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Abstract: Unsupervised cross-modal hashing is a topic of considerable interest due to its advantages
in terms of low storage costs and fast retrieval speed. Despite the impressive achievements of
existing solutions, two challenges remain unaddressed: (1) Semantic similarity obtained without
supervision is not accurate enough, and (2) the preservation of similarity structures lacks effectiveness
due to the neglect of both global and local similarity. This paper introduces a new method, Multi-
Grained Similarity Preserving and Updating (MGSPU), to tackle these challenges. To overcome
the first challenge, MGSPU employs a newly designed strategy to update the semantic similarity
matrix, effectively generating a high-confidence similarity matrix by eliminating noise in the original
cross-modal features. For the second challenge, a novel multi-grained similarity preserving method
is proposed, aiming to enhance cross-modal hash code learning by learning consistency in multi-
grained similarity structures. Comprehensive experiments on two widely used datasets with nine
state-of-the-art competitors validate the superior performance of our method in cross-modal hashing.

Keywords: unsupervised cross-modal hashing; attention mechanism; similarity preserving

1. Introduction

As an efficient information retrieval paradigm for big multimedia data [1–3], cross-
modal retrieval [4–9] utilizes one modality as a query to search another modal data. Among
the existing techniques [10–18], cross-modal hashing [16–20] is popular for its fast retrieval
speed and low storage cost. The core of cross-modal hashing is to map high-dimensional
data to a low-dimensional common Hamming space, in which multi-modal instances (text,
image, audio and video) with similar semantics are closer, and dissimilar instances are far
apart. Notwithstanding the strong practical significance, this task is extremely challenging
due to the heterogeneity gap between different modalities.

A number of studies are striving to promote the progress of cross-modal hashing. In
general, they can be simply divided into two groups: supervised learning methods [21–25]
and unsupervised learning methods [26–30]. The supervised learning methods use human-
annotated label to guide model learning, which preserves semantic discrimination well to
obtain great performance. However, directly obtaining the category information is really
difficult in real-world scenarios, while the cost of manual labeling is so huge as to limit
the wide application. In contrast, without relying on category annotations, unsupervised
learning methods are great at capturing the underlying correlation patterns between dif-
ferent modalities to bridge the heterogeneity gap. Thus, they have gained considerable
attention currently.

Motivation. Although existing researches have shown remarkable results on large-
scale datasets, unsupervised cross-modal hashing is yet a Herculean task that await further
exploration due to the following challenges. The first challenge is how to accurately measure
inter-modal and intra-modal similarity without category information . In the early days, several
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unsupervised learning methods [31,32] used discrete models to calculate binary similarity,
namely, defining the similarity between two instances with small distances as “1”, oth-
erwise “−1”. Unfortunately, the naive similarity measurement is far from accurate. To
break this limitation, researchers [12,15,33,34] began to use original feature distance to
measure the continuous similarity. However, such similarity is still not accurate enough to
represent the real relationship between instances due to the noise existing in their original
features. The second challenge is how to preserve similarity structure consistency from both local
and global view during hash learning process. Undisputedly, using multi-grained similarity
relationships across modalities is crucial to narrow cross-modal heterogeneity. However,
current methods [35–37] either overlook multi-grained similarity learning across various
modalities or struggle to capture a consistent distribution of relations within the content
details. Additionally, some state-of-the-art methods [38–41] do not account for the semantic
correlation between feature vectors from one modality and the corresponding hash codes
from another modality. To conquer these challenges, this paper has made the following
two efforts: (1) designing a novel and effective similarity updating strategy to rise the
accuracy of underlying similarity measurement, and (2) combining multi-grained similarity
information from local and global view to preserve similarity consistency.

Our Method. We propose a novel cross-modal hashing framework, named Multi-
Grained Similarity Preserving and Updating (MGSPU). As shown in Figure 1, this frame-
work consists four module, i.e., feature extraction, semantic similarity matrix updating,
hash code learning and hash function learning. To overcome the first challenge, a novel
semantic similarity matrix update strategy is developed, which removes noises from the
similarity matrix so as to obtain high-confidence supervisory signal. To face the second
challenge, we capture the multi-grained similarity structure information from global and
local view to preserve similarity consistency better. For global view, we use graph convo-
lutional network (GCN for short) to aggregate the similarity structure information from
the neighbors of each instance to enrich the coarse-grained similarity information. For
local view, cross-modal attention mechanisms are used to perform cross-modal interaction
to enhance similarity learning between instance pairs. Furthermore, we use a similarity
consistency reconstruction method to ensure the similarity consistency of hash codes.
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Figure 1. The framework of MGSPU. It comprises four main modules: feature extraction, semantic
similarity matrix updating, hash code learning and hash function learning module.
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Contributions. In summary, the contributions of this paper can be summarized as
follows:

• We propose an effective unsupervised learning framework, called Multi-Grained
Similarity Preserving and Updating, which learns high-quality hash codes by compre-
hensively improving cross-modal similarity learning.

• We propose a novel semantic similarity matrix updating strategy to effectively remove
noises in the original similarity matrix, which produces high-confidence supervisory
signal for cross-modal hashing learning.

• We propose a novel multi-grained similarity preserving method to enhance similarity
consistency preserving of the cross-modal hash codes.

• We conducted extensive experiments on the widely used datasets MIRFLICKR-25K
and NUS-WIDE to validate the superiority of the proposed approach and evaluate the
effectiveness of each component.

Roadmap. The paper is structured as follows: Section 2 provides a summary of related
works. Section 3 outlines the problem definition and details the MGSPU approach. Section 4
presents the experimental results and analysis. Lastly, Section 5 concludes the paper.

2. Related Work

According to literatures, cross-modal hashing techniques are generally categorized into
two groups: supervised and unsupervised cross-modal hashing. This section reviews the
prevailing solutions related to this paper, which are summarized in Table 1 to ease reading.

Table 1. Related works summary.

Type Reference Source Authors Description

SCM [42] AAAI (2014) Zhang, D., et al. Integrate semantic tags into the data
modeling process.

SePH [43] CVPR (2015) Lin, Z., et al.

The semantic similarity given by the
training data is converted into a probability
distribution, and then the hash code is
learned by minimizing the KL divergence.

Supervised

DCMH [17] CVPR (2017) Jiang, Q.Y., et al. Feature learning and hash learning are
integrated for the first time.

CMHH [44] ECCV (2018) Cao, Y., et al.

Hamming distance replaces the inner
product and uses pairwise loss based on
exponential distribution to solve the
problem of uneven positive and
negative samples.

SSAH [45] AAAI (2020) Jin, S., et al.
Derive semantic ranking information using
data features and tags and integrate it into
cross-modal hashes.

RDCMH [46] AAAI (2019) Liu, X., et al.

A multi-level semantic similarity matrix is
constructed by considering the
bidirectional relation, the relation between
the whole instances.

Bi_NCMH [47] CVPR (2022) Sun, C., et al.

The potential semantic relationships of data
are captured by constructing a joint
semantic matrix, but redundant
information is introduced.
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Table 1. Cont.

Type Reference Source Authors Description

DJSRH [12] ICCV (2019) Su, S., et al.

The potential semantic relationships of data
are captured by constructing a joint
semantic matrix, but redundant
information is introduced.

JDSH [36] ACM (2020) Liu, S., et al. The proposed sampling weighting scheme
can generate more efficient hash codes.

Unsupervised

DAEH [27] TCSVT (2022) Shi, Y., et al.
Design information mixed similarity
estimation integrates distance distribution
and similarity rate information.

DGCPN [48] AAAI (2021) Yu, J., et al.

Using a graph model to integrate
neighborhood information, the overall loss
is maintained by designing three types of
data similarity.

AGCH [26] TMM (2021) Zhang, P., et al.

The semantic structure of data is mined by
GCN, and the structural information is
explored from multiple perspectives by
using a variety of similarity measures.

DRNPH [49] Mathematics (2022) Yang, X., et al.

Cross-modal triples are used to maintain
data similarity, and the distance between
similar samples is required to be smaller
than that between dissimilar pairs.

2.1. Supervised Cross-Modal Hashing

To obtain common binary representations, supervised cross-modal hashing methods
use category information to maintain semantic discrimination. For example, semantic cor-
relation maximization (SCM [42]) learns hash functions by constructing and maintaining
semantic similarity matrices. Semantics-preserving hashing (SePH [43]) converts the seman-
tic matrix into a probability distribution and minimizes the Kullback-Leibler divergence so
that the learned hash codes are approximately distributed in Hamming space. Thanks to
the prosperity of deep learning, researchers began to realize cross-modal retrieval by deep
models that explore more discriminative features. Deep cross-modal hashing (DCMH [17])
is a pioneering achievement in this field, which perfectly combines hash function learning
with deep feature extraction, and cleverly exploits the labelling information to construct
similarity matrices, thus preserving the subtle similarity relationships in cross-modal data.
Meanwhile, cross-modal hamming hashing (CMHH [44]) introduces a pairwise focus-
ing loss based on exponential distribution. It penalises instances with similar semantic
content but the Hamming distance exceeds a predefined threshold. Semi-supervised ad-
versarial deep hashing (SSAH [45]) is a groundbreaking innovation that shifts the focus
to self-supervised methods and integrates adversarial learning into cross-modal hashing,
thus making significant progress in the field. Ranking-based deep cross-modal hashing
(RDCMH [46]) uses maximum marginal loss to learn uniform Hamming representations.
In addition, deep normalized cross-modal hashing with bi-direction relation reasoning
(Bi-NCMH [47]) achieved excellent retrieval performance by constructing high-quality
similarity matrices to capture similarity relations between instances with multiple labels.
Despite the impressive performance of these techniques, their inherent limitations cannot
be ignored: they rely heavily on manual annotation to obtain supervision.

2.2. Unsupervised Cross-Modal Hashing

Unsupervised cross-modal hashing methods do not rely on labels so as to apply in
real-world scenarios easily. In the existing solutions, constructing a semantic similarity
matrix is the key to guide cross-modal relationship learning.Among them, an ingenious
method is Deep Joint Semantic Reconstruction Hash (DJSRH [12]), which proposes a joint
semantic similarity matrix to simultaneously integrate multi-modal similarity information
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of cross-modal instances. However, the similarity matrix in DJSRH introduces redundant
information from intra-modal fusion items. As an improvement, joint-modal distribution-
based similarity hashing (JDSH [36]) involves distribution-based similarity decision and
weighting to learn more discriminative hash codes. Deep adaptively-enhanced hashing
(DAEH [27]) utilizes distance distributions and similarity ratio information to estimate
comparable similarity relationships as complementarity of simple feature distance-based
metrics. Although competitive performance is achieved, lack of accurate similarity mea-
surement are these methods since the similarity matrix they rely on are constructed from
the original features with noises.

Other unsupervised learning studies make efforts on narrowing the heterogeneity
gap by preserving similarity structure consistency. For example, deep graph-neighbor co-
herence preserving network (DGCPN [48]) explores the relationship information between
data and their neighbors to capture neighborhood structure coherence. Aggregation-based
graph convolutional hashing (AGCH [26]) employs a GCN to deeply explore the under-
lying neighborhood structure. Deep relative neighbor relationship preserving hashing
(DRNPH [49]) method excavates deep relative neighbor relationships in common Hamming
space via binary feature vector based intra- and inter-modal neighbor matrix reconstruction.
Impressive progress had been made by these works, however, a common weakness they
suffer from is lack of both global and local similarity learning from multi-modal contents.

To address the above shortcomings, we attempt to boost cross-modal hashing learning
from two aspects: (1) trying to rise the quality of similarity matrix by reducing noises from
original features, and (2) inviting multi-grained similarity learning strategy to capture both
global and local similarity relationships. As a results, a novel unsupervised cross-modal
hashing technique called multi-grained similarity preserving and updating is developed.
The detailed details of this approach will be explored in depth in the next section.

3. Methodology

This section details the proposed MGSPU method across six aspects. Initially, we
introduce the notations and problem definition in the Preliminary. Next is an overview
of MGSPU, feature extraction, semantic similarity matrix updating, hashing learning
(including hash code learning and hashing function learning), and finally a discussion
of the optimization algorithm. All abbreviations involved are summarized in Table 2 for
easier reading.

Table 2. Abbreviation summary.

Abbreviation Meaning

MGSPU Multi-Grained Similarity Preserving and Updating
CNN Convolutional Neural Network
BoW Bag of words
GCNs Graph Convolutional Networks
ResNet Residual Networks
LSTM Long Short-Term Memory Network
MGSP Multi-Grained Similarity Preserving
GSA Global Similarity Aggregation
LSI Local Similarity Interaction
SCR Similarity Consistency Reconstruction

3.1. Preliminary

Notations. For clarity and simplicity, calligraphy uppercase letters, such as O, denote
sets. Bold uppercase letters, such as W , represent matrices. Bold lowercase letters, such as
w, indicate vectors. In addition, the ij-th element of W is represented as Wij, the i-th row of
W is represented as Wi∗, the j-th column of W is represented as W∗j, W T is the transpose
of W , I represents identity matrix. ∥.∥ represents the Frobenius norm of a matrix. sgn(.)
represents a sign function, shown as below:
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sgn(x) =

{
1, x ≥ 0
−1, x < 0

. (1)

For ease of comprehension, commonly utilized mathematical notations have been
compiled in Table 3 to assist in reference.

Table 3. Notation summary.

Notation Definition

vi The i-th image instance
ti The i-th text instance
Fv The original image features after feature extraction
Ft The original text features after feature extraction
f v Image hash function
f t Text hash function
Sv Image similarity matrix
St Text similarity matrix
S f Fused similarity matrix
Sr Refined similarity matrix
Sh Hashing similarity matrix
Γ The indicator matrix
Λ The indicator matrix
S Unified similarity matrix
L∗ The corresponding latent representations generated by the image or text encoder
X∗

g Image or text global similarity aggregation representations by self-attention mechanism
G∗ Final outputs of image or text GCN

Z∗ Image or text share the outputs of a fully connected network through a two-layer
of weights

Xv
l Image attention-weighted representations by cross-attention mechanism

X t
l Text attention-weighted representations by cross-attention mechanism

Pv Image features output by the local similarity interaction sub-module
Pt Text features output by the local similarity interaction sub-module
F̂v Reconstructed image feature representations
F̂t Reconstructed text feature representations
Hv Real-valued hash codes for image instances
Ht Real-valued hash codes for text instances
Bv Binary code for image instances
Bt Binary code for text instances

Problem Definition. This paper concentrates on cross-modal retrieval between two
prevalent modalities, i.e., image v and text t. Let O = {(vi, ti)}n

i=1 be a cross-modal dataset,
vi ∈ Rdv and ti ∈ Rdt refer to the image and text in the pairwise instance respectively,
dv and dt represent the dimension of the corresponding features, n denotes the number
of instances. Our study aims to learn two hash functions f v = (·; θv) and f t = (·; θt)
to map images and texts to a common Hamming space: Bv = sgn( f v = ({vi}n

i=1; θv)),
Bt = sgn( f t = ({ti}n

i=1; θt)), where Bv, Bt ∈ {−1, 1}n×C, C represents the length of the bi-
nary code, θv and θt are the learnable parameters. In addition, the similarity between two bi-
nary codes Bv

i and Bt
j is measured by Hamming distance D

(
Bv

i , Bt
j

)
= 1

2

(
C− < Bv

i , Bt
j >
)

,
which is the base for implementing cross-modal hashing retrieval.

3.2. Overview of MGSPU

Figure 1 shows the overview of the MGSPU framework. Specifically, it mainly consists
of four modules: (1) feature extraction module, (2) semantic similarity matrix updating module,
(3) hash code learning module, and (4) hash function learning module. The feature extraction
module maps images and texts into feature subspaces by corresponding encoders: deep
CNN for image features and Bag-of-Word (BoW) model for text features. The semantic
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similarity matrix updating module realizes a novel similarity updating strategy to construct
a high-confidence similarity matrix, which effectively enhance the hash code learning and
hash function learning. To support hash function learning, the hash code learning module
aims at generating real-value hash representations with a novel multi-grained semantic
preserving learning strategy. It utilizes a pair of GCNs (each for one modality) to capture
global semantic correlation, following by a cross-attention mechanism to enhance cross-
modal local feature learning. This technique allows for sufficient semantic correlations
preserving of both intra- and inter-modality. The hash function learning module is to learn
two hash functions that are implemented by two fully-connected neural networks for image
and text, respectively.

In a nutshell, the goal of this method is to optimize the hash function module with
other three parts to generate high-quality binary hash codes for cross-modal retrieval task.
Thereinafter, we discuss the technical details module by module.

3.3. Feature Extraction

The first step of cross-modal hash code learning is feature extraction from both images
and texts. For images, we follow previous works [12,37,48] to extract deep features from
CNN model (pre-trained on ImageNet). Specifically, we extract the the 4096-dimensional
features from the first fc7 layer (after ReLU) of AlexNet [50] as the original image features
Fv ∈ Rm×4096 for the batch-input images {vi}m

i=1. While for texts {ti}m
i=1 we directly adopt

the BoW [51] vectors as their original features Ft ∈ Rm×dt . It is noted that the proposed
MGSPU framework can also be compatible with other deep feature extraction models,
such as ResNet [52] for images or LSTM [53] for texts. To better validate the superiority
of the proposed technique, we use relatively naive but effective feature extraction models
(AlexNet and BoW) when implementing MGSPU. The implementation details are presented
in Section 4.3.

3.4. Semantic Similarity Matrix Updating

Unlike supervised hashing learning that do not easily suffer from noises in features
due to accurate category annotation, the unsupervised method cannot ensure the high
accuracy of latent semantic correlations between instances without category information.
To address this issue, we focus on constructing a high-confidence unified similarity matrix
S as a supervisory signal to filter out noises as much as possible. Accordingly, a novel
semantic similarity matrix updating strategy is designed.

3.4.1. Similarity Matrix Construction

To comprehensively consider cross-modal similarity relationships, we first fuse the
similarity matrices from image modality and text modality:

S f = α1Sv + (1 − α1)St, (2)

where S f is the fused similarity matrix, Sv and St represent the image and text similarity
matrices, respectively. α1 ∈ [0, 1] is a hyperparameter to balance them. Each element in Sv

and St is computed by Cosine similarity. Taking image modality as an example:

Sv
ij = cos(vi, vj) =

vT
i vj

∥vi∥2
F
∥∥vj
∥∥2

F

, (3)
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where vi and vj denote the feature of the i-th and j-th image. To rise the accuracy of
similarity measurement without supervision, we design a filter-and-augment strategy to
refine the similarity matrix, shown as follows:

Sr =

{
sgn(S f ),

∣∣∣S f
ij

∣∣∣ > η1

2 × sigmoid(2 × S f )− 1 + I, otherwise
, (4)

where Sr denotes the refined similarity matrix, η1 is similarity threshold. the sign function
sgn(S f ) indicates if S f

ij > η1, S f
ij = 1; if S f

ij < −η1, S f
ij = −1. Meanwhile, inspired by

reference [28], we use the non-linear function sigmoid(·) to compress the remaining values
to further expand the distance between similar and non-similar instances. The coefficient
2 of S f is to control the linear compression, then 2 × sigmoid(·)− 1 maps the compressed
value to [−1, 1]. I is an identity matrix to maintain the similarity between instance pairs.

3.4.2. Dual Instruction Fusion Updating

In order to preserve semantic similarity consistency in cross-modal hash codes, a
reliable similarity matrix for unsupervised hash function learning is indispensable. During
the training process, unfortunately, we found that there is a evident gap between the
similarity relationships of cross-modal hash codes and the real relationships of original
instances due to the noises existing in the flawed similarity matrix Sr. In other words,
the value of |Sr

ij − Sh
ij| is not small enough to correctly guide cross-modal hash function

learning. Intuitively, if we rectify these incorrect similarity values, it will effectively embed
the correct similarity relationship information into cross-modal hash codes. For this reason,
we attempt to construct dual instruction to further denoise the similarity matrix Sr: the one
is the difference of similarity value of Sr

ij and Sh
ij, the other is difference of the sign of them.

Beyond all doubt, these two instructions actually measure the difference between Sr and
Sh from two different perspectives, which could be fused to narrow the gap between Sr

and Sh.
From the analysis mentioned, we develop a novel semantic similarity matrix updating

strategy, named dual instruction fusion updating, to gradually eliminate the noises. Firstly,
we construct the hashing similarity matrix Sh via the real-valued hash code Hv and Ht:

Sh = cos(Hv, Hv) + cos(Ht, Ht) + cos(Hv, Ht). (5)

Thereafter, we utilize Sh to update Sr according to the similarity relationship among
them. For the convenience of formal description and implementation, we introduce two
indicator matrices Λ and Γ at first. The former is defined as Λij = Sr

ij ⊕ Sh
ij, therein ⊕

is XOR operation, which means if Sr
ij × Sh

ij > 0, Λij = 0; otherwise Λij = 1. The latter

indicates the numerical difference between Sh
ij and Sr

ij, therein the elements |Sr
ij − Sh

ij| > η2

are set to 1 and the others are set to 0. η2 ∈ [0, 1] be a threshold to measure the difference
between two elements in similar matrices. Accordingly, two cases are considered: (1) Not
updating: if Λij = 0 and Γij = 0, then the updating do not be conducted since Sh and Sr are
similar enough. (2) Updating: according to the value of Λij, we introduce two updating
rules: if Λij = 0 and Γij = 1, we update Sr

ij by Sh
ij; if Λij = 1, we update Sr

ij by “0”, which is
a way with maximizing entropy to enhance generalization capability. The reason behind
this rule is intuitive: if the difference between Sr

ij and Sh
ij is too large, a wise way is not to

biased towards either side. To clearly show the update rules, we list a truth table for Λ
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and Γ in Table 4. Thereby, the updated semantic similarity matrix S is generated by the
following updating process:

Sij =


Sr

ij, Λij = 0 ∩ Γij = 0

α2Sr
ij + (1 − α2)Sh

ij, Λij = 0 ∩ Γij = 1

0, otherwise

, (6)

where α2 ∈ [0, 1] is a parameter. Finally, we use S to guide the cross-modal hash func-
tion learning avoiding the interference from similarity noise. Figure 2 illustrates the
updating process.

Hashing Similarity 
Matrix

Refined Similarity 
Matrix

  Indicator 
Matrix

Similarity 
Matrix

  Indicator 
Matrix

Figure 2. The process of dual instruction fusion updating. Γ is an indicator matrix that tells us where
values need to be updated, when |Sr − Sh| > η2, Γij = 1; otherwise Γij = 0. Λij = Sr

ij ⊕ Sh
ij, ⊕ is XOR

operation. If Γij = 1 and Λij = 0, Sij is weighted by Sr
ij and Sh

ij; if Γij = 0 and Λij = 0, then Sij = Sr
ij;

the rest of S is consistent with 0.

Table 4. Indicator matrices truth table for dual instruction fusion updating strategy.

Λij Γij Update Rules

0 0 Sr
ij

0 1 ✓ α2Sr
ij + (1 − α2)Sh

ij
1 0 ✓ 0
1 1 ✓ 0

3.5. MGSP for Hash Code Learning

To enhance the cross-modal similarity consistency preserving for hash code learning, a
novel technique, called Multi-Grained Similarity Preserving (MGSP) is developed, as shown
in Figure 3a. It consists two key sub-modules, i.e., global similarity aggregation (GSA) and
local similarity interaction (LSI), which explore multi-grained similarity information: global
and local similarity structure information. Furthermore, another sub-module, named
Similarity Consistency Reconstruction (SCR) is involved to narrow heterogeneity gap
between original features and reconstructed features from hash codes.
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Figure 3. The details of MGSP. (a–c) illustrate the pipeline of global similarity aggregation, local
similarity interaction, and similarity consistency reconstruction, respectively. Best view in color.

3.5.1. Global Similarity Aggregation

The similarity relationship between instances of any modality (image or text) is essen-
tial for similarity preserving, which reflects the latent feature distributions of each kind
of data. As we known, the intra-modal similarity relationships can be represented as a
graph therein each node is an instance and the similarity relationships are represented
by edges. In such a graph, each node may be related to others through complex linked
structure that can be captured to learn latent global similarity relationships within each
modality. To this end, we developed a global similarity aggregation (GSA) sub-module
involving the following process: two graphs firstly are constructed, each per modality.
Then, we aggregate global similarity information of each node from its neighbors via a
graph convolutional network (GCN). Specifically, let ∗ ∈ {v, t}, for a batch of samples
F∗, we feed them into an encoder to generate the latent representations L∗. To further
focus on the crucial features, the key-value self-attention mechanism is used to obtain
global similarity aggregation representations X∗

g . The query Q∗
g, key K∗

g and value V∗
g are

calculated as:
Q∗

g = L∗W∗
g,Q, K∗

g = L∗W∗
g,K, V∗

g = L∗W∗
g,V , (7)

where W∗
g,Q, W∗

g,K, W∗
g,V are the learnable weight matrices. The attention map M∗

g is calcu-
lated as:

M∗
g = so f tmax

(
Q∗

g(K∗
g)

T
√

d

)
. (8)

Thus, the global similarity enhanced representations is X∗
g = M∗

g V∗
g . To avoid the issue

of smaller feature value caused by attention weighting, we add the latent representation L∗

with X∗
g , then normalize it as the input of the GCN:

G∗(0) = σ
(

norm(L∗ + X∗
g )
)

. (9)

where the superscript (0) denotes the 0-th layer of convolution, namely the input of GCN,
norm(·) is normalization function, σ(·) represents a nonlinear activation function, usually
the ReLU(·) function. The layer-by-layer propagation rule of GCN is formulated as:

G∗(l) = σ
(

D̃− 1
2 ÃD̃− 1

2 G∗(l−1)W∗(l)
)

, (10)
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where D̃ii = ∑j Ãij, Ã is an adjacency matrix constructed from the refined similarity matrix
Sr via kNN algorithm, k represents the number of neighbors, G∗(l−1) and G∗(l) represent
the input and output of the l-th layer, W∗(l) denotes the learnable parameters of the l-th
layer, σ(·) is ReLU(·) function. The final outputs of the GCN are denoted by G∗. Finally, to
further mitigate the cross-modal heterogeneity, a two-layer fully-connected network with
weigh-sharing is integrated on the top of GCN, and its output are denoted as Z∗.

3.5.2. Local Similarity Interaction

Capturing rich similarity structure information among each image-text pair (vi, ti)
is another desiderata to further enhance cross-modal similarity preserving. This kind of
information is mainly reflected in the latent local feature relationships between modalities.
To this end, we develop a local similarity interaction (LSI) sub-module to improve similarity
consistency preserving within each image-text pair. Specifically, a key-value cross-attention
mechanism is used on the top of GSA sub-module to learn fine-grained cross-modal
similarity associations. We obtain query Qv

l and Qt
l , key Kv

l and Kt
l , as well as value V v

l
and V t

l through linear transformation to obtain the visual and textual attention map Mv
l

and Mt
l :

Qv
l = ZvWv

l,Q, Kv
l = ZvWv

l,K, V v
l = ZvWv

l,V ,

Qt
l = ZtW t

l,Q, Kt
l = ZtW t

l,K, V t
l = ZtW t

l,V .
(11)

Mv
l = so f tmax

(
Qv

l (K
t
l )

T
√

d

)
,

Mt
l = so f tmax

(
Qt

l(K
v
l )

T
√

d

)
.

(12)

Thus, the attention-weighted representations are Xv
l = Mv

l V v
l and X t

l = Mt
l V t

l . Similar
to the above self-attention, the local are calculated as follows:

Pv = σ(norm(Xv
l + Zv)),

Pt = σ
(
norm(X t

l + Zt)
)
,

(13)

where σ(·) is still ReLU(·).

3.5.3. Similarity Consistency Reconstruction

The similarity consistency preserving should not only be reflected in cross-modal fea-
tures, but more importantly, in hash codes. Deep feature reconstruction, namely reducing
the heterogeneity between original features and reconstructed features from continuous
hash codes, has been verified to be an effective technique. Current literatures indicate that,
two different reconstruction strategies, i.e., intra-modal [28] and inter-modal reconstruc-
tion [37], are developed for similarity consistency preserving. In this work, we integrate
inter-modal reconstruction into our method to narrow cross-modal gap. Specifically, the
continuous hash codes Hv and Ht are generated by a couple of two-layer fully-connected
networks from Pv and Pt, which then are fed into two re-constructors to output recon-
structed features. Accordingly, inspired by [37], a similarity consistency reconstruction loss
function Lrec is introduced to preserve the similarity structure information into hash codes:

Lrec =
∥∥F̂v − Fv∥∥2

F +
∥∥∥F̂t − Ft

∥∥∥2

F
, (14)

where F̂v and F̂t denote the reconstructed feature representations.
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3.5.4. Hash Code Learning Loss

Furthermore, to preserve similarity consistency of cross-modal hash codes from both
intra-modal and inter-modal perspectives, we introduce hash code similarity consistency loss:

Lmod =
∥∥cos(Hv, Hv)− cos(Ht, Ht)

∥∥2
F

+
∥∥cos(Hv, Ht)− cos(Ht, Ht)

∥∥2
F

+
∥∥cos(Hv, Ht)− cos(Hv, Hv)

∥∥2
F.

(15)

Meanwhile, to ensure the accuracy of the similarity matrix, we designed a new loss
function Lsim as follows:

Lsim =∥S − cos(Hv, Hv)∥2
F

+
∥∥S − cos(Ht, Ht)

∥∥2
F

+
∥∥S − cos(Hv, Ht)

∥∥2
F

+Γ∥S − Sr∥2
F,

(16)

where Γ is an indicator function, when
∣∣∣Sr

ij − Sh
ij

∣∣∣ > η2, Γij = 1, otherwise Γij = 0.

3.6. Hashing Function Learning

Using the semantic similarity matrix S and the hash codes Hv, Ht, we learn two
modality-specific hash functions sgn( f v(.; θv)) and sgn( f t(.; θt)) to project deep features
Fv and Ft to Hamming space. Specifically, to preserving the similarity structure between
hash codes and cross-modal features, we introduce similarity loss function L f1 as follows:

L f1 =∥S − cos( f v(Fv; θv), f v(Fv; θv))∥2
F

+
∥∥S − cos( f t(Ft; θt), f t(Ft; θt))

∥∥2
F

+
∥∥S − cos( f v(Fv; θv), f t(Ft; θt))

∥∥2
F,

(17)

where f v(Fv; θv) and f t(Ft; θt) denote the relaxed hash codes generated by the hash func-
tions, θv and θt denote the parameters. In addition, in order to numerically align the hash
codes generated by the hash function with the hash codes Hv and Ht obtained during the
training process, we also introduced loss function L f2 :

L f2 =∥Hv − f v(Fv; θv)∥2
F

+
∥∥Ht − f t(Ft; θt)

∥∥2
F

+
∥∥ f v(Fv; θv)− f t(Ft; θt)

∥∥2
F.

(18)

Finally, the quantization loss L f3 transfers semantic information from relaxed hash
codes to binary hash codes:

L f3 = ∥Hv − sign(Hv)∥2
F +

∥∥Ht − sign
(

Ht)∥∥2
F. (19)

3.7. Optimization

The learning process of MGSPU can be divided into two stages: (1) hash code learning
stage, and (2) hash function learning stage. During the hash code learning stage, the opti-
mization of the objective function Lcode is performed by minimizing Equations (14)–(16):

min
θc

Lcode = λ1Lrec + λ2Lmod + λ3Lsim. (20)
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During the hash function learning stage, the optimization of the objective function
Lhash entails minimizing Equations (17)–(19):

min
θv ,θt

Lhash = β1L f1 + β2L f2 + β3L f3 . (21)

The entire algorithm process of MGSPU is outlined in Algorithm 1, which is imple-
mented by Adam adaptive algorithm [54].

Algorithm 1 Algorithm of MGSPU.

Input: Training set size n; number of epochs e; hash code length C; batch size m; learning
rate of the network lrcode and lrhash; hyperparameter α1, α2, η1, η2, k, λ1, λ2, λ3, β1, β2, β3;

Output: Network parameters for the optimal hash function learning part;
1: Initialize network parameters θc, θv, θt;
2: Construct a unified semantic matrix Sr using image features Fv and text features Ft;
3: repeat
4: Iterative training e times;
5: for i = 1, 2, ..., ⌈ n

m ⌉ do
6: Arbitrarily select m training data;
7: Generate continuous hash codes Hv, Ht by forward propagation algorithm;
8: Generate the semantic matrix Sh through the hash code Hv, Ht, and update the

original semantic matrix Sr to generate a unified semantic matrix S;
9: Calculate the loss function Equations (14)–(16) and update the parameters through

backpropagation θc;
10: end for
11: for i = 1, 2, ..., ⌈ n

m ⌉ do
12: Select m training image-text pairs and hash code Hv, Ht;
13: Map the original feature Fv, Ft into a hash code through f v and f t;
14: Calculate the loss Equations (17)–(19), and update the parameter θv, θt with back-

propagation;
15: end for
16: until Convergence.

4. Experiments

This section presents experiments and analysis to assess the retrieval performance
of the proposed method. We begin by introducing the experimental settings, including
datasets, evaluation metrics, baselines, and implementation details. Subsequently, we
provide a performance comparison between our method and several baselines, along with
an ablation analysis to validate the impact of each component.

4.1. Datasets

We conduct thorough experiments on two prominent multimedia benchmark datasets,
namely MIRFLICKR-25K [55] and NUS-WIDE [56], widely employed for cross-modal
retrieval evaluation. A concise introduction to these datasets is provided below.

MIRFLICKR-25K. The MIRFLICKR-25K dataset includes 25,000 image-text pairs from
the popular photo-sharing platform Flickr. Each image is accompanied by multiple text
labels. In our experiment, we specifically selected instances with at least 20 text tags. With
AlexNet [50], we converted each image into a depth feature of 4096 dimensions, while the
text labels were converted into a BoW [51] vector of 1386 dimensions. In addition, each
instance is manually annotated with at least one of 24 unique tags. We experimented with
20,015 examples selected from the dataset.

NUS-WIDE. The NUS-WIDE dataset is a substantial real-world web image collection,
featuring more than 269,000 images accompanied by over 5000 user-provided tags and
81 concepts across the entire dataset. Using AlexNet [50], each image instance is repre-
sented as a 4096-dimensional deep feature, while the textual content is condensed into
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a 1000-dimensional BoW [51] vector. For our experiment, we excluded instances lacking
labels and focused on those associated with the 10 most frequent categories, resulting in a
curated set of 186,577 image-text pairs.

Table 5 presents the statistics of the above two datasets, and some samples of these
two datasets are shown in Figure 4.

Table 5. Details about the datasets used in our experiments.

Dataset Train Query Retrieval Text Feature

MIRFLICKR-
25K 5000 2000 18,015 1386 d

NUS-WIDE 5000 2000 184,577 1000 d

(a) (b)

Figure 4. Some examples from the MIRFLICKR-25K and NUS-WIDE datasets. (a) MIRFLICKR-25K.
(b) NUS-WIDE.

4.2. Evaluation Metrics

In our experiments, we conducted two types of cross-modal retrieval tasks: retrieving
texts using image queries (denoted as “I2T”) and retrieving images using text queries (de-
noted as “T2I”). Next, we utilized two standard hashing performance protocols, Hamming
ranking and hash lookup [57], to assess the effectiveness of our method and its competi-
tors.For the Hamming ranking protocol, we utilized mean average precision (mAP) to
measure accuracy, while precision-recall curves (P-R curves) were employed for the Hash
lookup protocol. For mAP and P-R curves, we considered images and texts to be similar
if they shared at least one label; otherwise, they were considered dissimilar. Specifically,
given a query qi, the average precision (AP) of the top-N results is defined as:

AP(qi) =
1
N

R

∑
r=1

p(r)d(r), (22)

where N is the number of relevant instances in the result set, R represents the total amount
of data. p(r) denotes the precision of the top- r results. If the r-th retrieved result is relevant
to the query instances, d(r) = 1; otherwise, d(r) = 0. The mAP value is defined as the
average AP across all queries qi:

mAP =
1
M

M

∑
i=1

AP(qi), (23)

where M represents the number of queries.
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4.3. Baselines and Implementation Details

Baselines. we compare the proposed MGSPU method with nine baselines, including
CMFH [31], DBRC [58], UDCMH [35], DJSRH [12], JDSH [36], DSAH [37], AGCH [26],
DAEH [27], DRNPH [49], which are briefly described as follows:

• CMFH: This method learns uniform binary feature vectors for different modalities
through collective matrix factorization of latent factor models.

• DBRC: This approach proposes a deep binary reconstruction model to preserve inter-
modal correlation.

• UDCMH: This method utilizes deep learning and matrix factorization with binary
latent factor models for multi-modal data search.

• DJSRH: This approach integrates original neighborhood information from different
modalities into a joint-semantics affinity matrix to extract latent intrinsic semantic
relations.

• JDSH: This method introduces a distribution-based similarity decision and weighting
scheme for generating a more discriminative hash code.

• DSAH: This approach explores similarity information across modalities and incor-
porates a semantic-alignment loss function to align features’ similarities with those
between hash codes.

• AGCH: This method utilizes GCNs to uncover semantic structures, coupled with a
fusion module for correlating different modalities.

• DAEH: This approach attempts to train hash functions with discriminative similarity
guidance and an adaptively-enhanced optimization strategy.

• DRNPH: This method implements unsupervised deep relative neighbor relationship
preserving cross-modal hashing for achieving cross-modal retrieval in a common
Hamming space.

Except for CMFH, All other approaches use deep features to generate cross-modal
hash codes.

Implementation Details. As discussed above, the learning process is divided into two
stages. In hash code learning stage, three hyperparameters λ1, λ2, λ3 are used to weight
Lrec,Lmod,Lsim, respectively. In hash function learning stage, three other hyperparameter
β1, β2, β3 are used to adjust the ratio between L f1 ,L f2 ,L f3 . On the MIRFLICKR-25K dataset,
we set λ1 = 0.1, λ2 = 1, λ3 = 10, β1 = 1, β2 = 0.01, β3 = 1. On NUS-WIDE dataset, we set
λ1 = 1, λ2 = 1, λ3 = 10, β1 = 10, β2 = 0.01, β3 = 10. In the process of semantic similarity
matrix construction, we set α1 = 0.6, η1 = 0.8, α2 = 0.4, η2 = 0.7 on the MIRFLICKR-25K,
and set α1 = 0.4, η1 = 0.5, α2 = 0.7, η2 = 0.6 on the NUS-WIDE. In GSA sub-module, kNN
algorithm is used to aggregate nodes in a certain neighborhood for each modality. We set
k = 40 and k = 60 for MIRFLICKR-25K and NUS-WIDE, respectively. The optimization
algorithm used is the Adam optimization algorithm [54]. For MIRFLICKR-25K, we set
the learning rates for hash code learning and hash function learning to 0.001 and 0.0001,
respectively, and for NUS-WIDE, both are set to 0.0001. The batch size is consistently set at
512. The number of iterations is defined as 60 for MIRFLICKR-25K and 100 for NUS-WIDE.
It’s worth noting that, under the same experimental setup, we directly utilize mAP@50
results provided in the original papers of the baseline methods.

Experimental Environment. All the experiments are performed on a workstation with
Intel(R) Core i9-12900K 3.9 GHz CPU, 128 GB RAM, 1 TB SSD storage, 2TB HDD storage,
and 1 NVIDIA GeForce RTX 3090Ti GPU with ubuntu-22.04.1 operating system. All the
techniques are implemented by Python 3.9 on PyTorch 2.0.1.

4.4. Performance Evaluation

We compare the proposed method with nine baselines on MIRFLICKR-25K and NUS-
WIDE datasets. The performance of all these methods are evaluated by Hamming Ranking
protocol and hash lookup protocol. Tables 6 and 7 illustrates the mAP@50 results of our
method and the competitors varying hash code lengths (16, 32, 64, 128 bits) on MIRFLICKR-
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25K and NUS-WIDE. Figures 5 and 6 show the P-R curves on these two datasets in various
code length. The detailed analysis and observation are presented as follows.

Table 6. mAP@50 score of our method and the baselines at various code lengths (bits) on MIRFLICKR-25K.

Methods

MIRFLICKR-25K

I2T T2I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CMFH 0.621 0.624 0.625 0.627 0.462 0.662 0.676 0.685
DBRC 0.617 0.619 0.620 0.621 0.618 0.622 0.626 0.628
UDCMH 0.689 0.698 0.714 0.717 0.692 0.704 0.718 0.733
DJSRH 0.810 0.843 0.862 0.876 0.786 0.822 0.835 0.847
JDSH 0.832 0.853 0.882 0.892 0.825 0.864 0.878 0.880
DSAH 0.863 0.877 0.895 0.903 0.846 0.860 0.881 0.882
AGCH 0.865 0.887 0.892 0.912 0.829 0.845 0.852 0.880
DAEH 0.812 0.835 0.847 0.845 0.778 0.819 0.825 0.831
DRNPH 0.876 0.902 0.914 0.933 0.860 0.872 0.885 0.897
Ours 0.898 0.915 0.927 0.936 0.876 0.883 0.889 0.900

Table 7. mAP@50 score of our method and the baselines at various code lengths (bits) on NUS-WIDE.

Methods

NUS-WIDE

I2T T2I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CMFH 0.455 0.459 0.465 0.467 0.529 0.577 0.614 0.652
DBRC 0.424 0.459 0.447 0.447 0.455 0.459 0.468 0.473
UDCMH 0.511 0.519 0.524 0.558 0.637 0.653 0.695 0.716
DJSRH 0.724 0.773 0.798 0.817 0.712 0.744 0.771 0.789
JDSH 0.736 0.793 0.832 0.835 0.721 0.785 0.794 0.804
DSAH 0.775 0.805 0.818 0.827 0.770 0.790 0.804 0.815
AGCH 0.809 0.830 0.831 0.852 0.769 0.780 0.798 0.802
DAEH 0.766 0.789 0.809 0.822 0.718 0.751 0.766 0.767
DRNPH 0.790 0.811 0.826 0.837 0.780 0.795 0.804 0.811
Ours 0.811 0.826 0.844 0.858 0.780 0.786 0.806 0.813
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Figure 5. P-R curves of different models at different lengths on MIRFLICKR-25K dataset. (a) I2T:16bit.
(b) I2T:32bit. (c) I2T:64bit. (d) I2T:128bit. (e) T2I:16bit. (f) T2I:32bit. (g) T2I:64bit. (h) T2I:64bit.
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Figure 6. P-R curves of different models at different lengths on MIRFLICKR-25K dataset. (a) I2T:16bit.
(b) I2T:32bit. (c) I2T:64bit. (d) I2T:128bit. (e) T2I:16bit. (f) T2I:32bit. (g) T2I:64bit. (h) T2I:128bit.

Hamming Ranking. It is clearly from the Tables 6 and 7 that the proposed method
performs better than the baselines. Specifically, on MIRFLICKR-25K, we found that our
method achieved the highest mAP@50 score for both retrieval tasks (I2T: mAP@50 = 0.898
(16 bits), mAP@50 = 0.915 (32 bits), mAP@50 = 0.927 (64 bits), mAP@50 = 0.936 (128 bits);
T2I: mAP@50 = 0.876 (16 bits), mAP@50 = 0.883 (32 bits), mAP@50 = 0.889 (64 bits),
mAP@50 = 0.900 (128 bits)). For example, our method beats out the strongest competitor,
DRNPH, by a significant margin on both two tasks, especially in shorter hash code length:
0.022 (16 bits), 0.013 (32 bits), 0.013 (64 bits) on I2T task, and 0.016 (16 bits), 0.011 (32 bits)
on T2I task. The reason behind these results is obvious: with the engagement of the pro-
posed similarity matrix updating strategy, our method can gradually eliminate the noise
of the original features used in the similarity relationship construction so as to improve
similarity consistency preserving, which is unfortunately ignored by DRNPH. In all but
a few case (32 bits code length on I2T and I2T task, MGSPU was defeated by AGCH and
DSAH marginally), our method won the competition again on NUS-WIDE by stand-out
performance: mAP@50 = 0.811 (16 bits), 0.826 (32 bits), 0.844 (64 bits), 0.858 (128 bits) on
I2T task, and mAP@50 = 0.780 (16 bits), 0.786 (32 bits), 0.806 (64 bits), 0.813 (128 bits) on T2I
task. Compared with mainstream solutions, complex similarity correlations can be greatly
mined through the semantic similarity matrix update strategy, and the MGSP module
further retains the potential similarity structure between data.

Hash Lookup. To comprehensively showcase the comprehensive performance com-
parison of MGSPU with baselines, we draw P-R curves in Figures 5 and 6 with different
code lengths on both two datasets. As expected, in addition to dramatically defeating
hand-crafted feature based method CMFH, MGSPU outperforms state-of-the-art competi-
tors DRNPH, DSAH and AGCH on various hash code length. This observation is mainly
due to the search performance boosting from the interplay of similarity updating and
multi-grained similarity preserving of hash codes.

Discussion. It is no secret that, the main reason of poor performance of early models
(such as CMFH and DBRC) is their shallow feature extraction techniques that cannot obtain
feature representations with rich semantic information. With the help of powerful deep
learning techniques, deep neural networks based methods such as DJSRH, JDSH, AGCH
and DAEH achieved good results. Among them, DJSRH is equiped with a reconstruction
framework for training, which is more competitive than batch training. AGCH uses GCN
to aggregate neighborhood information and enhance feature expression. DAEH leverages
teacher networks to enhance weaker hashing networks. However, all of them build sim-
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ilarity matrices based on original features, which inevitably bring noises into semantic
relationships so as to introduce biases. Furthermore, these methods either maintain local or
global similarities to preserve the semantic relationships. For example, the similarity matrix
in DJSRH contains redundant information from intra-modal fusion items, while DAEH
ignores the semantic relationships of intra-modal details. Comparing with these solutions,
therefore, we argue that stepwise denoising through a similarity matrix update strategy can
greatly mine complex similarity correlations, thereby generating high-confidence supervi-
sion signals. In addition, the MGSP method can effectively improve the hash code quality
due to further preserving the potential similar structures within and between modalities.
Both the mAP@50 score on the hash ranking protocol and the area under the P-R curves on
the hash lookup procotol strongly support our view.

4.5. Ablation Study

To verify the validity of each design in MGSPU, we conducted ablation experiments
on the MIRFLICKR-25K and NUS-WIDE datasets, serveral variations were considered for
this purpose:

• MGSPU-1: it removes semantic similarity matrix updating from MGSPU.
• MGSPU-2: it removes the similarity consistency reconstruction from MGSPU.
• MGSPU-3: it modifies similarity consistency reconstruction by replacing inter-modal

reconstruction with intra-modal reconstruction.
• MGSPU-4: it removes the GCN module from MGSPU.

From Tables 8 and 9, the following observations can be obtained: firstly, the comparison
of MGSPU-1 with our the full MGSPU method verifies that the proposed dual instruction
fusion updating strategy can improve the quality of instance similarity matrix to enhance
the retrieval performance. Specifically, the retrieval accuracy of MGSPU-1 for both I2T
and T2I task show decrease in some extent: on MIRFLICKR-25K, mAP@50 results of
I2T task drop from 0.898 (16 bits), 0.915 (32 bits), 0.927 (64 bits), 0.936 (128 bits) to 0.894
(16 bits), 0.912 (32 bits), 0.924 (64 bits), 0.933 (128 bits), respectively; mAP@50 results of
T2I task drop from 0.876 (16 bits), 0.883 (32 bits), 0.889 (64 bits), 0.900 (128 bits) to 0.872
(16 bits), 0.876 (32 bits), 0.883 (64 bits), 0.892 (128 bits), respectively. It indicates that
without the semantic similarity matrix updating, complex similarity relationship learning
suffers from disturbance by noise. Secondly, we can clearly observe that MGSPU-2 has
a remarkably performance degradation compared with the full version of MGSPU. This
phenomenon confirms that similarity consistency reconstruction is beneficial to preserve
semantic information into hash code. Thirdly, with intra-modal reconstruction, MGSPU-3
performs better than MGSPU-2 especially on long hash codes (e.g., 64 or 128 bits). However,
compared with the inter-modal reconstruction used in our method, the performance of
MGSPU-3 is slightly weaker, which indicates that the inter-modal reconstruction is more
helpful to reduce the heterogeneity between the original feature and the hash code. Lastly,
after removing GCN module, MGSPU-4 achieves lower retrieval accuracy than ours. these
results show that the structural similarity aggregated from neighborhoods by the GCN
module is essential to enrich the similarity relationship information of each instance.

Table 8. mAP@50 score for ablation study on MIRFLICKR-25K.

Methods

MIRFLICKR-25K

I2T T2I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

MGSPU-1 0.894 0.912 0.924 0.933 0.872 0.876 0.883 0.892
MGSPU-2 0.886 0.902 0.909 0.913 0.849 0.857 0.866 0.876
MGSPU-3 0.897 0.913 0.926 0.934 0.872 0.885 0.889 0.894
MGSPU-4 0.895 0.904 0.924 0.926 0.868 0.873 0.886 0.887
Ours 0.898 0.915 0.927 0.936 0.876 0.883 0.889 0.900
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Table 9. mAP@50 score for ablation study on NUS-WIDE.

Methods

NUS-WIDE

I2T T2I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

MGSPU-1 0.803 0.821 0.837 0.849 0.763 0.783 0.804 0.805
MGSPU-2 0.796 0.809 0.819 0.821 0.746 0.775 0.777 0.776
MGSPU-3 0.801 0.821 0.827 0.851 0.768 0.791 0.799 0.812
MGSPU-4 0.794 0.826 0.843 0.847 0.773 0.786 0.798 0.797
Ours 0.811 0.826 0.844 0.858 0.780 0.786 0.806 0.813

4.6. Sensitivity to Hyperparameters

This section, we conduct an analysis of the sensitivity of all hyperparameters used
in the model: α1, η1; α2, η2; k; λ1, λ2, λ3; β1, β2, β3. To explore the comprehensive impact
of them, the accuracy of I2T and T2I task is used to visualize the trend of cross-modal
hash performance. All these analysis are carried out in 16 bit hash code length on
NUS-WIDE dataset.

Hyperparameter α1, η1, α2, η2. In semantic similarity matrix updating module, α1, η1
are used to construct the refined similarity matrix Sr, α2, η2 are used to execute the updating
strategy to generate semantic similarity matrix S. We observe the performance change of
MGSPU by varying α1, η1 and α2, η2. According to the experimental results in Figure 7, it is
clearly that the retrieval accuracy is more susceptible to changes of α1 when the value of
η1 is small. We speculate that this phenomenon is caused by the noises that are injected
in refined similarity matrix when the value of η1 is small. On the other hand, when we
change the α2 and η2, the fluctuations in model performance are relatively less severe,
which still shows that our model performs a bit better if η2 is set to a large value (r.g.,
η2 = 0.70). The reason behind this results is understandable: if a larger threshold η2 is
taken, the discrimination of whether Sr

ij and Sh
ij are dissimilar will be more rigorous. Under

this circumstance, the semantic similarity matrix updating will be executed more cautiously
to preserve robust.
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Figure 7. Sensitivity analysis of α1, η1 and α2, η2 on NUS-WIDE dataset. (a) I2T: α1 and η1. (b) T2I: α1

and η1. (c) I2T: α2 and η2. (d) T2I: α2 and η2.

Hyperparameter k. We recorded the performance change by varying the value of k on
NUS-WIDE dataset to evaluate the effect by the the number of neighbors in kNN algorithm.
As demonstrated in Figure 8, when k ∈ [40, 80], the curve changes sharply, while the curve
changes more modestly in the rest of the interval. We conjecture that when too many or
too few neighbors we selected, noise will be introduced into the intra-modal similarity
relationship representation, thereby affecting the latent similarity relationship learning
within modality. Particularly, if k is set to 60, MGSPU achieves the highest mAP@50 score
for both I2T and T2I task. It indicates that by selecting an appropriate number of neighbors,
high-quality intra-modal similarity structure information can be aggregated by GCN to
improve intra-modal similarity consistency preserving.
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Figure 8. Sensitivity analysis of k; λ1, λ2, λ3; β1, β2, β3 on NUS-WIDE dataset. (a) I2T: k. (b) I2T: λ.
(c) I2T: β. (d) T2I: k. (e) T2I: λ. (f) T2I: β.

Hyperparameter λ1, λ2, λ3. As presented in Equation (20), λ1, λ2, λ3 are used to
balance three components, i.e., Lre, Lmod and Lsim of hash code learning loss function. To
analyze the effect by these three losses, we recorded the performance change of our method
in Figure 8 by varying λ1, λ2, λ3 from 0.001 to 100 with a 10-fold increase. It is noteworthy
that our method obtains the best performance if we set λ1 = 1, λ2 = 1, λ3 = 10. Among
these three losses, we found that the new designed loss Lsim has a relatively greater effect
on the learning of hash code. We argue that this is mainly due to the indispensability of a
reliable similarity matrix for unsupervised hash learning.

Hyperparameter β1, β2, β3. As depicted in Equation (21), β1, β2, β3 serves as weight
factor to balance L f1 , L f2 , and L f3 . The observations in Figure 8 indicates that L f1 and
L f3 contributes more than L f2 . We infer that although the duty of L f2 is to ensure nu-
merical consistency between the generated hash codes H∗ and trained hash codes and
sgn( f ∗(F∗; θ∗)), the main goal of cross-modal hash learning is still to eliminate cross-modal
heterogeneity, which is only achieved by L f1 . Besides, the quantization error is cannot
reduced by other losses but L f3 . In addition, by setting β1 = 10, β2 = 0.01, β3 = 10, our
method achieves the best performance.

5. Conclusions

In this paper, we propose a novel unsupervised hashing learning framework, called
multi-grained similarity preserving and updating to improve cross-modal hashing perfor-
mance. To obtain a high-confidence similarity matrix, we develop an update strategy that
corrects the similarity values after the original feature fusion using a matrix constructed in
Hamming space, and a loss function is designed to guide the similarity update. Also to
learn high-quality hash codes, we co-model from multiple granularity to preserve semantic
correlations within and between modalities. Specifically, GCNs is used to capture the global
similarity relationship within each modality, and a cross-attention mechanism is used to
perform interactions between modalities to bridge the heterogeneous gap. In addition, deep
feature reconstruction further enhances inter-modal correlations and reduces modal gaps.

In our experiments, we use the hamming ranking protocol and the hash lookup
protocol to compare with other benchmark models, and the experimental results on both
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datasets show that our approach achieves impressive performance. In addition, we set up
four different ablation experiments to verify the performance of the designed module, and
the results also validate the effectiveness of the designed module.

Although our experimental results achieved excellent results, for text data, we only
used a simple bag-of-words model, and the gap between the results of image-retrieval text
and text-retrieval image is relatively large. As an exploratory work, we plan to further
improve the feature extraction stage in the future to achieve a more accurate alignment
of the semantic information of images and text, which will lead to a more balanced cross-
modal retrieval.
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