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Abstract: With the rapid development of artificial intelligence technology, the physics-informed
neural network (PINN) has gradually emerged as an effective and potential method for solving
N-S equations. The treatment of constraints is vital to the PINN prediction accuracy. Compared to
soft constraints, hard constraints are advantageous for the avoidance of difficulties in guaranteeing
definite conditions and determining penalty coefficients. However, the principles on the formulation
of hard constraints of PINN currently remain to be formed, which hinders the application of PINN in
engineering fields. In this study, hard-constraint-based PINN models are constructed for Couette
flow, plate shear flow and stenotic/aneurysmal flow with curved geometries. Particular efforts have
been devoted to assessing the impact of the model parameters of hard constraints, i.e., degree and
scaling factor, on the prediction accuracy of PINN at different Reynolds numbers. The results show
that the degree is the most important factor that influences the prediction accuracy, followed by the
scaling factor. As for the N-S equations, the degree of hard constraints should be at least two, while
the scaling factor is recommended to be maintained around 1.0. The outcomes of the present work
are of reference value for the development of PINN methods in fluid mechanics.

Keywords: artificial intelligence; physics-informed neural network; hard constraint; Navier–Stokes
equations; incompressible flow

1. Introduction

Over the past five decades, there have been substantial advances in developing com-
putational fluid dynamics (CFD) techniques to numerically solve Navier–Stokes (N-S) equa-
tions for fluid mechanics in real-world applications [1,2]. In conventional CFD methods,
e.g., the finite-difference (FD) and finite-volume (FV) methods, sophisticated computational
grids are required for domain discretization, especially when complex geometries are
involved. The generation of high-quality grids makes CFD computations cumbersome
and is always demanding for CFD engineers. On the other hand, due to the lack of high-
performance generic algorithm libraries, developing flow solvers based on conventional
CFD methods is always challenging and time-consuming for CFD developers. Machine
learning, as a main branch of artificial intelligence (AI) and computer science, can be used
to solve partial differential equations (PDEs) including N-S equations with avoidance of
the above problems of CFD methods [3,4], which creates new horizons and possibly even
transformations for the current lines of fluid mechanics research.

Depending on the manners by which the ML approaches are integrated with CFD
solvers, ML approaches for fluid mechanics can be roughly categorized into three classes,
i.e., data-fit models, projection-based models and physics-informed models. A data-fit
model is usually based on the artificial neural network (ANN) [5,6], radial basis function
(RBF) [7] and support vector regression (SVR) [8,9], and it treats a CFD solver as a black
box and is essentially a fast, inexpensive but approximate model that extracts mechanisms
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underlying the complex system from available data in a supervised manner. Data-fit
models have been widely used as a substitute for expensive CFD simulations in design
optimization or uncertainty quantification of fluid systems [10]. However, constructing
such types of models requires additional overhead of data simulation, which could become
expensive and even unaffordable for high-dimensional problems. As for projection-based
models, an orthogonal linear transformation is first defined from physical coordinates into
a modal basis in an unsupervised manner by means of principle orthogonal decomposition
(POD) or other methods, and then the PDE operator is projected onto the subspace spanned
by the reduced modal basis [11,12]. Although the degree of freedom of solution can be
significantly reduced, projected-based models need modifications of the original CFD
codes, and the issues of stability and robustness are still not well addressed. Different
from the above two types of models, physics-informed models embed a priori physics into
the learning architecture, which not only remains code-nonintrusive but also reduces the
dependency on data availability [13]. Owing to the rapid advances in deep learning, the
current mainstream of physic-informed models is the physics-informed neural network
(PINN) [14,15], whereby the PDEs are directly incorporated in the loss function of the
neural network by penalizing deviations from the target values.

So far, PINN models have been successfully applied in solving incompressible and
compressible flows [16], and there are basically two application scenarios, i.e., inverse and
forward problems. In inverse problems, parameters of the equation (including definite
solution conditions) and flow field are partly known while the remaining ones need to be
solved, which is thus considered to be a semi-supervised problem. For example, Raissi
et al. [17] proposed a “hidden fluid mechanics” framework based on PINN and successfully
identified unknown equation parameters and inversed the velocity and pressure of the
flow around a cylinder with the concentration field provided. Mao et al. [17] solved the
density, velocity and pressure of the Sod and Lax problems by PINN with the density
gradient and pressure of some samples given in advance. As can be seen, the solution
accuracy of the inverse problem is still dependent on prior information. On the contrary,
the forward problem could be an unsupervised one where only governing equations and
definite solution conditions are known and all the flow quantities are to be solved. For
example, by using the PINN model, Sun et al. [18] accurately predicted the velocity field of
Couette flow, stenosis flow and aneurysm flow. Jin et al. [19] adopted a similar method to
predict the turbulent channel flow without any physical information given in advance.

Although solving the forward problem by PINN does not necessarily rely on any
prior information, constraint enforcement should be paid particular attention to guarantee
the model prediction accuracy at the specific definite condition. This is because PINN
modeling is essentially an optimization problem, and the accuracy of the model is closely
associated with the way the constraints are enforced. The constraint enforcement method
of PINN can be generally divided into two categories, i.e., the “soft” constraint method
and the “hard” constraint method.

In the soft constraint method, the original optimization problem is transformed into
an unconstrained one by adding penalty terms of initial conditions (ICs) and boundary
conditions (BCs). Jagtap et al. [20] constructed PINNs with soft constraints based on an
adaptive activation function to solve PDEs including the nonlinear Klein–Gordon equation,
the nonlinear Burgers equation and the Helmholtz equation. Wang et al. [21] presented a
learning rate annealing algorithm to solve the numerical stiffness problem in solving PDEs
with PINN. Jagtap and Karniadakis [22] integrated the space–time domain decomposition
method into the soft-constraint-based PINN framework to parallelize the computations.
Despite the inspiring progress in solving PDEs, the soft constraint method for PINN still has
two major disadvantages, as Sun et al. [19] pointed out. First, it can hardly guarantee that
the network output fully conforms to ICs and BCs, thus giving rise to the loss of prediction
accuracy of PINN; second, the involved penalty coefficients are often difficult to determine,
either relying on experience or requiring trial and error, which is also detrimental to the
modeling efficiency of PINN.
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The hard constraint method can circumvent the above problems by introducing a
particular solution and a smooth function that enables the PINN prediction results to satisfy
ICs and BCs in a mandatory manner. The particular solution can be solely determined
according to ICs and BCs, while the smooth function connects the boundary to the internal
domain, which is crucial to the PINN prediction accuracy. In the work by Sun et al. [19],
the PINN prediction results with hard constraint were in good agreement with FV-based
CFD results, while those with soft constraint deviated significantly from FV-based CFD
results. However, no principles were given in their work for the formulation of smooth
functions in the hard constraints. To the best knowledge of the authors, no further study
has been conducted on how to formulate hard constraints for PINN, which to some extent
hinders the application of PINN in realistic engineering fields.

The purpose of this study is twofold. The first is to investigate the effect of parameters
in the smooth function on the PINN prediction accuracy, where several flows including
Couette flow, plate shear flow and stenotic/aneurysmal flow at different Reynolds numbers
are examined. The second is to provide guidelines for the formulation of hard constraints for
PINN modeling. The rest of this paper is organized as follows. Section 2 describes the basis
of the PINN model and constraint methods. In Section 3, some numerical tests are carried
out, and formulation principles of hard constraints are summarized from the corresponding
results. PINN solutions of Couette flow, plate shear flow and stenotic/aneurysmal flow
under different values of degree and scaling factor are shown in Section 3. Conclusions are
finally drawn in Section 4.

2. Methodology
2.1. PINN Model

The N-S equations to be solved by PINN can be mathematically expressed as:

∇ · u(x, t)= 0 x ∈ Ω t ∈ [0, T] (1)

∂u(x, t)
∂t

+ (u(x, t) · ∇)u(x, t) +
1
ρ
∇p(x, t)− ν∇2u(x, t)= 0 x ∈ Ω t ∈ [0, T] (2)

B(u(x, t), p(x, t)) = g(x, t) x ∈ ∂Ω, t ∈ [0, T] (3)

L(u(x, 0), p(x, t)) = d(x) x ∈ Ω (4)

where both velocity u(x, t) and pressure p(x, t) are functions of space coordinate x and time
coordinate t; ρ and ν denote the flow density and viscosity, respectively. For all the flows
investigated in this study, ρ is set to be 1; B and L represent the boundary conditions (BC)
and initial conditions (IC), respectively; g(x, t) and d(x) are known continuous functions.

Similar to most ANNs, the PINN is a multi-layer perceptron that builds an explicit
relationship between input and output. As for the above N-S equations with the predicted
velocity and pressure of an n-layer PINN denoted as u and p, respectively, we have:

[u(x, t, W, b), p(x, t, W, b)] = fn . . . . . . f3( f2( f1(x, t))) (5)

where fi represents the operation function corresponding to the i-th layer and is usually
expressed as:

qi = fi
(
qi−1

)
= ϕi

(
Wiqi−1 + bi

)
(6)

where qi is the output of the i-th hidden layer, ϕi is the activation function and Wi and bi
represent the related weights and thresholds, respectively.

The primary idea of the solving method for N-S equations based on the PINN is to
find a set of appropriate model parameters to minimize the residual of the equation with
the related BC and IC enforced with the constraints, i.e.,

W∗, b∗ ∈ argmin
W,b

ξ (7)
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ξ =

∥∥∥∥∂u
∂t

+ (u · ∇)u +
1
ρ
∇p − ν∇2u

∥∥∥∥+ ∥∇ · u∥ (8)

s.t.
{

B(u(x, t, W, b), p(x, t, W, b)) = g(x, t) x ∈ ∂Ω, t ∈ [0, T]
L(u(x, t, W, b), p(x, t, W, b)) = d(x) x ∈ Ω

(9)

where ξ is the so-called “physical-based loss function”. It reflects the degree to which the
knowledge learned by the neural network fits with the given differential equations and
definite solution conditions.

2.2. Constraint Enforcement Method

In order to solve the optimization problem presented in Equations (7)–(9), proper
constraints should be enforced to guarantee the ICs and BCs in Equation (9). As previously
mentioned, there are two ways to enforce the constraints in PINN modeling, i.e., the soft
constraint method and the hard constraint method.

In the soft constraint method, the original constrained optimization problem is trans-
formed into an unconstrained one by adding penalty terms of ICs and BCs [23], i.e.,

W∗, b∗ ∈ argmin
W,b

(ξ+ wbcξbc + wicξic) (10)

ξbc = ∥B(u(x, t, W, b), p(x, t, W, b))− g(x, t)∥ x ∈ ∂Ω, t ∈ [0, T] (11)

ξic = ∥L(u(x, 0, W, b), p(x, t, W, b))− d(x)∥ x ∈ Ω (12)

where ξbc and ξic represent the loss of network output in BC and IC, respectively, while
wbc and wic are the related penalty coefficients and are usually determined by experience
or trial and error.

To avoid difficulties for the soft constraint method in guaranteeing definite conditions
and determining penalty coefficients, the hard constraint method is employed in the present
work. In this method, a particular solution and a smooth function are introduced to modify
the network output, enabling the ICs and BCs to be mandatorily satisfied, i.e.,

^
u(x, t, W, b) = upar(x, t) + D(x, t)u(x, t, W, b) (13)

p̂(x, t, W, b) = ppar(x, t) + D(x, t)p(x, t, W, b) (14)

B
(
upar(x, t), ppar(x, t)

)
= g(x, t) (15)

L
(
upar(x, 0), ppar(x, t)

)
= d(x) (16)

where
^
u and p̂ denote the PINN-predicted results of velocity and pressure; upar and ppar

are referred to as the particular solution that solely satisfies IC and BC; D(x, t) is defined as
the smooth function from internal points to the boundary, which is equal to 0 on ∂Ω × [0, T]
and Ω × [0] while being non-zero continuous values in other regions. Accordingly, the final
result will not fail to satisfy the boundary condition due to the change in u(x, t, W, b) or
p(x, t, W, b). Hence, the original optimization problem described in Equations (7)–(9) can
be transformed into the following unconstrained one, i.e.,

W∗, b∗ ∈ argmin
W,b

ξ

[
^
u, p̂

]
(17)

ξ =

∥∥∥∥∥∥∂
^
u

∂t
+

(
^
u · ∇

)
^
u +

1
ρ
∇ p̂ − ν∇2 ^

u

∥∥∥∥∥∥+
∥∥∥∥∇ · ^

u
∥∥∥∥ (18)

Therefore, the main uncertainty of the above “hard” method lies in the mathematical
expression of the function D, which is considered to play an important role in the predic-
tion accuracy of PINN. Particular attention is thus paid to exploring a general formulation
principle of D(x, t) in this study, as presented in the next section. In Equation (18), the
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derivatives of the outputs with respect to the network inputs are calculated by the auto-
matic differentiation (AD) [24], which is based on the chain rule. The AD tool has been
widely used to calculate partial derivative terms of physical quantities in studies of PINN
methods [17–23].

3. Numerical Tests

Since the flows studied in this paper are steady ones, the initial conditions are not

involved in the constraint enforcement of PINN, and the time-derivative term ∂
^
u

∂t in Equa-
tion (18) is omitted. In order to adopt the PINN model to solve the above N-S equations,
three back propagation neural networks are constructed to build an explicit relationship
between the input and output. For each neural network, the inputs are the two-dimensional
space coordinates while the flow variables to be solved such as axial velocity u, radial
velocity v or pressure p serve as the output. Each network has two hidden layers while each
layer is equipped with 20 neurons. In addition to the output layer, the Swish function [25]
is selected as the activation function of the neural network, i.e.,

ϕ(q) =
q

1 + exp(−q)
(19)

To train the constructed NNs, the Adam algorithm is used as the network opti-
mizer [26] with the learning rate set to 1.0 × 10−3. Full-batch learning is adopted, for
which the batch size is selected as the number of coordinate points in each case. The
Kaiming-normalization initialization method [27] is adopted to initialize W and b within
the optimization process. In order to ensure the accuracy of the results, a total of 50,000
epochs are performed for each case, and the iterations are speeded up with the Compute
Unified Device Architecture (CUDA) library [28] on a graphics processing unit (GPU).
The machine learning platform PyTorch was chosen to build the framework of the above
model [29].

3.1. Couette Flow

Couette flow describes the laminar flow in a two-dimensional infinite plate with non-
slip boundary conditions. As shown in Figure 1, the length of the plate L is set to 1, the
distance between plates d is set to 0.1 and the static pressure is set to 0.1 and 0.0 at the inlet
and outlet, respectively. The corresponding boundary conditions can be written as:

u(x, −0.05) = (0.0, 0.0), 0.0 ≤ x ≤ 1.0
u(x, 0.05) = (0.0, 0.0), 0.0 ≤ x ≤ 1.0
p(0.0, y)= 0.1, −0.05 ≤ y ≤ 0.05
p(1.0, y)= 0.0, −0.05 ≤ y ≤ 0.05

(20)

where x and y represent the streamwise and vertical components of the local coordinates,
respectively. The analytic solutions of the flow can be expressed as:

u= (
d2

4
− y2)

∆p
2vρL

(21)

where ∆p is the pressure difference between the inlet and outlet. In the following test, the
viscosity v is varied to control the Reynolds number of the flow. The Reynolds number is
defined with v, d and the fluid velocity at the center line, umax.
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outlet pressure. For the D   function of û  , k   and a   are the parameters to be deter-
mined, where k   denotes the degree of the function which determines the continuity 
property of the hard constraints while the scaling factor a  adjusts the influence of the 

Figure 1. Schematic of Couette flow. Here, L is the plate length, d is the plate distance, u is the local
streamwise velocity and umax is the velocity at the center line.

To solve the above Couette flow using the PINN model, hard constraints are formu-
lated for the specified boundary conditions, which can be written as:

û = upar + Du(x)u = 0.0 + a( dk

2k − |y|k)u
v̂ = vpar + Dv(x)v = 0.0 + a( dk

2k − |y|k)v
p̂ = ppar + Dp(x)p =

(
x−xin

xout−xin
pout +

xout−x
xout−xin

pin

)
+ (x − xin)(xout − x)p

(22)

where xin and xout represent the streamwise coordinates of the inlet and outlet of the flow
field, respectively; upar and vpar are the particular solutions of the velocity components
and are set to a constant of 0.0 to satisfy the non-slip boundary condition, while ppar is the
particular solution of p and automatically satisfies the specified inlet and outlet pressure.
For the D function of û, k and a are the parameters to be determined, where k denotes the
degree of the function which determines the continuity property of the hard constraints
while the scaling factor a adjusts the influence of the network output u on the final result
û. In addition, the D function of p̂ is referring to that in Sun’s work [19], which is quite
deterministic and not discussed. Overall, the key to formulating the hard constraints is the
selection of the two parameters, i.e., k and a, in the D functions of velocity.

For each simulation case, 25,000 epochs are performed in the training of the PINN
model to guarantee convergence. The loss function histories versus epochs at different
degree values are given in Figure 2. It can be seen that the training converged after around
15,000 epochs.
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3.1.1. Effect of Degree

In order to investigate the effect of degree of function D on the PINN-predicted result,
three hard constraints with three different degrees (i.e., k = 1.0, 2.0, 3.0) and the same scaling
factor (i.e., a = 1.0) are formulated. The maximum streamwise velocity is used in this flow
problem to quantitatively measure the prediction accuracy of PINN, and the comparison
between the PINN-predicted results and analytic solutions at different Reynolds numbers is
listed in Table 1. As can be seen, the relative errors of the maximum axial velocity between
the PINN-predicted results with first-degree hard constraints and analytic solutions are
remarkable. However, as the constraint degree increases to 2.0, the relative errors are
significantly reduced below 0.1% at most of the examined Reynolds numbers between 139
and 1250 and slightly increased when the Reynolds number increases to 2000. As for the
cases with the third-degree hard constraints, the relative errors are larger than those with
the second-degree hard constraints but much smaller than those with the first-order hard
constraints. Therefore, the best degree of hard constraints for the Couette flow is 2.0. For
both second- and third-degree hard constraints, the relative errors generally increase with
the Reynolds number. Besides higher prediction accuracy, the PINN with second- and
third-degree hard constraints exhibits better convergence properties than that with the
first-degree hard constraints, as shown in Figure 2.

Table 1. Comparison of the maximum axial velocity of Couette flow between analytic solutions and
PINN-predicted results with different degrees of hard constraints.

Degree Reynolds Number PINN-Predicted umax Analytic Solution of umax Error

First

139 −11.7739 0.4167 2924%
313 15.8395 0.6250 2433%
553 −12.8592 0.8333 1369%
1250 11.7101 1.2500 836%
2000 17.3297 1.5811 996%

Second

139 0.4167 0.4167 0.000%
313 0.6244 0.6250 0.096%
553 0.8331 0.8333 0.024%
1250 1.2500 1.2500 0.000%
2000 1.6099 1.5811 1.822%

Third

139 0.4087 0.4167 1.920%
313 0.6253 0.6250 0.048%
553 0.7215 0.8333 13.416%
1250 1.0540 1.2500 15.680%
2000 1.1914 1.5811 24.647%

3.1.2. Effect of Scaling Factor

In order to examine the effect of scaling factor on the prediction accuracy of PINN,
five hard constraints with different magnitudes of a (i.e., a = 1.0 × 10−4, 1.0 × 10−2, 1.0,
1.0 × 102 and 1.0 × 104) are formulated at the same degree of k = 2.0. The comparison
of maximum streamwise velocity between the PINN prediction results and the analytic
solutions at different Reynolds numbers is listed in Table 2. As can be seen, the PINN-
predicted maximum streamwise velocities obviously deviate from the analytic solutions
when a is equal to 1.0 × 10−4 and 1.0 × 104 at all the examined Reynolds numbers, while
the smaller relative errors of around 1.0% are observed when a varies from 1.0 × 10−2

to 1.0 × 10−2. The best prediction accuracy is achieved when a is equal to 1.0 within the
range of the examined Reynolds numbers. In addition, if we compare the relative errors
in Table 2 against those in Table 1, it is interesting to find that the relatively large errors
with a = 1.0 × 10−4 and a = 1.0 × 104 are still much smaller than those with the first-degree
hard constraints. This indicates that the degree of the hard constraint is the most important
parameter for the PINN prediction accuracy, followed by the scaling factor.



Appl. Sci. 2024, 14, 859 8 of 18

Table 2. Comparison of the maximum axial velocity of Couette flow between analytic solutions and
PINN-predicted results by different scaling factors.

Scaling Factor Reynolds Number PINN-Predicted umax Analytic Solution of umax Error

1.0 × 10−4

139
313
553

1250
2000

0.1611
0.2224
0.2280
0.0280
1.7384

0.4167
0.6250
0.8333
1.2500
1.5811

61.34%
64.42%
72.64%
97.76%
9.949%

1.0 × 10−2

139
313
553

1250
2000

0.4291
0.6572
0.8743
1.2816
1.5779

0.4167
0.6250
0.8333
1.2500
1.5811

2.976%
5.152%
4.920%
2.528%
0.202%

1.0

139
313
553

1250
2000

0.4167
0.6244
0.8331
1.2500
1.7196

0.4167
0.6250
0.8333
1.2500
1.5811

0.000%
0.096%
0.024%
0.000%
8.760%

1.0 × 102

139
313
553

1250
2000

0.4565
0.6825
0.9065
0.8958
0.6527

0.4167
0.6250
0.8333
1.2500
1.5811

9.551%
9.200%
8.784%
28.33%
58.72%

1.0 × 104

139
313
553

1250
2000

0.4097
0.5259
0.0439
0.6607
0.5080

0.4167
0.6250
0.8333
1.2500
1.5811

1.680%
15.86%
94.73%
47.14%
67.87%

3.2. Plate Shear Flow

Plate shear flow describes the flow phenomenon in which a fluid undergoes shear
motion due to externally applied shear force, as shown in Figure 3. In this study, the length
of the plate L is 1.0, and the distance between plates d is 0.1; both inlet and outlet static
pressures are 0, and the speed of upper plate uu is determined by the Reynolds number
while that of lower plate, ud, is zero; the fluid viscosity ν is 1.0 × 10−3. The Reynolds
number is defined with ν, d and uu.
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Similar to Couette flow, a general expression of hard constraints is formulated, i.e.,
û = upar + Du(x)u =

[
uu(

d
2 +y

d )3 + ud

(
d
2 −y

d

)3
]
+ a
(

dk

2k − |y|k
)

u

v̂ = vpar + Dv(x)v = 0.0 + a
(

dk

2k − |y|k
)

v

p̂ = ppar + Dp(x)p =
(

x−xin
xout−xin

pout +
xout−x

xout−xin
pin

)
+ (x − xin)(xout − x)p

(23)

3.2.1. Effect of Degree

According to Equation (23), three hard constraints with different degrees (i.e., k = 1.0,
2.0 and 3.0) and the same scaling factor (i.e., a = 1.0) are generated to examine the effect of
degree on the prediction accuracy of PINN for the plate shear flow.

In order to quantitatively measure the prediction accuracy of PINN for the plate shear
flow, a relative L2-norm error is defined as follows, i.e.,

ε =

√
i=n
∑

i=1
(ûi − ui)

2

√
i=n
∑

i=1
(ui)

2

× 100% (24)

where ui is the analytic solution of axial velocity at the i-th node, and n is the number
of the computational node. The relative L2-norm error of axial velocity predicted by the
PINN and the analytic solution at different degrees and Reynolds numbers are shown in
Table 3. It can be observed that, with the increase in Reynolds number, the PINN-prediction
results exhibit an increasing trend. However, across all ranges of Reynolds numbers, both
second- and third-degree hard constraints result in obviously smaller relative errors than
the first-degree hard constraint, despite the errors of second-degree hard constraints being
slightly larger than those of third-degree ones.

Table 3. The L2-norm errors of axial velocity of plate shear flow with different degrees of hard
constraints.

Degree Reynolds Number L2-Norm Error

First

60 1972%
120 1602%
240 958.5%
480 360.7%
960 225.4%

Second

60 0.005%
120 3.350%
240 1.369%
480 18.03%
960 24.02%

Third

60 0.020%
120 2.210%
240 0.290%
480 3.010%
960 19.54%

Figure 4 compares the distributions of axial velocity by PINN against the analytic
solution at a Reynolds number of 60.0. From the figure, significant deviations are observed
for PINN-predicted results with first-degree hard constraints, while the predicted axial
velocity distributions by PINNs with second- and third-order hard constraints exhibit good
agreements with the analytic solutions, corresponding to the errors shown in Table 3.
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Figure 4. Comparison of axial velocity distributions in plate shear flow between PINN-predicted
results with different degrees of hard constraint and analytic solution.

3.2.2. Effect of Scaling Factor

Seven hard constraints with different magnitudes of a (i.e., a = 1.0 × 10−6, 1.0 × 10−4,
1.0 × 10−2, 1.0, 1.0 × 102, 1.0 × 104 and 1.0 × 106) and the same degree (i.e., k = 2.0) are
formulated to examine the effect of scaling factor on the PINN prediction accuracy.

The relative L2-norm errors of axial velocity at different Reynolds numbers are listed
in Table 4. As the values of a approach 1.0, the relative L2-norm errors of axial velocity
between PINN-predicted results and analytic solutions become smaller. In addition, the
large values of relative L2-norm errors with a = 1.0 × 10−6 and a = 1.0 × 106 in Table 4 are
still smaller than those with first-degree hard constraints in Table 3, further demonstrating
that the selection of degree is crucial to the PINN prediction accuracy.

Table 4. The L2-norm errors of axial velocity of plate shear flow predicted by the PINN and the
analytic solution at different scaling factors and Reynolds numbers.

Scaling
Factor

Reynolds
Number

L2-Norm
Error

Scaling
Factor

Reynolds
Number

L2-Norm
Error

1.0 × 10−6

60 41.15%

1.0 × 102

60 0.140%
120 41.04% 120 3.290%
240 44.45% 240 2.450%
480 45.68% 480 30.60%
960 46.42% 960 40.73%

1.0 × 10−4

60 1.190%

1.0 × 104

60 3.050%
120 28.94% 120 3.760%
240 34.28% 240 4.342%
480 41.77% 480 9.571%
960 43.04% 960 10.18%

1.0 × 10−2

60 0.010%

1.0 × 106

60 131.7%
120 0.750% 120 46.33%
240 29.34% 240 54.46%
480 31.29% 480 57.85%
960 30.76% 960 49.78%

1.0

60 0.020%
120 3.500%
240 16.32%
480 21.11%
960 1.660%
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Figure 5 further shows the axial velocity distributions at a Reynolds number of 60. The
best agreement between the PINN-predicted distribution of axial velocity and the analytic
solution is achieved for the case of a = 1.0, corresponding to the quantitative comparison
results in Table 4.
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3.3. Stenotic Flow/Aneurysmal Flow

The third test example is the stenotic/aneurysmal flow of idealized flood flow, which
describes vasoconstriction/dilation in biological fluid mechanics, as shown in Figure 6.
The geometry of the stenotic/aneurysmal flow can be mathematically expressed as:

R(x) = R0 − A
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
(25)

where R0 is the inlet diameter before vasoconstriction or dilation, which is fixed to be 0.05;
µ and σ define the shape of vasoconstriction/dilation and equal 0.5 and 0.1, respectively; A
is a constant that determines the degree of vasoconstriction/dilation. A positive value of A
corresponds to the stenotic flow while a negative value corresponds to the aneurysm flow,
and a greater absolute value of A indicates a higher degree of expansion/contraction of the
flow channel. In the following test, PINN-predicted results for different geometries of the
flow channel (i.e., A = 4.0 × 10−3, 7.0 × 10−3, − 1.2 × 10−2 and − 2.2 × 10−2) are examined
while the inlet and outlet pressure are set to be 0.1 and 0, respectively, and the viscosity
is 1.0 × 10−3. Since there is no analytic solution for the investigated stenotic/aneurysmal
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flow, CFD simulations based on the conventional FV method are performed to provide a
benchmark for the PINN-predicted results. The commercial flow solver ANSYS-Fluent is
employed to conduct the FV-based CFD simulations. The second-order upwind scheme and
second-order central scheme are adopted for the discretization of convection and diffusion
terms, respectively, and the SIMPLE (semi-implicit method for pressure linked equations)
algorithm is utilized for pressure–velocity coupling. As the Reynolds number is low and
the flow is completely laminar, no turbulence model is employed in the computations. A
structured computational grid with 20 × 100 cells in streamwise and vertical directions is
used in the FV-based CFD simulations.
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Figure 6. Stenotic flow and aneurysmal flow: (a) stenotic flow; (b) aneurysmal flow. Here, L is the
channel length, d is the distance between the channel walls, u is the local streamwise velocity and
umax is the velocity at the center line.

Similar to Couette flow, a general expression of hard constraints is formulated, i.e.,
û = upar + Du(x)u = 0.0 + a(Rk(x)− |y|k)u
v̂ = vpar + Dv(x)v = 0.0 + a(Rk(x)− |y|k)v

p̂ = ppar + Dp(x)p =
(

x−xin
xout−xin

pout +
xout−x

xout−xin
pin

)
+ (x − xin)(xout − x)p

(26)

3.3.1. Effect of Degree

Three hard constraints with different degrees (i.e., k = 1.0, 2.0 and 3.0) and the same
scaling factor (i.e., a = 1.0) are generated for PINN model construction.

For stenotic/aneurysmal flow, relative L2-norm error is adopted to measure the PINN
prediction accuracy, where ui in Equation (24) denotes the FV-based CFD-predicted axial
velocity at the i-th node. The relative L2-norm errors of axial velocity with different degrees
are listed in Table 5. As the pressure at the inlet and outlet is fixed and the geometric
parameter A has a considerable effect on the pressure drop in the flow channel, the Reynolds
number, defined with v, d and umax at the inlet of the computational domain, varies in the
range of 12.5 to 18.0. For the four examined geometries, both second- and third-degree
hard constraints result in smaller errors than the first-degree hard constraint. Compared
with the second-degree hard constraint, the third-degree hard constraint results in slightly
enhanced prediction accuracy.

In Figures 7 and 8, the distributions of axial velocity for stenotic/aneurysmal flow
are further compared between PINN and FV-based CFD. For the sake of saving space,
only the results of stenotic flow with A of 4.0 × 10−3 and aneurysmal flow with A of
−2.2 × 10−2 are provided. There are significant deviations between PINN-predicted results
with first-degree hard constraints and FV-based CFD results, while the predicted axial
velocity distributions by PINNs with second- and third-degree hard constraints exhibit
good agreements with the FV-based CFD results, corresponding to the errors shown in
Table 5.
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Table 5. The L2-norm errors of axial velocity of stenotic/aneurysmal flow predicted by PINN with
different degrees of hard constraints.

Degree A L2-Norm Error

First

4.0 × 10−3 99.67%
7.0 × 10−3 96.24%
−1.2 × 10−2 255.9%
−2.2 × 10−2 319.9%

Second

4.0 × 10−3 6.850%
7.0 × 10−3 9.120%
−1.2 × 10−2 9.960%
−2.2 × 10−2 7.810%

Third

4.0 × 10−3 2.260%
7.0 × 10−3 8.930%
−1.2 × 10−2 4.930%
−2.2 × 10−2 5.770%
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3.3.2. Effect of Scaling Factor

Similar to the previous tests, five hard constraints with different magnitudes of a (i.e.,
a = 1.0 × 10−4, 1.0 × 10−2, 1.0, 1.0 × 102 and 1.0 × 104) and the same degree (i.e., k= 2.0) are
formulated. The relative L2-norm errors of the axial velocity predicted by PINN and FV-based
CFD in the cases of A = 4.0 × 10−3, A = 7.0 × 10−3, A = −1.2 × 10−2 and A = −2.2 × 10−2 are
listed in Table 6. Relative small errors are observed to be achieved when the scaling factor
a varies between 1.0 × 10−2 and 1.0 × 102, while the errors tend to become unacceptable
when a becomes even smaller or larger, i.e., a = 1.0 × 10−4 and a = 1.0 × 104. In addition, the
relatively large errors with a = 1.0 × 10−4 and a = 1.0 × 104 in Table 6 are still smaller than
those with first-degree hard constraints in Table 5, further demonstrating the importance of
degree in the PINN prediction accuracy.
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Table 6. Relative errors of axial velocity of stenotic flow/aneurysmal flow predicted by PINN and
FV-based CFD results at different scaling factors.

Scaling Factor A L2-Norm Error

1.0 × 10−4

4.0 × 10−3 99.64%
7.0 × 10−3 99.97%
−1.2 × 10−2 98.79%
−2.2 × 10−2 44.07%

1.0 × 10−2

4.0 × 10−3 2.660%
7.0 × 10−3 12.63%
−1.2 × 10−2 7.980%
−2.2 × 10−2 8.610%

1.0

4.0 × 10−3 8.850%
7.0 × 10−3 8.012%
−1.2 × 10−2 9.960%
−2.2 × 10−2 9.710%

1.0 × 102

4.0 × 10−3 2.730%
7.0 × 10−3 99.90%
−1.2 × 10−2 6.580%
−2.2 × 10−2 48.96%

1.0 × 104

4.0 × 10−3 55.56%
7.0 × 10−3 94.67%
−1.2 × 10−2 100.6%
−2.2 × 10−2 98.75%

The contours of axial velocity distributions are shown in Figures 9 and 10. For
a = 1.0, although the L2-norm error is slightly larger than those with a = 1.0 × 10−2

and a= 1.0 × 102 (Table 6), the axial velocity distributions in the local stenotic/aneurysmal
part are observed to best agree with the FV-based CFD result.



Appl. Sci. 2024, 14, 859 15 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 19 
 

−1.2 × 10−2 6.580% 
−2.2 × 10−2 48.96% 

1.0 × 104 

4.0 × 10−3 55.56% 
7.0 × 10−3 94.67% 
−1.2 × 10−2 100.6% 
−2.2 × 10−2 98.75% 

In summary, the degree of the smooth function of the hard constraint has the most 
impact on PINN-predicted results, followed by the scaling factor. Specifically, when the 
degree is 2.0 or 3.0, the PINN-predicted results exhibit a relatively high level of agreement 
with the analytic solutions or FV-based CFD results. However, when the degree is reduced 
to 1.0, there are significant deviations between PINN-predicted results and analytic solu-
tions or FV-based CFD results. This is because the first-degree hard constraint may lead 
to a value of 0.0 for the second derivative term in the loss function shown in Equation (8), 
which is inconsistent with physical reality. From this point of view, the degree of the con-
straint expression should be at least two. In addition, selecting a scaling factor that is either 
too large (e.g., 1.0 × 104) or too small (e.g., 1.0 × 10−4) can amplify or reduce the impact of 
network output (i.e., u , v ) on the final solution (i.e., û , v̂ ), giving rise to large errors. 
The scaling factor of the hard constraint is recommended to be around 1.0.  

 
Figure 9. Comparison of axial velocity distributions in stenotic flow ( A  = 4.0 × 10−3) between 
PINN-predicted results with different scaling factors and FV-based CFD results. 
Figure 9. Comparison of axial velocity distributions in stenotic flow (A = 4.0 × 10−3) between
PINN-predicted results with different scaling factors and FV-based CFD results.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 19 
 

 
Figure 10. Comparison of axial velocity distributions in aneurysmal flow ( A  = −1.2 × 10−2) be-
tween PINN-predicted results with different scaling factors and FV-based CFD results. 

4. Conclusions 
In the present work, the PINN-based solving method for Navier–Stokes equations 

with hard constraints is implemented in Couette flow, plate shear flow and stenotic/aneu-
rysmal flow at various Reynolds numbers. Particular efforts are devoted to investigating 
the effects of two parameters embedded in the smooth function of the hard constraints, 
i.e., the degree and the scaling factor, on the prediction accuracy. The following principles 
for the hard constraint formulation are derived from the numerical test results. First, the 
degree of the constraint has a significant impact on the prediction accuracy, and it should 
be at least two. Increasing the degree from two to three may lead to a larger prediction 
error. Second, it is recommended that the scaling factor of the constraint should be main-
tained around 1.0. Altering it to 1.0 × 10−2 or 1.0 × 102 may elevate the sensitivity of predic-
tion results to variations in the Reynolds number.  

This work may promote our understanding of the PINN method in solving partial 
differential equations, and the guidelines derived for the hard constraint method may 
provide references for the development of PINN methods. Despite the inspiring results in 
this research, the solving scope of the present hard constraint method for PINN is limited 
to flow problems with regular domain topology. In follow-up studies, more efforts should 
be devoted to developing a more sophisticated hard constraint and expanding the ap-
plicability of the PINN method, especially in addressing complex flow problems such as 
separated flows, compressible flows and even turbulent flows. 

Author Contributions: Conceptualization, Y.J. and C.Z.; methodology, Z.X., Y.J., Z.L. and J.Z.; soft-
ware, Z.X.; validation, Z.X. and J.Z.; formal analysis, Z.X.; investigation, Z.X., Y.J. and Z.L.; resources, 
Y.J. and C.Z.; data curation, Z.X.; writing—original draft preparation, Z.X.; writing—review and 
editing, Y.J., Z.L. and C.Z.; visualization, Z.X.; supervision, Y.J. and C.Z.; project administration, Y.J. 
and C.Z.; funding acquisition, Y.J. and C.Z. All authors have read and agreed to the published ver-
sion of the manuscript. 

Figure 10. Comparison of axial velocity distributions in aneurysmal flow (A = −1.2 × 10−2) between
PINN-predicted results with different scaling factors and FV-based CFD results.



Appl. Sci. 2024, 14, 859 16 of 18

In summary, the degree of the smooth function of the hard constraint has the most
impact on PINN-predicted results, followed by the scaling factor. Specifically, when the
degree is 2.0 or 3.0, the PINN-predicted results exhibit a relatively high level of agreement
with the analytic solutions or FV-based CFD results. However, when the degree is reduced
to 1.0, there are significant deviations between PINN-predicted results and analytic solu-
tions or FV-based CFD results. This is because the first-degree hard constraint may lead to a
value of 0.0 for the second derivative term in the loss function shown in Equation (8), which
is inconsistent with physical reality. From this point of view, the degree of the constraint
expression should be at least two. In addition, selecting a scaling factor that is either too
large (e.g., 1.0 × 104) or too small (e.g., 1.0 × 10−4) can amplify or reduce the impact of
network output (i.e., u, v) on the final solution (i.e., û, v̂), giving rise to large errors. The
scaling factor of the hard constraint is recommended to be around 1.0.

4. Conclusions

In the present work, the PINN-based solving method for Navier–Stokes equations with
hard constraints is implemented in Couette flow, plate shear flow and stenotic/aneurysmal
flow at various Reynolds numbers. Particular efforts are devoted to investigating the effects
of two parameters embedded in the smooth function of the hard constraints, i.e., the degree
and the scaling factor, on the prediction accuracy. The following principles for the hard
constraint formulation are derived from the numerical test results. First, the degree of the
constraint has a significant impact on the prediction accuracy, and it should be at least two.
Increasing the degree from two to three may lead to a larger prediction error. Second, it is
recommended that the scaling factor of the constraint should be maintained around 1.0.
Altering it to 1.0 × 10−2 or 1.0 × 102 may elevate the sensitivity of prediction results to
variations in the Reynolds number.

This work may promote our understanding of the PINN method in solving partial
differential equations, and the guidelines derived for the hard constraint method may
provide references for the development of PINN methods. Despite the inspiring results in
this research, the solving scope of the present hard constraint method for PINN is limited to
flow problems with regular domain topology. In follow-up studies, more efforts should be
devoted to developing a more sophisticated hard constraint and expanding the applicability
of the PINN method, especially in addressing complex flow problems such as separated
flows, compressible flows and even turbulent flows.
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