that while a non-overlapping
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distribution of patches is sufficient to achieve viable solutions, its drawbacks are also
evident. Therefore, to attain a standardized fail-safe optimization design, Jansen’s fail-safe
framework is employed in the majority of cases. Throughout all subsequent chapters, unless
otherwise specified, the material properties for a homogeneous solid are as follows: Young’s
modulus of E = 1 and Poisson’s ratio of ν = 0.3. In the examples below, following Zhou’s
recommendation and considering the practicalities of fail-safe topology optimization, the
maximum iteration count is set to 250 for the cantilever beam case and 100 for the L-shaped
beam case, as defined in the relevant examples.

3.1. Cantilever Beam

Taking the cantilever beam, which is frequently discussed in many reference studies, as
an example (as shown in Figure 3), the design domain of the cantilever beam is discretized
into 120 × 40 elements, forming a total of 4800 elements. The entire design domain consists
of 4800 elements. A vertical load (F = 1) is applied at the bottom right corner of the
cantilever beam, with a fixed constraint applied to the left edge of the cantilever beam.
The volume fraction of the solid material to be preserved is limited to 0.4, representing
the deformation energy of the structure under local damage, as well as the proportion of
the second local failure scenario in all failure scenarios. Subsequently, we can establish a
density iteration.
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Figure 3. Local damage model of cantilever beam.

Firstly, the cantilever beam is optimized to achieve a patch size of 5 × 5. Additionally,
local damage near the loading position, indicated by the red arrow, is not considered during
the optimization process. The loading conditions remain unchanged, mitigating the impact
of stress concentration at the loading point.

Figure 4 presents the optimized cantilever structure obtained through the fail-safe
optimization algorithm for the damage model (L = 5). This includes designs from both tra-
ditional fail-safe optimization and the improved algorithm. The nominal design represents
the optimization result from the traditional algorithm, while the others denote fail-safe
optimization designs from the improved algorithm. In the designs obtained through the
improved algorithm, adjusting the threshold of the density filter to 0.01, 0.1, 1, 2, and 4, re-
spectively, produces corresponding fail-safe optimization designs. Comparing the designs
obtained through the improved algorithm with those from the standard fail-safe optimiza-
tion algorithm reveals that the improved fail-safe optimization algorithm not only achieves
the desired fail-safe optimization designs, but also significantly reduces the computational
effort required for optimization. As shown in Figures 4 and 5, the larger the threshold of
the filter, the smaller the computational effort needed for the optimization process.

Figure 6a illustrates the cantilever structure obtained through the nominal fail-safe
optimization algorithm when adjusting the size of the local damage model to L = 14. As the
area of the local damage region increases, the threshold of the damage scenario filter also
needs to increase, set at 10, 21, 32, 43, and 54, respectively. From Figures 6 and 7, it is evident
that the enhanced fault-tolerant optimization algorithm can achieve the desired structural
design and reduce the computational effort required for optimization. However, as the
filter threshold increases, the difference between the design obtained through the improved
algorithm and the standard design becomes more significant. Clearly, the optimization
process deviates from the correct direction, which is not the expected outcome. The
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judicious and efficient selection of the filter threshold value warrants further research,
which is not detailed here.
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Table 1 displays the adjustment of the filter threshold to filter local damage scenarios,
leading to a reduction in the rate of iteration steps during the optimization process of the
improved fail-safe optimization method. It is evident that the average iteration time during
the fail-safe optimization process continuously decreases with the increase in the threshold.
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Clearly, by assessing the effectiveness of the local damage scenarios, the topological op-
timization calculations for fail-safe structures can be significantly reduced. Furthermore,
this study seamlessly integrates the preconditioned conjugate gradient method with the
fail-safe topology optimization algorithm to enhance the computational efficiency of the
fail-safe topology optimization algorithm. For detailed information on the optimization
results and computational efficiency of traditional fail-safe optimization algorithms, PCG
fail-safe optimization algorithms, and density filter-based fail-safe optimization algorithms,
please refer to Appendix A.

Table 1. Reduction rate in the average iteration time during the optimization process of the
cantilever beam.

L = 5
A 0.01 0.1 1 2 4

Rate 13.7% 13.9% 22.2% 26.7% 35.8%

L = 14
A 10 21 32 43 54

Rate 0 0 1.6% 16.1% 35.6%

3.2. L-Bracket

The well-known L-shaped beam, as illustrated in Figure 8, is discretized using four-
node finite elements with a size of 1 × 1 mm2, resulting in a total of 10,000 elements. In
the final topology, only 35% of the material is available. The top of the L-shaped bracket is
fixed, and an external load (F = 1) is applied at the bottom right corner, as shown at the top
of Figure 8. The gray area in the figure represents the prescribed non-active region. The
width of the non-active region is equal to the side length of the local damage model.
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Figure 8. Model of L-shaped beam.

The dimensions of the local damage model are L = 4, used to optimize the L-shaped
bracket. Figure 9 displays the L-shaped bracket structure obtained through the standard fail-
safe optimization method, followed by the improved structural design using the fail-safe
topology optimization algorithm. The density filter ‘A’ threshold is adjusted to 0.01, 0.1, 1, 2,
and 4, respectively. From the final results, it is challenging to discern significant differences
between them. When the side length of the damage model is L = 4, the optimization
results from both the traditional fail-safe optimization method and the improved fail-safe
optimization algorithm with different thresholds are nearly identical.

Figure 10 illustrates the iteration time curves for the density-filtered failure-safe op-
timization method under the condition of a local damage model with L = 3. The filter
thresholds are set to 0.01, 0.1, 1, 2 and 4, and a comparison is made with the standard
failure-safe optimization method. In Figure 11, the horizontal axis represents the filter
threshold, while the vertical axis depicts the reduction in the average iteration steps dur-
ing the optimization process and the fail-safe topology optimization, respectively (for
varying thresholds). Figure 12 illustrates the average iteration time before and after the
improvement of the fail-safe structural optimization method.
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Figure 13 depicts the fail-safe optimization designs for the L-shaped bracket obtained
using the fail-safe optimization method with a local damage model size of L = 6 and filter
thresholds set to 0.01, 0.1, 1, 2, and 4. After analyzing the optimization results of both the
standard fail-safe optimization method and the improved fail-safe optimization method, it
can be observed from Figures 13 and 14 that the larger the threshold of the density filter, the
greater the differences between the final optimization results of the respective algorithms.
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Additionally, with the increase in the filter threshold, the time required for each itera-
tion during the optimization process gradually decreases. However, when L = 6, although
the entire optimization solution can converge to the optimal structure, stability issues may
arise during the optimization process. This is because the size of the local damage model
directly affects the variation in sensitivity information during the optimization process.
As the scale of the local damage model increases, stability and convergence issues in the
optimization process become more pronounced.

By observing Table 2, it can be noted that by adjusting the threshold of the filter,
the computational effort required for fault-tolerant structural topology optimization can
be effectively reduced. When L = 4, the average iteration steps for fail-safe structural
optimization can be reduced by over 35%, and when L = 6, the average iteration time
can also be reduced by 25%. This method is evidently feasible for the entire fail-safe
optimization process. However, it is worth noting that there is an upper limit to the
threshold. Excessively high thresholds may cause the optimization to deviate from the
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correct direction, resulting in the presence of ineliminable intermediate density elements.
This becomes particularly evident when the local damage area is large.
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Table 2. Reduction rate in the average iteration time during the optimization process of the
L-shaped beam.

L = 4
A 0.01 0.1 1 2 4

Rate 34.7% 37.2% 42.4% 45.2% 49.2%

L = 6
A 0.01 0.1 1 2 4

Rate 26.1% 27.0% 29.5% 31.3% 33.8%

3.3. T-Shaped Beam

To test whether this method could verify more complex scenarios, the T-shaped beam
mentioned by Wang et al. [42] is considered in this case. As shown in Figure 15, the design
space of the T-shaped beam is discretized, encompassing a total of 5100 elements. The
bottom of the T-shaped beam is supported, and vertical loads (F = 1) are applied at the lower
corners of the left and right boundaries. The volume fraction of the solid material to be
preserved is constrained to 0.4. Each failed patch covers 10 × 10 elements. The blue regions
in the figure represent inactive areas, with each inactive area covering 5 × 30 elements. The
density threshold is set to A = 10.

Firstly, the T-shaped beam is optimized so that the patch size is 5 × 5. In addition, the
local damage near the loading position, that is, at the red arrow, is not considered in the
optimization process. The loading conditions are kept unchanged, and the influence of
stress concentration at the loading point is avoided.

As shown in Figure 16, the aforementioned T-shaped beam still obtains a clear con-
figuration under the corresponding conditions. Simultaneously, under these conditions,
the optimally worsened damaged area of the structure is represented by a red square,
corresponding to a strain energy of 184.02. In order to observe and locate weak areas
within the structure (stress concentration), a stress analysis of the aforementioned structure
is conducted.

As shown in Figure 17, the maximum stress is σmax = 1.564. By comparing the two
optimized result diagrams, it is evident that the most severe damaged areas are identical.
Filtering through density thresholds not only ensures reduced sensitivity to failure but
also enhances the computational efficiency. Consequently, fail-safe topology optimization
filtered by density thresholds can efficiently achieve a highly robust fail-safe design.
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4. Discussion

To enhance the computational efficiency of the fail-safe topology optimization method,
a density-based filter has been introduced to determine whether additional finite element
analyses and sensitivity calculations are necessary when traversing local damage scenarios.
A comparative analysis of the optimization results reveals that this approach can signifi-
cantly reduce computational efforts, especially in scenarios involving extensive damage.
The locally simplified damage scenario method based on density filtering ensures optimiza-
tion precision, thereby improving the computational efficiency of the fail-safe structural
topology optimization algorithm. Additionally, considering some prior knowledge of
the optimization model, such as the symmetry of the structure or load during the opti-
mization process, further enhances the computational efficiency of the fail-safe topology
optimization algorithm.

However, this study is limited to the research on structural fail-safe topology opti-
mization algorithms in the elastic phase, without considering fail-safe optimization designs
after structural plastic deformation. Determining the regularization parameter poses a
challenging question. In fail-safe topology design, unreasonable regularization parameters
often lead to more unnecessary details or the appearance of numerous intermediate density
elements in the optimization results. Therefore, for the efficient and rational selection
of regularization parameters in plastic phase fail-safe topology optimization algorithms,
further in-depth research and exploration are needed.
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Appendix A

The following content compares the results of standard topology optimization al-
gorithms, the PCG method, and fail-safe optimization based on density filtering. It also
analyzes the differences between them in terms of computational efficiency and accuracy.

The image labeled as h1 represents the results of nominal fail-safe topology optimiza-
tion, and h2 and h3 are optimization designs obtained by combining the PCG method with
the fail-safe optimization algorithm. The difference lies in the maximum iteration count
allowed when solving the nodal displacement vector. Additionally, h4, h5, and h6 are
topology designs obtained through fail-safe optimization based on density filtering with
different density filter thresholds. It also includes the variation in the objective function
during the optimization process and the average time required for each iteration of each
algorithm during the optimization process.
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The following figure depicts the scenario with a local damage model of side length
L = 14. In Figure A4, the fail-safe optimization designs obtained using each optimization
algorithm are presented. The image labeled as k1 represents the results of nominal fail-safe
topology optimization, while k2 and k3 depict optimized designs obtained by combining
the PCG method with fail-safe optimization algorithms. The difference lies in the maximum
number of iterations allowed when solving the node displacement vector. Additionally,
k4, k5, and k6 represent fail-safe topology designs obtained through density filtering with
different filter thresholds.

The figure also includes the variation of the objective function during the optimization
process and the average time required for each iteration of each algorithm during the
optimization process. Figure A5 illustrates the changes in the objective function during the
optimization process, and Figure A6 showcases the average time required for each iteration
of each algorithm during the optimization process.
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