
Citation: Song, Y.; Kim, H.-J.; Lee,

H.-J.; Chang, J.-W. A Parallel

Privacy-Preserving k-Means

Clustering Algorithm for Encrypted

Databases in Cloud Computing. Appl.

Sci. 2024, 14, 835. https://doi.org/

10.3390/app14020835

Academic Editor: José Salvador

Sánchez Garreta

Received: 12 December 2023

Revised: 11 January 2024

Accepted: 17 January 2024

Published: 18 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Parallel Privacy-Preserving k-Means Clustering Algorithm for
Encrypted Databases in Cloud Computing
Youngho Song 1 , Hyeong-Jin Kim 1, Hyun-Jo Lee 1 and Jae-Woo Chang 2,*

1 Department of Computer Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea;
songyoungho@jbnu.ac.kr (Y.S.); yeon_hui4@jbnu.ac.kr (H.-J.K.); o2near@jbnu.ac.kr (H.-J.L.)

2 Department of Computer Science & Artificial Intelligence, Jeonbuk National University,
Jeonju-si 54896, Republic of Korea

* Correspondence: jwchang@jbnu.ac.kr

Abstract: With the development of cloud computing, interest in database outsourcing has recently
increased. However, when the database is outsourced, there is a problem in that the information of
the data owner is exposed to internal and external attackers. Therefore, in this paper, we propose
decimal-based encryption operation protocols that support privacy preservation. The proposed pro-
tocols improve the operational efficiency compared with binary-based encryption operation protocols
by eliminating the need for repetitive operations based on bit length. In addition, we propose a
privacy-preserving k-means clustering algorithm using decimal-based encryption operation protocols.
The proposed k-means clustering algorithm utilizes efficient decimal-based protocols that enhance
the efficiency of the encryption operations. To provide high query processing performance, we also
propose a parallel k-means clustering algorithm that supports thread-based parallel processing by
using a random value pool. Meanwhile, a security analysis of both the proposed k-means clustering
algorithm and the proposed parallel algorithm was performed to prove their data protection, query
protection, and access pattern protection capabilities. Through our performance analysis, the pro-
posed k-means clustering algorithm shows about 10~13 times better performance compared with the
existing algorithms.

Keywords: secure protocol; privacy-preserving k-Means clustering algorithm; encrypted database;
database outsourcing; cloud computing

1. Introduction

With the advancement of cloud computing, database outsourcing has become increas-
ingly popular [1]. Database outsourcing refers to the delegation of database management
by the data owner (DO) to a specialized entity (e.g., the cloud). This allows the data owner
to make savings on the computational and human resources required for managing their
database, enabling investment in the improvement and development of service quality.
Cloud services not only store outsourced databases but also provide query processing and
data mining services for extracting meaningful information based on the data [2–5]. Addi-
tionally, data owners can benefit from cost savings by dynamically utilizing computational
resources as needed.

However, outsourcing databases poses a security challenge, i.e., exposing the database
to potential internal and external attacks [6]. Consequently, protecting the database becomes
crucial for data owners, given that databases may contain sensitive information and are
valuable assets [7]. Users receiving services may also face privacy concerns if their query
content sent to the cloud is leaked [8], revealing personal information such as preferences
and tendencies [9,10].

Previous strategies modify plaintexts to their substituted data and outsource them to
a cloud [11–16]. However, these previous strategies cannot completely protect both the

Appl. Sci. 2024, 14, 835. https://doi.org/10.3390/app14020835 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020835
https://doi.org/10.3390/app14020835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0757-0802
https://orcid.org/0000-0002-0037-6812
https://doi.org/10.3390/app14020835
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020835?type=check_update&version=1

Appl. Sci. 2024, 14, 835 2 of 28

data and queries because they are weak to various attacks. To tackle this problem, recent
strategies encrypt the original data and outsource them to the cloud [17–23]. Therefore,
research has been conducted on data protection, query protection to prevent query content
exposure, and result protection to avoid exposing query results.

The k-means clustering algorithm is a prominent data mining technique that identifies
patterns in a dataset by calculating distances between unclassified data points and cen-
troids, assigning them to the closest clusters. The k-means clustering algorithm is used for
applications in various fields, including pattern analysis, machine learning, image analysis,
text mining, and search engines. Security-enhanced k-means clustering algorithms have
been proposed. First, D. Liu et al. [24] proposed a k-means clustering algorithm using
homomorphic encryption in an outsourcing environment. However, their homomorphic
encryption system is vulnerable to chosen ciphertext attacks, and the information about the
selected indexes is exposed, preventing access pattern protection. Then, F. Rao et al. [25]
proposed a k-means clustering algorithm using homomorphic encryption supporting addi-
tion. Their study, which is based on encryption operation protocols, not only protects data
but also supports query protection. It enables access pattern protection by not revealing
which cluster data belong to. However, its drawbacks include significant performance
variations due to the arbitrary initialization of centroids and high query processing costs
associated with using binary array-based encryption operation protocols.

Therefore, this paper proposes a solution to address these issues by introducing a
decimal-based encryption operation protocol. The proposed protocol enhances the opera-
tional efficiency by eliminating the need for repetitive operations of bit length, distinct from
binary-based encryption operation protocols. Furthermore, based on the decimal-based
operation protocol, we propose a k-means clustering algorithm that supports information
protection in cloud computing. The research contributions of this paper are as follows:

• This paper proposes decimal-based encryption operation protocols, like ASMIN and
ASMINn. The proposed protocols address the challenges of the existing binary-based
encryption operation protocols, where the performance degradation is proportional to
the data size. The proposed protocols overcome the limitation, providing excellent
processing performance independently of data size.

• This paper proposes a privacy-preserving k-means clustering algorithm that utilizes
the proposed decimal-based encryption operation protocols. While providing superior
processing performance, the proposed k-means clustering algorithm ensures that data,
queries, and data access patterns are safeguarded in order to protect original databases
and user information in cloud computing.

• This paper proposes a privacy-preserving parallel k-means clustering algorithm. To
the best of our knowledge, this is the first work to study a privacy-preserving parallel
k-means clustering algorithm. To perform parallel processing, we utilize a thread pool
to prevent data bottlenecks and parallelize encryption operation protocols for efficient
support of k-means clustering. However, when parallelizing homomorphic encryption
techniques, there is the issue of the increased operational overhead per core, leading
to bottlenecks and performance degradation. To mitigate this bottleneck, we use a
random value pool to reduce the computational cost by preprocessing operations
that generate random values for hiding data and encrypting them in the encryption
operation protocol.

This paper is structured as follows: In Section 2, we explain the Paillier cryptosystem
and the adversarial attack model. Section 3 describes the overall system architecture and
the newly proposed protocol. Section 4 presents the newly proposed k-means clustering
algorithm, and Section 5 proposes the parallel k-means clustering algorithm. In Section 6,
we provide a security analysis of the proposed k-means clustering algorithm. Section 7
shows the performance evaluation of the proposed k-means clustering algorithm. In
Section 8, we discuss the performance evaluation. Finally, in Section 9, we conclude the
paper and discuss future research directions.

Appl. Sci. 2024, 14, 835 3 of 28

2. Background and Related Research
2.1. Background Knowledge

The Paillier cryptosystem [26] is a prominent additive homomorphic encryption
technique characterized by a probabilistic encryption scheme where the same value results
in different ciphertexts each time it is encrypted. In the Paillier encryption system, the
encryption key (public key) pk is given as (N, g), where N is the product of two large prime
numbers (e.g., p, q) and g is a randomly chosen integer in ZN

2. On the other hand, the
decryption key (secure key) sk in the Paillier encryption system is given as (λ, µ), where λ

is the least common multiple (LCM) of p, q, µ is L (gλ mod N2))−1 mod N, and L(x) = x−1
N .

The Paillier encryption system exhibits the unique property of computing ciphertexts
corresponding to the addition of plaintexts through operations between ciphertexts without
the need for a decryption process.

E(m1 + m2) = E(m1)× E(m2) mod N2 (1)

• Homomorphic addition: The multiplication of two ciphertexts E(m1) and E(m2) gener-
ates the ciphertext of the sum of their plaintexts m1 and m2 (Equation (1)).

• Homomorphic multiplication: The m2-th power of ciphertext E(m1) generates the
ciphertext of the multiplication of m1 and m2 (Equation (2)).

E(m1 ×m2) = E(m1)
m2 mod N2 (2)

• Semantic security: Encryptions of the same plaintexts generate different ciphertexts in
the same public key (Equation (3)).

m1 = m2 ⇏ E(m1) = E(m2) (3)

The adversarial attack model in an outsourced database environment can be cate-
gorized into two attack models: the semi-honest attack model and the malicious attack
model [27]. The semi-honest (or honest-but-curious) attack model implies that the cloud
executes the assigned protocol honestly but may attempt to gain additional information
about the data owner and query requester based on the information acquired during the
protocol’s execution. The malicious attack model, on the other hand, refers to the cloud
deviating from the given protocol and attempting to acquire information with malicious
intent. Therefore, when verifying the security of a specific protocol or algorithm against
a malicious attack model, it can be demonstrated that the protocol is also secure against
other attack models. However, protocols secure against malicious attack models often pose
challenges in terms of implementation and usage due to the high costs involved, making
them difficult to apply in practical environments. On the contrary, protocols secure against
the semi-honest attack model are not only applicable in real-world scenarios but also serve
as a foundation for designing protocols secure against malicious attack models. Hence, in
this paper, we conduct research considering the semi-honest attack model as in previous
studies [17,28–30].

Definition 1. Assuming αi is the input parameter of cloud Ci, ∏i (ρ(α)) is the execution image
of Ci for the protocol ρ. If the simulating execution image ∏Si (ρ(α)) is indistinguishable from ∏i
(ρ(α)), the protocol ρ is a secure protocol under the semi-honest attack model.

2.2. Related Work

The k-means clustering algorithm is one of the representative data mining techniques,
identifying the characteristics of a dataset by calculating distances between unclassified data
points and centroids, incorporating them into the closest clusters. This algorithm is used
for applications in various fields such as pattern analysis, machine learning, image analysis,
text mining, and search engines. Security-enhanced k-means clustering algorithms have
been proposed. First, D. Liu et al. [24] proposed a k-means clustering algorithm utilizing

Appl. Sci. 2024, 14, 835 4 of 28

homomorphic encryption in an outsourcing environment. The algorithm constructs an
index that allows for comparisons in the encrypted state by leveraging the characteristics of
their self-developed homomorphic encryption technique. This index facilitates comparisons
without data leakage. However, the homomorphic encryption system used in their study is
vulnerable to chosen ciphertext attacks. Additionally, although encrypted, the information
about the selected indexes is exposed, allowing for the determination of intermediate
results, posing the problem of revealing access patterns. Then, F. Rao et al. [25] proposed
the k-means clustering algorithm using a homomorphic encryption system supporting
addition. The algorithm calculates distances for the entire dataset, assigns each data point to
the nearest centroid, and updates the centroids through merging encrypted data belonging
to the same cluster. The SSED protocol [25], which calculates Euclidean distances, is utilized
to compute distances between the previous and new centroids. If the calculated distance is
smaller than the query, the centroid is returned; otherwise, the process is repeated. Their
study is based on encryption operation protocols, providing data protection and supporting
query protection. Since distance calculations for the entire dataset do not expose the cluster
to which each data point belongs, access patterns can also be protected. However, their
study has drawbacks, including the arbitrary initialization of centroids leading to significant
performance variations and the use of binary array-based encryption operation protocols,
resulting in high query processing costs. Finally, Y. Yang et al. [31] proposed a privacy-
preserving smart IoT-based healthcare big data storage system with self-adaptive access
control. The aim is to ensure the security of patients’ healthcare data, realize access control
for normal and emergency scenarios, and support smart deduplication to save storage
space in the big data storage system. The medical files generated by the healthcare IoT
network are encrypted and transferred to the storage system, which can be securely shared
among the healthcare staff from different medical domains by leveraging a cross-domain
access control policy.

Table 1 summarizes the existing studies based on their characteristics. We compare
them with regard to three major characteristics, i.e., hiding access patterns, computational
overhead, and security risk. First, F. Rao et al.’s work [25] and our work can protect
data access patterns, while D. Liu et al.’s work [24] and Y. Yang et al.’s work [31] cannot
protect them. Second, our work requires moderate computational overhead because we
use decimal-based encryption operations, while D. Liu et al.’s work [24] and F. Rao et al.’s
work [25] have high computational overhead due to the use of binary-based encryption
operations. Finally, F. Rao et al.’s work [25] and our work have a low security risk with
regard to security because they protect sensitive data, users’ queries, and data access
patterns, while D. Liu et al.’s work [24] and Y. Yang et al.’s work [31] have a high security
risk because they protect both sensitive data and users’ queries.

Appl. Sci. 2024, 14, 835 5 of 28

Table 1. Comparison of the existing studies.

Schemes
Features Data Privacy Query Privacy Hiding Data

Access Pattern Index Computational
Overhead

Encryption User Involvement
Computation

Security
Risk

D. Liu et al. [24] Supported Supported Not supported Order-preserving index High Homomorphic encryption Partially involved High

F. Rao et al. [25] Supported Supported Supported None High Homomorphic encryption
supporting addition Not involved Low

Y. Yang et al. [31] Supported Supported Not supported None High Attribute-based encryption Not involved High

Proposed Supported Supported Supported Kd-tree Moderate Paillier encryption Not involved Low

Appl. Sci. 2024, 14, 835 6 of 28

3. Overall System Architecture
3.1. System Architecture

In the outsourcing environment considered in this paper, there exist non-colluding
clouds CA and CB. CA and CB adopt the semi-honest attack model, which means they
perform query processing honestly but attempt to infer the original data and user prefer-
ences based on the information generated during the query processing. However, they do
not collude with each other to exchange data and information. The characteristic of this
attack model is that the attacker leaves no trace, making it difficult to determine when the
attack occurred. As passive attacks have the difficulty of detection and recovery, prevent-
ing attacks through precaution and protection is crucial. Indeed, the assumption of the
semi-honest attack model on clouds has been widely utilized in various fields dealing with
similar issues [17,30,32].

Figure 1 illustrates the overall system architecture of this paper, consisting of a Data
Owner (DO), an Authenticated User (AU), Cloud A (CA), and Cloud B (CB). The DO
possesses an original database (data) consisting of n records datai (1 ≤ i ≤ n). Each record
is composed of m attributes or columns, and the j-th attribute of the i-th record is denoted
as datai,j (1 ≤ i ≤ n, 1 ≤ j ≤ m). To support indexing for this database, the DO performs
kd-tree-based data indexing. In this case, the level of the kd-tree is denoted as h, the number
of leaf nodes is 2h-1, and the number of data points that a leaf node can store (FanOut) is
denoted as F. The leaf nodes of the kd-tree store the lower bounds (lbz,j) and upper bounds
(ubz,j) for each dimension that the node is responsible for (1 ≤ z ≤ 2h−1, 1 ≤ j ≤ m) as well
as the ids of the original data points within the range of that leaf node.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 30

Figure 1. Overall system architecture.

3.2. Secure Protocol
The existing research [9,10,17] performs query processing and data mining using en-

cryption operation protocols that support bitwise operations, multiplication, comparison,
and overlapping area checks. However, a drawback of the encryption operation protocols
used in the existing research is the performance degradation in processing depending on
the data domain, as they perform operations through the binary numeral system. Figure
2 illustrates the execution process of the SMIN protocol, the typical MIN operation pro-
posed in [17]. The SMIN protocol transforms E(5) and E(3) into binary ciphertext arrays
for the operation. Assuming a bit length of 4 in the figure, E(5) is transformed to {E(0),
E(1), E(0), E(1)}, and E(3) is transformed into {E(0), E(0), E(1), E(1)}. Since the SMIN proto-
col’s execution steps are composed of bit operations, four bit operations are performed at
each step. As a result, the existing SMIN protocol requires a total of 40 operations to per-
form the MIN operation on data with a domain of 0 to 24 (=16). Assuming a data domain
of 29 for real data, the required domain for distance operations is 29 × 29 = 218. In such an
environment, executing the SMIN protocol requires a total of 18 × 18 = 324 Paillier encryp-
tion addition and multiplication operations.

Figure 1. Overall system architecture.

The encryption of the database utilizes the Paillier cryptosystem [26]. To achieve
this, the DO generates a pair of keys: the public key (encryption key, pk) and the private
key (decryption key, sk). Using the encryption key, the DO encrypts the database. The
encryption of the database is performed on a dimension-by-dimension basis for each record,
resulting in the creation of ciphertext for the original database (i.e., E(datai,j) for 1 ≤ I ≤ n

Appl. Sci. 2024, 14, 835 7 of 28

and 1 ≤ j ≤ m). Additionally, the DO encrypts the lower and upper bounds for each
dimension of the leaf nodes in the constructed kd-tree. The encryption of the kd-tree is
conducted on a dimension-by-dimension basis for the lower and upper bounds of each leaf
node. This process leads to the creation of ciphertext for the kd-tree leaf nodes (i.e., E(lbz,j)
and E(ubz,j) for 1 ≤ z ≤ 2h−1 and 1 ≤ j ≤m).

3.2. Secure Protocol

The existing research [9,10,17] performs query processing and data mining using
encryption operation protocols that support bitwise operations, multiplication, comparison,
and overlapping area checks. However, a drawback of the encryption operation protocols
used in the existing research is the performance degradation in processing depending on
the data domain, as they perform operations through the binary numeral system. Figure 2
illustrates the execution process of the SMIN protocol, the typical MIN operation proposed
in [17]. The SMIN protocol transforms E(5) and E(3) into binary ciphertext arrays for
the operation. Assuming a bit length of 4 in the figure, E(5) is transformed to {E(0), E(1),
E(0), E(1)}, and E(3) is transformed into {E(0), E(0), E(1), E(1)}. Since the SMIN protocol’s
execution steps are composed of bit operations, four bit operations are performed at each
step. As a result, the existing SMIN protocol requires a total of 40 operations to perform
the MIN operation on data with a domain of 0 to 24 (=16). Assuming a data domain of
29 for real data, the required domain for distance operations is 29 × 29 = 218. In such
an environment, executing the SMIN protocol requires a total of 18 × 18 = 324 Paillier
encryption addition and multiplication operations.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 30

Figure 2. Execution process of the SMIN protocol.

On the other hand, the execution process of the ASMIN protocol proposed in this
paper is depicted in Figure 3. The ASMIN protocol performs the MIN operation using
arithmetic operations based on decimal numbers (i.e., Paillier addition and multiplication
properties). The proposed ASMIN protocol securely calculates the smaller of two inputs
through a total of seven Paillier encryption addition and multiplication operations. Fur-
thermore, since the proposed ASMIN protocol represents data in decimal numbers, it of-
fers the advantage of consistent performance regardless of the data domain.

Figure 3. Execution process of the ASMIN protocol.

Figure 2. Execution process of the SMIN protocol.

On the other hand, the execution process of the ASMIN protocol proposed in this paper
is depicted in Figure 3. The ASMIN protocol performs the MIN operation using arithmetic
operations based on decimal numbers (i.e., Paillier addition and multiplication properties).
The proposed ASMIN protocol securely calculates the smaller of two inputs through a total
of seven Paillier encryption addition and multiplication operations. Furthermore, since the
proposed ASMIN protocol represents data in decimal numbers, it offers the advantage of
consistent performance regardless of the data domain.

Appl. Sci. 2024, 14, 835 8 of 28

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 30

Figure 2. Execution process of the SMIN protocol.

On the other hand, the execution process of the ASMIN protocol proposed in this
paper is depicted in Figure 3. The ASMIN protocol performs the MIN operation using
arithmetic operations based on decimal numbers (i.e., Paillier addition and multiplication
properties). The proposed ASMIN protocol securely calculates the smaller of two inputs
through a total of seven Paillier encryption addition and multiplication operations. Fur-
thermore, since the proposed ASMIN protocol represents data in decimal numbers, it of-
fers the advantage of consistent performance regardless of the data domain.

Figure 3. Execution process of the ASMIN protocol.

Figure 3. Execution process of the ASMIN protocol.

3.2.1. Advanced Secure MINimum (ASMIN) Protocol

The ASMIN protocol is a protocol that, given two encrypted data points E(u) and
E(v), returns the smaller of the two to CA, utilizing the properties of the Paillier encryption
system. The proposed ASMIN protocol hides encrypted data through randomization for
comparison. The execution process of the ASMIN protocol is outlined in Algorithm 1.
Firstly, CA selects two random constants (ra, rb) from the random value pool. Using the
properties of the Paillier encryption system, CA calculates E(u)ra × E(rb) = E(u × ra + rb)
and E(v× ra)× E(rb) = E(v× ra + rb). Secondly, selecting F, if F is F0, CA sends E(u × ra + rb)
and E(v × ra + rb) to CB; if F is F1, CA sends E(v × ra + rb) and E(u × ra + rb) to CB. Thirdly,
CB decrypts the received E(u × ra + rb) and E(v × ra + rb) and performs the comparison.
For explanation purposes in this paper, let us assume that the selected F is F0. In this case,
if u × ra + rb is less than or equal to v × ra + rb, CB sends E(α) = E(1) to CA; otherwise, CB
sends E(α) = E(0) to CA. Lastly, if F is F0, CA performs SM(E(α), E(u)) × SM(E(β), E(v));
if F is F1, CA performs SM(E(β), E(u)) × SM(E(α), E(v)). Here, the Secure Multiplication
(SM) protocol is the multiplication protocol proposed by Y. Elmehdwi et al. [17]. This
protocol calculates the ciphertext E(α × β) with two encrypted data points E(α) and E(β)
representing α and β, respectively. Through this process, CA securely obtains the result of
E(u) if u ≤ v or E(v) if u > v.

Appl. Sci. 2024, 14, 835 9 of 28

Algorithm 1 ASMIN (Advanced Secure MINimum)

Input: E(u), E(v)
Output: E(u) when u ≤ v, otherwise E(v)
CA:
01. select <ra, E(ra)>, <rb, E(rb)> in the random value pool
02. E(u × ra)← E(u)ram
03. E(v × ra)← E(v)ra
04. E(u × ra + rb)← E(u × ra) × E(rb)
05. E(v × ra + rb)← E(v × ra) × E(rb)
06. if F0: E(u × ra + rb) then, E(v × ra + rb) send to CB
07. else if F1: E(v × ra + rb) then, E(u × ra + rb) send to CB
CB:
08. Decrypt E(u × ra + rb), E(v × ra + rb)
09. if (u × ra + rb ≤ v × ra + rb) then, <E(α), E(β)>← <E(1), E(0)>
10. else then, <E(α), E(β)>← <E(0), E(1)>
11. send <E(α), E(β)> to CA
CA:
12. if F0 then, E(result) = SM(E(α), E(u)) × SM(E(β), E(v))
13. else then, E(result) = SM(E(β)), E(u)) × SM(E(α), E(v))
14. return E(result)
End Algorithm

Figure 4 illustrates an example of the ASMIN protocol. Firstly, CA receives the input
values E(u) = E(3) and E(v) = E(7). Secondly, CA generates the random numbers 6 and
27, and multiplies E(u) = E(3) and E(v) = E(7) by the plaintext exponentiation of 6. Due
to the homomorphic property of the Paillier encryption system (Equations (1) and (2)),
CA can calculate E(3 × 6 + 27) = E(45) and E(7 × 6 + 27) = E(69). Thirdly, CA performs
the permutation function (i.e., π) and sends the results E(a) = E(69) and E(b) = E(45) to
CB. Fourthly, CB decrypts E(a) and E(b). Fifthly, CB stores E(1) for the smaller value and
E(0) for the larger value, and returns the results to CA. In this example, since 69 is not
smaller than 45, CB returns E(a) = E(0) and E(b) = E(1) to CA. Sixthly, CA performs the
inverse permutation function (i.e., π−1), resulting in E(a) = E(1) and E(b) = E(0). Seventhly,
CA performs SM(E(u), E(a)), and SM(E(v), E(b)), then adds the results using the Paillier
addition operation, returning E(3) as the result of the ASMIN protocol. Through this
process, the ASMIN protocol safely returns the smaller encrypted value.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 30

E(a)), and SM(E(v), E(b)), then adds the results using the Paillier addition operation, re-
turning E(3) as the result of the ASMIN protocol. Through this process, the ASMIN pro-
tocol safely returns the smaller encrypted value.

Figure 4. Example of the ASMIN protocol.

3.2.2. Advanced Secure MINimum out of n Numbers (ASMINn) Protocol
ASMINn is a protocol that, given n encrypted values, returns the smallest value to CA.

The ASMINn protocol is based on the previously described ASMIN protocol. The execu-
tion process of the ASMINn protocol is outlined in Algorithm 2.

Algorithm 2 ASMINn (Advanced Secure MINimum out of n Numbers)
Input: E(d1), …, E(dn)
Output: E(dmin)
CA:
01. E(dʹi)←E(di) (for 1 ≤ i ≤ n) and num ← n
02. for 1 ≤ i ≤ ⌈log2n⌉
03. for 1 ≤ j ≤ ⌊num/2⌋
04. if i = 1 then
05. left ← 2×j − 1; right = 2×j
06. else
07. left ← 2i(j − 1) + 1 ; right = 2ij − 1

08. E(dʹleft) ← ASMIN(E(dʹleft), E(dʹright))

09. num ← ⌈num/2⌉
10. return E(dmin) ← E(dʹI)
End Algorithm

Figure 4. Example of the ASMIN protocol.

Appl. Sci. 2024, 14, 835 10 of 28

3.2.2. Advanced Secure MINimum out of n Numbers (ASMINn) Protocol

ASMINn is a protocol that, given n encrypted values, returns the smallest value to
CA. The ASMINn protocol is based on the previously described ASMIN protocol. The
execution process of the ASMINn protocol is outlined in Algorithm 2.

Algorithm 2 ASMINn (Advanced Secure MINimum out of n Numbers)

Input: E(d1), . . ., E(dn)
Output: E(dmin)
CA:
01. E(d

′
i)← E(di) (for 1 ≤ i ≤ n) and num← n

02. for 1 ≤ i ≤ ⌈ log2n⌉
03. for 1 ≤ j ≤ ⌊ num/2⌋
04. if i = 1 then
05. left← 2 × j − 1; right = 2 × j
06. else
07. left← 2i(j − 1) + 1; right = 2ij − 1
08. E(d

′
left)← ASMIN(E(d

′
left), E(d

′
right))

09. num← ⌈num/2⌉
10. return E(dmin)← E(d

′
I)

End Algorithm

4. Privacy-Preserving k-Means Clustering Algorithm

In this section, we propose a privacy-preserving k-means clustering algorithm. The
proposed k-means clustering algorithm is performed in two stages: the preprocessing
phase and the k-means clustering phase.

4.1. Preprocessing Phase

In the k-means clustering algorithm, selecting the initial centroids is crucial as it
influences the number of iterations required for the algorithm. However, F. Rao et al.’s
study [25] suffers from the drawback of significant time disparities in processing the
clustering algorithm due to the random initialization of initial centroids. Therefore, the
proposed k-means clustering algorithm addresses this issue by performing a preprocessing
step to set the initial centroids. The execution steps of the proposed preprocessing phase
are outlined in Algorithm 3.

1. Calculate the number of data points (i.e., cnt) to be selected from each node based on
the sampling ratio (line 1).

2. Initialize the initial centroids for the preprocessing step (lines 2–5). Here, the Paillier
cryptosystem cannot encrypt real numbers, so the centroids (i.e., initial_center) are
represented by the sum of centroids (i.e., initial_center.sum) and the count of centroids
(i.e., initial_center.cnt).

3. Select and store the sampled data (i.e., E(sample_data)) from each node, amounting
the data points to cnt (line 7–9).

4. Calculate the distances between E(sample_data) and E(initial_center) using the SSEDop
protocol and find the minimum distance using the ASMINn protocol (lines 10–13). The
SSEDop protocol is a distance calculation protocol that was proposed by F. Rao et al. [23]
for determining distances between centroids and data points.

5. Calculate the difference between E(dist_min) and each encrypted distance, perform
random insertion and permutation, and transmit the result to CB (lines 14–18).

6. CB decrypts each element of the received E(β), sets E(Ui) = E(1) if β = 0, and sets
E(Ui) = E(0) otherwise. CB then sends E(U) to CA (lines 19–22).

7. CA reverses E(U) and stores it in E(V) (line 23).
8. Perform the SM protocol for E(Vj) and E(sample_datai,l), summing the results for

each dimension, and add the sample data with a distance of E(dist_min) to the new
centroid E(new_center) = <E(new_center.sum), E(new_center.cnt) > (lines 24–28).

Appl. Sci. 2024, 14, 835 11 of 28

9. Use the SETC protocol to calculate the termination condition (i.e., α) between the
initial and new centroids. Then, store new_center in initial_center, and if α is 1, return
initial_center; otherwise, repeat the clustering protocol from line 10 (lines 29–34). Here,
the Secure Minimum out of n Numbers (SETC) protocol, proposed in [25], checks
the termination condition of the k-means clustering algorithm. It returns 1 if the
difference between the previous and new centroids is less than the threshold provided
by the user, and 0 otherwise.

Algorithm 3 Encrypted initial center selection for k-means clustering

Input: E(data), E(node), E(threshold)
Output: E(initial_center) = <E(initial_center1), . . ., E(initial_centerk)>, E(initial_centeri) =
<E(initial_centeri.sum), E(initial_centeri.cnt)>, E(initial_centeri.sum) = <E(initial_centeri.sum1), . . .,
E(initial_centeri.summ)>
CA:
01. cnt = Fanout/sampling rate//Fanout is #_of data in each node
02. for 1 ≤ i ≤ k
03. E(initial_centeri.cnt)← E(1)
04. for 1 ≤ j ≤m
05. generate random number r
06. E(initial_centeri.sumj)← E(r)
07. for 1 ≤ i ≤ NumNode
08. for 1 ≤ j ≤ cnt
09. E(sample_data)← E(nodei.dataj)
10. for 1 ≤ i ≤ cnt
11. for 1 ≤ j ≤ k
12. E(distj) = SSEDop(E(sample_datai), E(initial_centeri))
13. E(dist_min)← ASMINn(E(dist1), . . ., E(distk))
14. for 1 ≤ i ≤ k
15. E(δi)← E(dist_min) × E(disti)N – 1
16. E(δ′i)← E(δi)ri
17. E(β)← π(E(δ′i))
18. send E(β) to CB
CB:
19. for 1 ≤ i ≤ cnt
20. if D(E(βi)) = 0 then E(Ui)← E(1)
21. else E(Ui)← E(0)
22. send E(U) to CA
CA:
23. E(V)← π−1(E(U))
24. for 1 ≤ j ≤ k
25. for 1 ≤ l ≤m
26. E(V’j,l)←SM(E(Vj), E(sample_datai,l))
27. E(new_centerj.suml)← E(new_centerj.suml) × E(V’j,l)
//E(new_center) is the same structure with E(initial_center)
28. E(new_centerj.cnt)← E(new_centerj.cnt) × E(Vj)
29. α = SETC(E(initial_center), E(new_center), E(threshold))
30. E(initial_center)← E(new_center)
31. if α = 1
32. return E(initial_center)
33. else
34. go to line 10 in Algorithm 3

Figure 5 shows the example of the preprocessing phase with k = 2. The top-left
corner of Figure 5 assumes a sampling rate of 25% with 16 data points. First, CA samples
data and sets two of the sampled data points as centroids. In Figure 5, the sampled
data are represented as E([sample]) = [E(d1), E(d5), E(d9), E(d13)], and the centroids are
E([c]) = [E(c1) = E(d1), E(c2) = E(d5)].

Appl. Sci. 2024, 14, 835 12 of 28

Secondly, CA calculates the distance between the initial centroids E([c]) and E([sample])
using the SSED protocol. In Figure 5, the distances between sample1 and the two centroids are
calculated as E(dist1,1) = SSED(E(sample1), E(c1)) = E(0), and E(dist1,2) = SSED[(E(sample1),
E(c2)) = E(40). Thus, applying the SSED protocol to the sample data yields E([dist]) = [[E(0),
E(40)], [E(40), E(0)], [E(16), E(40)], [E(72), E(16)]].

Thirdly, CA performs the ASMINn protocol on all computed distances E[dist] to find
the smallest value, subtracts it from E([dist]), and sends the result to CB. In Figure 5,
between E(dist1,1) and E(dist1,2), the smallest distance is 0, so the ASMINn protocol results
in E(0), and E([dist-min]) = [E(0), E(40)]. Applying the same process to all sampled data,
E([dist-min]) = [[E(0), E(40)], [E(40), E(0)], [E(0), E(24)], [E(56), E(0)]].

Fourthly, CB decrypts each element of E([dist-min]), saves E(Ui) = E(1) if the value
is 0, saves E(Ui) = E(0) otherwise, and sends E(U) to CA. Therefore, E([U]) = [[E(1), E(0)],
[E(0), E(1)], [E(0), E(0)], [E(0), E(0)]].

Fifthly, CA executes the SM protocol on E([U]) and E([sample]), combines the results
for each of the sampled data points, and adds the data point that minimizes the distance
to the new centroid E([NC]). In Figure 5, SM(E([U]), E([sample])) = [[E(sample1), E(0)],
[E(0), E(sample2)], [E(sample3), E(0)], [E(0), E(sample4)]], resulting in E([NC.cnt]) = [E(2), E(2)],
and E([NC.sum]) = [[E(sample1), E(sample3)], [E(sample2), E(sample4)]].

Finally, using the SETC protocol, CA calculates the difference between the initial
centroids and the new centroid E([NC]). If the difference is less than the threshold, CA stores
E([NC]) in E([IC]) and returns E([IC]); otherwise, steps 2 to 5 are repeated to recompute the
clustering. The final centroids computed through this process are shown in the bottom-left
corner of Figure 5.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 30

Fourthly, CB decrypts each element of E([dist-min]), saves E(Ui) = E(1) if the value is
0, saves E(Ui) = E(0) otherwise, and sends E(U) to CA. Therefore, E([U]) = [[E(1), E(0)], [E(0),
E(1)], [E(0), E(0)], [E(0), E(0)]].

Fifthly, CA executes the SM protocol on E([U]) and E([sample]), combines the results
for each of the sampled data points, and adds the data point that minimizes the distance
to the new centroid E([NC]). In Figure 5, SM(E([U]), E([sample])) = [[E(sample1), E(0)],
[E(0), E(sample2)], [E(sample3), E(0)], [E(0), E(sample4)]], resulting in E([NC.cnt]) = [E(2),
E(2)], and E([NC.sum]) = [[E(sample1), E(sample3)], [E(sample2), E(sample4)]].

Finally, using the SETC protocol, CA calculates the difference between the initial cen-
troids and the new centroid E([NC]). If the difference is less than the threshold, CA stores
E([NC]) in E([IC]) and returns E([IC]); otherwise, steps 2 to 5 are repeated to recompute
the clustering. The final centroids computed through this process are shown in the bot-
tom-left corner of Figure 5.

Figure 5. Example of the preprocessing phase (k = 2).

4.2. k-Means Clustering Phase
The k-means clustering phase involves exploring the centroids of the entire dataset

using the initial centroids calculated in the preprocessing phase. The execution steps of
this phase are described in Algorithm 4.
1. Calculate the distances between E(data) and E(initial_center) using the SSEDop pro-

tocol and determine the smallest distance (i.e., E(dist_min)) through the proposed
ASMINn protocol (lines 1–4).

Figure 5. Example of the preprocessing phase (k = 2).

Appl. Sci. 2024, 14, 835 13 of 28

4.2. k-Means Clustering Phase

The k-means clustering phase involves exploring the centroids of the entire dataset
using the initial centroids calculated in the preprocessing phase. The execution steps of this
phase are described in Algorithm 4.

1. Calculate the distances between E(data) and E(initial_center) using the SSEDop pro-
tocol and determine the smallest distance (i.e., E(dist_min)) through the proposed
ASMINn protocol (lines 1–4).

2. CA calculates the difference between E(dist_min) and each encrypted distance, per-
forms random insertion and permutation, and transmits the result to CB (lines 5–9).

3. CB decrypts each element of the received E(β), sets E(Ui) = E(1) if β = 0, and sets
E(Ui) = E(0) otherwise. CB then sends E(U) to CA (lines 10–13).

4. CA reverses E(U) and stores it in E(V) (line 14).
5. Perform the SM protocol for E(Vj) and E(datai,l), summing the results for each

dimension, and add the data with a distance of E(dist_min) to the new centroid
E(new_center) (lines 15–19).

Use the SETC protocol to calculate the termination condition (i.e., α) between the
initial and new centroids. Then, store new_center in initial_center, and if α is 1, return
initial_center to the user; otherwise, repeat the clustering algorithm from line 1 (lines 20–36).

Figure 6 shows the example of the k-means clustering phase (k = 2). Firstly, CA cal-
culates the distance between the initial centroids E([c]) and E([sample]) using the SSED
protocol. In Figure 6, the distances between d1 and the two centroids are computed as
E(dist1,1) = SSED(E(d1),E(c1)) = E(4), and E(dist1,2) = SSED[(E(d1),E(c2)) = E(50). Apply-
ing the SSED protocol to all 16 data points yields E([dist]) = [[E(4),E(50)], [E(0),E(40)],
[E(2),E(34)], [E(4),E(20)], [E(36),E(4)], [E(40),E(16)], [E(50),E(10)], [E(64),E(8)], [E(4),E(36)],
[E(16),E(40)], [E(10),E(26)], [E(20),E(20)], [E(4),E(50)], [E(40),E(0)], [E(58),E(2)], [E(80),E(8)]].
In Figure 6 1⃝, due to space limitations, E(dist3,1), E(dist3,2) to E(dist15,1) E(dist15,2) are omitted.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 30

Figure 6. Example of the k-means clustering phase (k = 2).

5. Privacy-Preserving Parallel k-Means Clustering Algorithm
In this section, we propose a privacy-preserving parallel k-means clustering algo-

rithm. To perform the parallel processing of the k-means clustering algorithm, we utilize
a thread pool to prevent data bottlenecks and parallelize encryption operation protocols
for efficient support of k-means clustering. However, when parallelizing homomorphic
encryption techniques, there is the issue of the increased operational overhead per core,
leading to bottlenecks and performance degradation. To mitigate this bottleneck in paral-
lel processing, we reduce the computational cost during k-means clustering by prepro-
cessing operations that generate random values for hiding data and encrypting them in
the encryption operation protocol. This random value pool generates random numbers
(i.e., integers) in the form of plaintext and ciphertext pairs <r, E(r)> before starting k-means
clustering, storing them in a queue-like memory space. When needed, the data are ex-
tracted and used in a first-in-first-out (FIFO) manner.

The Paillier encryption system used in this paper consists of computationally expen-
sive operations such as the exponentiation function (i.e., exp) and modular function (i.e.,
mod). These operations impose a significant computational overhead on the CPU, leading
to CPU bottlenecks and performance degradation. This problem is exacerbated when
memory access is frequent in parallel processing algorithms. In [17], the SM protocol gen-
erates and encrypts random numbers before performing homomorphic addition opera-
tions. Encrypting random numbers incurs a cost of two encryption operations, utilizing
the CPU’s computational resources. Additionally, the SM protocol, which performs mul-
tiplication as an encryption operation, is used within the ASMIN encryption operation
protocol. Generating and encrypting random numbers during k-means clustering leads
to high computational costs. Therefore, this paper addresses this issue by storing the gen-
erated random numbers (i.e., r) and their encrypted counterparts (i.e., E(r)) in the random
value pool’s memory space. When needed, the cryptographic authority (CA) can select <r,
E(r)> pairs from the random value pool, enabling their use at a lower memory load cost.

Figure 6. Example of the k-means clustering phase (k = 2).

Appl. Sci. 2024, 14, 835 14 of 28

Algorithm 4 Encrypted center search phase for k-means clustering

Input: E(data), E(node), E(threshold), E(initial_center)
Output: cluster_center
CA:
01. for 1 ≤ i ≤ n
02. for 1 ≤ j ≤ k
03. E(distj) = SSEDOP(E(datai), E(initial_center))
04. E(dist_min)← ASMINn(E(dist1), . . ., E(distk))
05. for 1 ≤ i ≤ k
06. E(δi)← E(dist_min) × E(disti)N − 1
07. E(δ′i)← E(δi)ri
08. E(β)← π(E(δ′i))
09. send E(β) to CB
CB:
10. for 1 ≤ i ≤ cnt
11. if D(E(βi)) = 0 then E(Ui)← E(1)
12. else E(Ui)← E(0)
13. send E(U) to CA
CA:
14. E(V)← π − 1(E(U))
15. for 1 ≤ j ≤ k
16. for 1 ≤ l ≤m
17. E(V’j,l)←SM(E(Vj), E(datai,l))
18. E(new_centerj.suml)← E(new_centerj.suml) × E(V’j,l)
19. E(new_centerj.cnt)← E(new_centerj.cnt) × E(Vj)
20. α = SETC(E(initial_center), E(new_center), E(threshold))
21. if α = 1
22. for 1 ≤ i ≤ k
23. for 1 ≤ j ≤m
24. E(new_centeri.sumj+r)←E(new_centeri.sumj) × E(r)
25. E(new_centeri.cnt+r)←E(new_centeri.cnt) × E(r)
26. else
27. E(initial_center)←E(new_center)
28. go to line 1 in Algorithm 4
29. send r to AU and send E(new_center + r) to CB
CB:
30. for 1 ≤ i ≤ k
31. for 1 ≤ j ≤m
32. new_centeri.sumj + r← D(E(new_centeri.sumj + r))
33. new_centeri.cnt + r← D(E(new_centeri.cnt + r))
34. send new_center + r to AU
AU:
35. receive new_center + r from CB and r from CA
36. cluster_center = new_center.sum/new_center.cnt

Secondly, CA performs the ASMINn protocol on all distances E[dist] to find the smallest
value, subtracts it from E([dist]), and sends the result to CB. In Figure 6, for d1, the
smallest distances to c1 and c2 are 4 and 50, so the ASMINn protocol computes E(4) and
E(50), respectively. So, E([dist-min]) = [E(0),E(46)]. Applying the same process to all
16 data points yields E([dist-min]) = [[E(0),E(46)], [E(0),E(40)], [E(0),E(34)], [E(0),E(16)],
[E(32),E(0)], [E(24),E(0)], [E(40),E(0)], [E(56),E(0)], [E(32),E(0)], [E(0),E(24)], [E(0),E(16)],
[E(0),E(0)], [E(0),E(46)], [E(40),E(0)], [E(56),E(0)], [E(72),E(0)]].

Thirdly, CB decrypts each element of E([dist-min]), saves E(Ui) = E(1) if the value is
0, saves E(Ui) = E(0) otherwise, and sends E(U) to CA. Therefore, E([U]) = [[E(1),E(0)],
[E(1),E(0)], [E(1),E(0)], [E(1),E(0)], [E(0),E(1)], [E(0),E(1)], [E(0),E(1)], [E(0),E(1)], [E(1),E(0)],
[E(1),E(0)], [E(1),E(0)], [E(1),E(1)], [E(1),E(0)], [E(0),E(1)], [E(0),E(1)], [E(0),E(1)]].

Appl. Sci. 2024, 14, 835 15 of 28

Fourthly, CA performs the SM protocol on E([U]) and E([d]), combines the results
for each data point, and adds the data point that minimizes the distance to the new
centroid E([NC]). In Figure 6, SM(E([U]), E([d])) = [[E(d1),E(0)], [E(d2),E(0)], [E(d3),E(0)],
[E(d4),E(0)], [E(0),E(d5)], [E(0),E(d6)], [E(0),E(d7)], [E(0),E(d8)], [E(d9),E(0)], [E(d10),E(0)],
[E(d11),E(0)], [E(d12),E(d12)], [E(d13),E(0)], [E(0),E(d14)], [E(0),E(d15)], [E(0),E(d16)]] resulting
in E([NC.cnt]) = [E(8),E(9)], and E([NC.sum]) = [[E(d1),E(d2),E(d3),E(d4),E(d10),E(d11),E(d12),
E(d13)], [E(d5),E(d6),E(d7),E(d8), E(d9), E(d12), E(d14), E(d15), E(d16)]].

Finally, using the SETC protocol, CA calculates the difference between the initial
centroids and the new centroid E([NC]). If the difference is less than the threshold, CA stores
E([NC]) in E([IC]) and returns E([IC]); otherwise, steps 1 to 5 are repeated to recompute the
clustering. The final k-means clusters computed through this process are depicted in the
bottom-left corner of Figure 6.

5. Privacy-Preserving Parallel k-Means Clustering Algorithm

In this section, we propose a privacy-preserving parallel k-means clustering algorithm.
To perform the parallel processing of the k-means clustering algorithm, we utilize a thread
pool to prevent data bottlenecks and parallelize encryption operation protocols for efficient
support of k-means clustering. However, when parallelizing homomorphic encryption
techniques, there is the issue of the increased operational overhead per core, leading to
bottlenecks and performance degradation. To mitigate this bottleneck in parallel processing,
we reduce the computational cost during k-means clustering by preprocessing operations
that generate random values for hiding data and encrypting them in the encryption oper-
ation protocol. This random value pool generates random numbers (i.e., integers) in the
form of plaintext and ciphertext pairs <r, E(r)> before starting k-means clustering, storing
them in a queue-like memory space. When needed, the data are extracted and used in a
first-in-first-out (FIFO) manner.

The Paillier encryption system used in this paper consists of computationally ex-
pensive operations such as the exponentiation function (i.e., exp) and modular function
(i.e., mod). These operations impose a significant computational overhead on the CPU,
leading to CPU bottlenecks and performance degradation. This problem is exacerbated
when memory access is frequent in parallel processing algorithms. In [17], the SM protocol
generates and encrypts random numbers before performing homomorphic addition opera-
tions. Encrypting random numbers incurs a cost of two encryption operations, utilizing the
CPU’s computational resources. Additionally, the SM protocol, which performs multiplica-
tion as an encryption operation, is used within the ASMIN encryption operation protocol.
Generating and encrypting random numbers during k-means clustering leads to high
computational costs. Therefore, this paper addresses this issue by storing the generated
random numbers (i.e., r) and their encrypted counterparts (i.e., E(r)) in the random value
pool’s memory space. When needed, the cryptographic authority (CA) can select <r, E(r)>
pairs from the random value pool, enabling their use at a lower memory load cost. The
reduced computational cost for each protocol using the random value pool is summarized
in Table 2.

Table 2. Computational cost without/with a random value pool.

Secure Protocol Computational Cost without
a Random Value Pool

Computational Cost with
a Random Value Pool

SM protocol 3 × E 1 × E
ASMIN protocol 10 × E 4 × E

E = encryption.

The proposed parallel k-means clustering algorithm is executed in two phases: parallel
preprocessing and parallel k-means clustering.

Appl. Sci. 2024, 14, 835 16 of 28

5.1. Parallel Preprocessing Phase

In the preprocessing phase of the privacy-preserving k-means clustering algorithm
that supports information protection, a parallel processing technique utilizing a thread
pool is proposed. The execution process of the parallel preprocessing phase is outlined in
Algorithm 5.

1. CA calculates the number of data points to be selected from each node based on the
sampling ratio (cnt) (line 1).

2. CA initializes the initial center of the preprocessing phase (lines 2~5). In this case,
as the Paillier encryption system cannot encrypt real numbers, the center point (ini-
tial_center) is represented by the sum of center points (initial_center.sum) and the
count of center points (initial_center.cnt).

3. Each node selects and stores cnt samples of data (i.e., E(sample_data)) (lines 7~9).
4. The thread pool performs parallel processing of the calculate_new_center procedure.

The calculate_new_center procedure involves the following steps. First, each thread
on CA calculates the distance between E(sample_data) and E(initial_center) using
the SSEDop protocol. Then, it determines the smallest distance using the ASMINn
protocol. Second, each thread on CA calculates the difference between E(dist_min)
and each encrypted distance. After inserting random numbers and changing the
order, this information is sent to CB. Third, each thread on CB decrypts the received
E(β), setting E(Ui) to E(1) if β = 0; otherwise, E(Ui) is set to E(0). CB then sends E(U)
back to CA. Fourth, each thread on CA reverses E(U) and stores it in E(V). Fifth, each
thread on CA performs the SM protocol on E(Vj) and E(sample_datai,l). By summing
the results for each dimension, it adds the sample data with a distance of E(dist_min)
to the new center point E(new_center) = <E(new_center.sum), E(new_center.cnt)>.
Sixth, the thread pool allows for the parallel computation of the new center point
E(new_center) through the five steps mentioned above.

5. The SETC protocol calculates the termination condition (α) between the initial center
point and the new center point. Subsequently, new_center is stored in initial_center.
If α is 1, initial_center is returned; otherwise, clustering is re-executed from line 10
(lines 12~17).

Algorithm 5 Parallel encrypted initial center selection for k-means clustering

Input: E(data), E(node), E(threshold)
Output: E(initial_center) = <E(initial_center1), . . ., E(initial_centerk)>
//E(initial_centeri) = <E(initial_centeri.sum), E(initial_centeri.cnt)>, E(initial_centeri.sum) =
<E(initial_centeri.sum1), . . ., E(initial_centeri.summ)>
CA:
01. cnt = node.cnt/sampling rate
02. for 1 ≤ i ≤ k
03. E(initial_centeri.cnt)← E(1)
04. for 1 ≤ j ≤m
05. select random number r from the random value pool
06. E(initial_centeri.sumj)← E(r)
07. for 1 ≤ i ≤ NumNode
08. for 1 ≤ j ≤ cnt
09. E(sample_data)← E(nodei.dataj)
10. for 1 ≤ i ≤ cnt
11. thread_pool_push(calculate_new_center(k, m, cnt, E(sample_data),
E(initial_center), E(new_center)))
12. α = SETC(E(initial_center), E(new_center), E(threshold))
13. E(initial_center)← E(new_center)
14. if α = 1
15. return E(initial_center)
16. else
17. go to line 10 in Algorithm 5

Appl. Sci. 2024, 14, 835 17 of 28

Algorithm 5 Cont.

Procedure 1. calculate_new_center(E(data), E(nodei), E(distk), E(δi))
Begin Procedure
CA:
01. for 1 ≤ j ≤ k
02. E(distj) = SSEDop(E(sample_datai), E(initial_centeri))
03. E(dist_min)← ASMINn(E(dist1), . . ., E(distk))
04. for 1 ≤ i ≤ k
05. E(δi)← E(dist_min) × E(disti)N − 1
06. E(δ′i)← E(δi)ri
07. E(β)← π(E(δ′i))
08. send E(β) to CB
CB:
09. for 1 ≤ i ≤ cnt
10. if D(E(βi)) = 0 then E(Ui)← E(1)
11. else E(Ui)← E(0)
12. send E(U) to CA
CA:
13. E(V)← π − 1(E(U))
14. for 1 ≤ j ≤ k
15. for 1 ≤ l ≤m
16. E(V’j,l)←SM(E(Vj), E(sample_datai,l))
17. E(new_centerj.suml)← E(new_centerj.suml) × E(V’j,l)
18. E(new_centerj.cnt)← E(new_centerj.cnt) × E(Vj)
19. return E(δi)
End Procedure

5.2. Parallel k-Means Clustering Phase

In the parallel k-means clustering phase in the parallel k-means clustering algorithm,
a parallel processing technique using a thread pool is proposed. The execution process of
the parallel k-means clustering phase is outlined in Algorithm 6.

1. The thread pool performs parallel processing of the calculate_new_center procedure.
The calculate_new_center procedure is the same as Procedure 1 in Algorithm 5.

2. The SETC protocol calculates the termination condition (α) between the initial center
point and the new center point (line 3).

3. If the result of the SETC protocol (i.e., α) is 0, re-execute from line 1.
4. If the result of the SETC protocol (i.e., α) is 1, CB adds a random number (i.e., r) to

E(new_center) and sends it to the AU. Simultaneously, the random number r is sent
to CB by the AU.

5. CB decrypts E(new_center + r) and forwards it to the AU. Authenticated users perform
the subtraction of r from new_center + r received from CB, obtaining the final k-means
clustering result (lines 4~19).

Appl. Sci. 2024, 14, 835 18 of 28

Algorithm 6 Parallel encrypted center search phase for k-means clustering

Input: E(data), E(node), E(threshold), E(initial_center)
Output: cluster_center
CA:
01. for 1 ≤ i ≤ n
02. thread_pool_push(calculate_new_center(k, m, cnt, E(data), E(initial_center),

E(new_center)))//calculate_new_center() is the Procedure 1 in Algorithm 5
03. α = SETC(E(initial_center), E(new_center), E(threshold))
04. if α = 1
05. for 1 ≤ i ≤ k
06. for 1 ≤ j ≤m
07. E(new_centeri.sumj + r)←E(new_centeri.sumj) × E(r)
08. E(new_centeri.cnt + r)←E(new_centeri.cnt)×E(r)
09. else
10. E(initial_center)←E(new_center)
11. go to line 1 in Algorithm 6
12. send r to the AU and send E(new_center + r) to CB
CB:
13. for 1 ≤ i ≤ k
14. for 1 ≤ j ≤m
15. new_centeri.sumj + r← D(E(new_centeri.sumj+r))
16. new_centeri.cnt + r← D(E(new_centeri.cnt+r))
17. send new_center + r to the AU
AU:
18. receive new_center + r from CB and r from CA
19. cluster_center = new_center.sum/new_center.cnt

6. Security Analysis
6.1. Security Analysis of Security Protocols

(1) ASMIN Protocol

In this section, the proposed ASMIN protocol is proven to be secure in the semi-honest
attack model. To conduct a security analysis of the protocol, execution images based on
input data were generated. The information obtainable by CA and CB during the execution
of the ASMIN protocol is summarized in Table 3. Here, the information about r1 and r2 is
safe from exposure since they are random variables.

Table 3. Information obtainable in the ASMIN protocol.

Execution Image of the ASMIN Protocol Simulation Image
= ∏C(P(E(α)), E(β)) ∏C(P(E(u)), E(v))

CA

Input Data: E(α), E(β)
Generated Variables: r1, r2,

Output Data: E(min)

Input Data: E(u), E(v)
Generated Variables: r1, r2,

Output Data: E(min’)

CB
Input Data: X, Y

Output Data: E(r1), E(r2)
Input Data: x, y

Output Data: E(w1), E(w2)

First, the simulation image of the ASMIN protocol on the CA side is given by Equation (4).
The indistinguishability of the simulation images of E(u), E(v), E(min’) and the execution
images of E(α), E(β), E(min) can be proven through Equations (5) and (6). Since the Paillier
encryption system generates random numbers during ciphertext creation, attackers cannot
identify the execution image from the simulation image.

∏Cs
A
(ASC(E(u), E(v))) = {E(u), E(v), r1, R2, (E(γ)} (4)

E(u) = gurN mod N2 ̸= E(α) = gαrN mod N2, where 0 < r < N (5)

Appl. Sci. 2024, 14, 835 19 of 28

E
(
min′

)
= gmin′rN mod N2 ̸= E(min) = gminrN mod N2, where 0 < r < N (6)

On the CB side, the simulation image of the ASMIN protocol is given by Equation (7).
The indistinguishability of the simulation images of x, y, E(w1), E(w2) and the execution
images of X, Y, E(γ1), E(γ2) can be proven through Equations (8) and (9). The variable x in
the simulation image involves the addition and multiplication of two random numbers,
making the probability of identifying the execution image of X be 1/(x − 1). Since the
minimum value of the random numbers is 3, the probability 1/(x − 1) is less than 1/2,
making identification impossible. E(w1), E(w2), E(γ1), and E(γ2) involve random numbers
generated during ciphertext creation in the Paillier encryption system, making it impossible
for the attacker to distinguish between the execution and simulation images.

∏Cs
A
(ASMIN(x, y)) = {x, y, (E(w1), E(w2)} (7)

{
x = ur1 + r2 ̸= X = αr′1 + r′2′ where 3 < r1, r2, r′1′ r′2 < N

P(The probability o f identi f ying X through x) = 1
x−1 ≤

1
2 , where x > 3

(8)

{
E(w1) = gw1 rNmod N2 ̸= E(γ) = gγ1 rN mod N2, where 0 < r < N
E(w2) = gw2 rNmod N2 ̸= E(γ) = gγ2 rN mod N2, where 0 < r < N

(9)

In summary, the analysis demonstrates that no information is exposed during the
execution of the ASMIN protocol on the CA and CB sides. Therefore, the ASMIN protocol
is secure under the semi-honest attack model.

(2) ASMINn Protocol

The part where CA and CB exchange data in the ASMINn protocol is the execution part
of the ASMIN protocol. Therefore, if the ASMIN protocol is secure under the semi-honest
attack model, by the composition theory [33], we can conclude that the ASMINn protocol is
also secure under the semi-honest attack model. Since the security of the ASMIN protocol
has been demonstrated earlier, it follows that the ASMINn protocol is secure under the
semi-honest attack model.

6.2. Security Analysis of the k-Means Clustering Algorithm

To demonstrate the safety of the proposed k-means clustering algorithm in the semi-
honest attack model, security analyses were performed for both CA and CB. First, the
information accessible to CA is described. The information accessible to CA includes
encrypted data and encrypted queries (Table 4).

Table 4. Information accessible to CA in the k-means clustering algorithm.

CA’s Accessible Execution Image Simulation Image

Encrypted Data E(data) E(sim_data)
Encrypted Query E(threshold) E(sim_threshold)

The encrypted data are the encryption of the original data by the Paillier encryption
system. The encryption threshold is the encryption of the user query by the Paillier
encryption system. Therefore, through Equation (10), the impossibility of computation
between the execution image and the simulation image in the k-means clustering algorithm
can be demonstrated.

E(threshold) = gthresholdrn mod N2

̸= E(sim_threshold) = gthresholdrN mod N2, where r < N
(10)

Secondly, let us describe the information that CB can obtain. The information obtain-
able by CB includes the encrypted data received from CA (i.e., E(data)) and the decrypted
data (i.e., data) (Table 5).

Appl. Sci. 2024, 14, 835 20 of 28

Table 5. Information obtainable by CB in the k-means clustering algorithm.

Information Obtainable by CB Simulation Image

Encrypted Data Received
from CA

E(data) E(sim_data)

Decrypted Data data sim_data

The encrypted data received from CA are identical to the encrypted data in Table 4,
making it impossible to perform calculations between the execution image and the simu-
lation image. The decryption data in the simulation image, sim_data, consist of random
number additions. Therefore, the probability of identifying the data in the execution image
is 1

sim_data . Since the minimum value of the random number is 3, the probability 1
sim_data is

lower than 1
2 , making identification impossible (Equation (11)).{

data = data + r1 ̸= sim_data + r2, where 3 < r1, r2 < N
P(The probability of identifying data through sim_data) = 1

simdata ≤
1
2 , where sim_data > 3

(11)

Finally, as demonstrated earlier, each step of the k-means clustering algorithm is
secure under the semi-honest attack model. Therefore, the proposed privacy-preserving
k-means clustering algorithm is secure under the semi-honest attack model according to
the composition theory [33].

6.3. Security Analysis of the Parallel k-Means Clustering Algorithm

The proposed privacy-preserving parallel k-means clustering algorithm consists of
two phases: the parallel preprocessing phase (Algorithm 5) and the parallel k-means
clustering phase (Algorithm 6). To demonstrate the security of the parallel k-means clus-
tering algorithm in the semi-honest attack model, security analyses were performed for
each phase.

Firstly, Algorithm 5 is secure, as it was proven to be a secure version of Algorithm 3,
and the execution images on the CA and CB sides are identical. The difference between
Algorithm 5 and Algorithm 3 lies in the use of a thread pool to parallelize the SM, SSEDop,
and ASMINn protocols. Since the SM, SSEDop, and ASMINn protocols were individually
proven to be secure, Algorithm 5 is secure in the semi-honest attack model according to the
composition theory [33].

Secondly, Algorithm 6 is secure, having been proven to be a secure version of Algo-
rithm 4, and the execution images on the CA and CB sides are identical. The difference
between Algorithm 6 and Algorithm 4 lies in the use of a thread pool to parallelize the SM,
SSEDop, and ASMINn protocols. Given the individual security proofs for the SM, SSEDop,
and ASMINn protocols, Algorithm 6 is secure in the semi-honest attack model according to
the composition theory [33].

In conclusion, each phase of the privacy-preserving parallel k-means clustering al-
gorithm is secure in the semi-honest attack model. Therefore, the entire parallel k-means
clustering algorithm is secure in the semi-honest attack model according to the composition
theory [33].

7. Performance Analysis

This section evaluates the performances of both the proposed privacy-preserving
k-means clustering algorithm and the proposed parallel k-means clustering algorithm. The
evaluations were conducted in the Linux Ubuntu 18.04.2 environment with an Intel(R)
Xeon(R) CPU E5-2630 2.20 GHz 10-Core 3.10 GHz processor and 64 GB (16 GB × 4 AE)
DDR3 UDIMM 1600 MHz RAM. The algorithms were implemented in C++ and, to represent
the range 0 to 2 key_size in the Paillier encryption system, the GMP library’s mpz_t data
type was used instead of basic data types. The GMP library supports operations on larger
numbers compared with typical numeric data types (e.g., short, int, long).

Appl. Sci. 2024, 14, 835 21 of 28

The performance evaluation focused on the execution time, measured as the difference
between the timestamp just before the algorithm’s execution and the timestamp just after
its completion. The dataset used for the performance evaluation was the synthetic uniform
dataset [34] as shown in Table 6.

Table 6. The data used for the performance evaluation.

Synthetic Uniform Data [34]
Description: Synthetic Data with a Uniform Distribution

Number of data points 100,000
Number of columns 6

Data domain 0~512

In this section, we evaluate the performance of both the Secure k-Means Clustering
algorithm with Advanced Secure Protocol (SkMCA) proposed in Section 4 and the Parallel
Secure k-Means Clustering algorithm with Advanced Secure Protocol (PSkMCA) proposed
in Section 5. To measure the performance improvement of SkMCA, we compare it with [25]
(i.e., the Secure k-Means Clustering algorithm with Index filtering (SkMCI)), which provides
a similar level of information protection (data protection, query protection, and access
pattern protection). Additionally, as no parallel k-means clustering algorithm that supports
information protection currently exists, we created the parallel processing version of SkMCI
(i.e., PSkMCI) in order to compare it with PSkMCA. The query accuracy of both the existing
k-means clustering algorithm and the proposed k-means clustering algorithm is 100%.
Table 7 summarizes the comparison targets for the proposed k-means clustering algorithms.

Table 7. Targets for the performance comparison of the proposed k-means clustering algorithm.

Proposed k-Means Clustering
Algorithm (SkMCA) SkMCI [25]

Proposed Parallel k-Means Clustering
Algorithm (PSkMCA) PSkMCI (Parallel processing version of SkMCI [25])

The performance evaluation of the k-means clustering algorithm was performed
by selecting random data points as queries from the generated data. The performance
evaluation compared the query processing times of the proposed algorithms and the
existing algorithms with changes in the number of data points (n), k, and threads. The
threshold for the k-means clustering algorithm was set to 10. Table 8 lists the parameters
considered in the performance evaluation.

Table 8. Parameters considered in the performance evaluation of the k-means clustering algorithms.

Parameter Values Default

of data points (n) 2k, 4k, 6k, 8k, 10k 10k
k 5, 10, 15, 20 10

of data dimensions (m) 2 2
Encryption key size (K) 512 512

Bit length 22 22
Threshold 10 -

of Threads 2, 4, 6, 8, 10 10

Figure 7 illustrates the performance of SkMCA and SkMCI with varying total data sizes
when k = 10, m = 2, and K = 512. When n = 2k, SkMCA takes approximately 1807 s, while
SkMCI requires around 14,456 s. The significant performance improvement is attributed
to the faster execution time of the proposed ASMIN and ASMINn protocols compared
with the SMIN and SMINn protocols used in SkMCI. Through the enhanced efficiency of

Appl. Sci. 2024, 14, 835 22 of 28

the encryption operation protocols, SkMCA demonstrates approximately 10.8 times better
performance than SkMCI.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 23 of 30

Table 7. Targets for the performance comparison of the proposed k-means clustering algorithm.

Proposed k-Means Clustering Al-
gorithm (SkMCA)

SkMCI [25]

Proposed Parallel k-Means Clus-
tering Algorithm (PSkMCA)

PSkMCI (Parallel processing version of SkMCI [25])

The performance evaluation of the k-means clustering algorithm was performed by
selecting random data points as queries from the generated data. The performance evalu-
ation compared the query processing times of the proposed algorithms and the existing
algorithms with changes in the number of data points (n), k, and threads. The threshold
for the k-means clustering algorithm was set to 10. Table 8 lists the parameters considered
in the performance evaluation.

Table 8. Parameters considered in the performance evaluation of the k-means clustering algo-
rithms.

Parameter Values Default
of data points (n) 2k, 4k, 6k, 8k, 10k 10k

k 5, 10, 15, 20 10
of data dimensions (m) 2 2
Encryption key size (K) 512 512

Bit length 22 22
Threshold 10 -

of Threads 2, 4, 6, 8, 10 10

Figure 7 illustrates the performance of SkMCA and SkMCI with varying total data
sizes when k = 10, m = 2, and K = 512. When n = 2k, SkMCA takes approximately 1807 s,
while SkMCI requires around 14,456 s. The significant performance improvement is at-
tributed to the faster execution time of the proposed ASMIN and ASMINn protocols com-
pared with the SMIN and SMINn protocols used in SkMCI. Through the enhanced effi-
ciency of the encryption operation protocols, SkMCA demonstrates approximately 10.8
times better performance than SkMCI.

Figure 7. Performance evaluation of k-means clustering algorithms with a changing data size (n).

Figure 8 depicts the performance of SkMCA and SkMCI with varying values of k when
n = 10k, m = 2, and K = 512. For the case where k = 20, SkMCA takes approximately 18,791

Figure 7. Performance evaluation of k-means clustering algorithms with a changing data size (n).

Figure 8 depicts the performance of SkMCA and SkMCI with varying values of k when
n = 10k, m = 2, and K = 512. For the case where k = 20, SkMCA takes approximately 18,791 s,
while SkMCI requires around 236,502 s. The significant performance improvement is at-
tributed to the proposed k-means clustering algorithm, which rapidly performs encryption
protocols through decimal-based arithmetic operations. In contrast, SkMCI uses iterative
encryption protocols based on binary arithmetic. SkMCA demonstrates approximately
12.3 times better performance than SkMCI.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 24 of 30

s, while SkMCI requires around 236,502 s. The significant performance improvement is
attributed to the proposed k-means clustering algorithm, which rapidly performs encryp-
tion protocols through decimal-based arithmetic operations. In contrast, SkMCI uses iter-
ative encryption protocols based on binary arithmetic. SkMCA demonstrates approxi-
mately 12.3 times better performance than SkMCI.

Figure 8. Performance evaluation of k-means clustering algorithms with a changing k value.

Figure 9 illustrates the performance of PSkMCA and PSkMCI with varying numbers
of threads when n = 10k, k = 10, m = 2, and K = 512. When the number of threads is 2,
PSkMCA takes approximately 4918 s, while PSkMCI requires around 40,345 s. When the
number of threads is 10, PSkMCA takes about 1287 s, and PSkMCI takes around 16,446 s.
Overall, PSkMCA demonstrates approximately 13.5 times better performance than
PSkMCI.

Figure 9. Performance evaluation of k-means clustering algorithms with a changing number of
threads.

As shown in Figure 9, the proposed parallel k-means clustering algorithm demon-
strates a linear decrease in processing time as the number of threads increases from 2 to
10. In other words, there is no performance degradation as the number of threads

Figure 8. Performance evaluation of k-means clustering algorithms with a changing k value.

Figure 9 illustrates the performance of PSkMCA and PSkMCI with varying numbers
of threads when n = 10k, k = 10, m = 2, and K = 512. When the number of threads is 2,
PSkMCA takes approximately 4918 s, while PSkMCI requires around 40,345 s. When the
number of threads is 10, PSkMCA takes about 1287 s, and PSkMCI takes around 16,446 s.
Overall, PSkMCA demonstrates approximately 13.5 times better performance than PSkMCI.

Appl. Sci. 2024, 14, 835 23 of 28

Appl. Sci. 2024, 14, x FOR PEER REVIEW 24 of 30

s, while SkMCI requires around 236,502 s. The significant performance improvement is
attributed to the proposed k-means clustering algorithm, which rapidly performs encryp-
tion protocols through decimal-based arithmetic operations. In contrast, SkMCI uses iter-
ative encryption protocols based on binary arithmetic. SkMCA demonstrates approxi-
mately 12.3 times better performance than SkMCI.

Figure 8. Performance evaluation of k-means clustering algorithms with a changing k value.

Figure 9 illustrates the performance of PSkMCA and PSkMCI with varying numbers
of threads when n = 10k, k = 10, m = 2, and K = 512. When the number of threads is 2,
PSkMCA takes approximately 4918 s, while PSkMCI requires around 40,345 s. When the
number of threads is 10, PSkMCA takes about 1287 s, and PSkMCI takes around 16,446 s.
Overall, PSkMCA demonstrates approximately 13.5 times better performance than
PSkMCI.

Figure 9. Performance evaluation of k-means clustering algorithms with a changing number of
threads.

As shown in Figure 9, the proposed parallel k-means clustering algorithm demon-
strates a linear decrease in processing time as the number of threads increases from 2 to
10. In other words, there is no performance degradation as the number of threads

Figure 9. Performance evaluation of k-means clustering algorithms with a changing number
of threads.

As shown in Figure 9, the proposed parallel k-means clustering algorithm demon-
strates a linear decrease in processing time as the number of threads increases from 2 to 10.
In other words, there is no performance degradation as the number of threads increases.
This indicates that the proposed parallel k-means clustering algorithm exhibits scalability,
where the performance can scale effectively with the number of threads.

Figure 10 illustrates the memory usage of the proposed k-means clustering algorithm
and the existing algorithm. When n = 10,000, k = 10, and K = 512, the existing k-means
clustering algorithm uses approximately 1000 kilobytes, while the proposed algorithm uses
around 1150 kilobytes. Figure 10 shows that the proposed algorithm requires approximately
an additional 15% memory usage compared with the existing algorithm. The reason for
this is that the proposed algorithm consumes more memory due to the preprocessing step
involved in sampling the data. However, the 150 kilobytes in total of memory overhead
compared with the existing algorithm is quite small in terms of memory utilization.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 25 of 30

increases. This indicates that the proposed parallel k-means clustering algorithm exhibits
scalability, where the performance can scale effectively with the number of threads.

Figure 10 illustrates the memory usage of the proposed k-means clustering algorithm
and the existing algorithm. When n = 10,000, k = 10, and K = 512, the existing k-means
clustering algorithm uses approximately 1000 kilobytes, while the proposed algorithm
uses around 1150 kilobytes. Figure 10 shows that the proposed algorithm requires approx-
imately an additional 15% memory usage compared with the existing algorithm. The rea-
son for this is that the proposed algorithm consumes more memory due to the prepro-
cessing step involved in sampling the data. However, the 150 kilobytes in total of memory
overhead compared with the existing algorithm is quite small in terms of memory utiliza-
tion.

Figure 10. Memory usage of the proposed k-means clustering algorithm and the existing algorithm.

8. Discussion
8.1. The Time Complexity of the Proposed Secure Protocols

To measure the time complexity of the proposed secure protocols, we analyzed the
number of homomorphic operations performed in each protocol. For this, let n represent
the number of input data points, m the number of dimensions, and l the number of bits.
The time complexities of each secure protocol are as shown in Table 9. For the ASMIN
protocol, a total of eight homomorphic operations were performed to obtain the result of
the comparison. Therefore, the time complexity of the ASMIN protocol is constant time,
and can be simplified to O(1). In the case of the ASMINn protocol, it performs ASMIN
protocols log2n times, so the time complexity of the ASMINn protocol is O(log2n). The pro-
posed secure protocols have constant time complexity regardless of the number of bits,
while the existing secure protocols exhibit a time complexity that is proportional to the
number of bits.

Table 9. Time complexity of each secure protocol.

Encryption Operation Protocol Function Time Complexity
ASMIN protocol MIN operation O(8) ≈ O(1)
ASMINn protocol MIN operation among n inputs O(8 × log2n) ≈ O(log2n)

8.2. The Time Complexity of the Proposed k-Means Clustering Algorithm
The time complexity of the proposed k-means clustering algorithm (SkMCA) and that

of SkMCI are shown in Table 10. The time complexity of SkMCA is proportional to the

Figure 10. Memory usage of the proposed k-means clustering algorithm and the existing algorithm.

Appl. Sci. 2024, 14, 835 24 of 28

8. Discussion
8.1. The Time Complexity of the Proposed Secure Protocols

To measure the time complexity of the proposed secure protocols, we analyzed the
number of homomorphic operations performed in each protocol. For this, let n represent
the number of input data points, m the number of dimensions, and l the number of bits.
The time complexities of each secure protocol are as shown in Table 9. For the ASMIN
protocol, a total of eight homomorphic operations were performed to obtain the result of
the comparison. Therefore, the time complexity of the ASMIN protocol is constant time,
and can be simplified to O(1). In the case of the ASMINn protocol, it performs ASMIN
protocols log2

n times, so the time complexity of the ASMINn protocol is O(log2
n). The

proposed secure protocols have constant time complexity regardless of the number of bits,
while the existing secure protocols exhibit a time complexity that is proportional to the
number of bits.

Table 9. Time complexity of each secure protocol.

Encryption Operation Protocol Function Time Complexity

ASMIN protocol MIN operation O(8) ≈ O(1)
ASMINn protocol MIN operation among n inputs O(8 × log2

n) ≈ O(log2
n)

8.2. The Time Complexity of the Proposed k-Means Clustering Algorithm

The time complexity of the proposed k-means clustering algorithm (SkMCA) and that
of SkMCI are shown in Table 10. The time complexity of SkMCA is proportional to the
number of data points × k × (dimension + log2k), while that of SkMCI is proportional to
k × (dimension × number of data + log2k × bit length).

Table 10. Time complexity of the k-means clustering algorithms.

k-Means Clustering Algorithm Time Complexity

SkMCA (proposed) O(n × k × (log2k + m))
SkMCI [23] O(n × k × (l × log2k + m))

When comparing the time complexity of the proposed k-means clustering algorithm
with that of the existing algorithm, the proposed k-means clustering algorithm exhibits a
time complexity that is independent of the bit length. In contrast, the existing algorithm
shows a time complexity that is proportional to the bit length.

8.3. Theoretical Analysis of the Proposed Algorithm in Terms of Privacy

Assuming that an attacker does not have any information on original data items,
an adversary needs a tremendous amount of time to obtain the original plaintext from a
Paillier cryptosystem while using a brute force attack. This means that it is impossible to do
an experiment to prove that data, queries, and access patterns are all protected. Therefore,
instead of an experimental analysis, we conducted a theoretical analysis of data privacy,
query privacy, and access pattern privacy to support the security analysis of the proposed
algorithm. For this, we estimated the time it takes for the original data to be exposed and
calculated the probability of access pattern leakage.

(1) Theoretical analysis of data privacy

In CA, an attacker only obtains the ciphertext of data. Because the data are protected
by the Paillier cryptosystem, the security performance is measured through the time
complexity of the brute force attack used to break down the Paillier cryptosystem. Our
Paillier cryptosystem uses a 512-bit encryption key size. Assuming that the CPU cycle

Appl. Sci. 2024, 14, 835 25 of 28

is 4 GHz, the time required to decrypt the ciphertext by changing the key is as shown in
Equation (12).

BFAtime(sec) =
2512

4GHz
≈ 1.3× 10154

4GHz
(12)

It is impossible to break down a Paillier cryptosystem because it takes about
4.2 × 10146 years with a 512-bit key size. This means that the proposed privacy-preserving
k-means clustering algorithm is secure in terms of data privacy even if the ciphertext is
exposed. Figure 11 shows the time taken for a brute force attack in CA as the key size
is changed. In CB, an attacker only obtains plaintext data that add a random number to
the original data. In the Paillier cryptosystem, because the range of the plaintext data is
0 ≤m ≤ 2512, the brute force attack time in CB is the same as that in CA.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 27 of 30

Figure 11. Time taken in a brute force attack on the Paillier encryption system.

(2) Theoretical analysis of query privacy
In CA, an attacker only obtains the ciphertext of a query. Because the query is pro-

tected by the Paillier cryptosystem, the security performance is measured through the
time complexity of the brute force attack used to break down the Paillier cryptosystem.
Since our Paillier cryptosystem uses a 512-bit encryption key size, the time required to
decrypt the ciphertext by changing the key is as shown in Equation (10), where the CPU
cycle is 4GHz. It is impossible to break down a Paillier cryptosystem because it takes about
4.2 × 10146 years with a 512-bit key size. This means that the proposed privacy-preserving
k-means clustering algorithm is secure in terms of query privacy even if the ciphertext is
exposed. The time taken in a brute force attack on CA is the same as that for data privacy
in CA (Figure 11). In CB, query privacy is preserved because CB does not receive the query.
(3) Theoretical analysis of access pattern privacy

An access pattern describes the access sequence for a data item. In the proposed al-
gorithm, the sequence for accessing a data item consists of accessing the leaf node of the
kd-tree and accessing the data in the leaf node. In CA, an attacker only obtains the cipher-
text of the leaf node. Because all the leaf nodes have the same number of data items, an
attacker cannot distinguish the leaf node by using the density of data items. If the kd-tree
level is h, the number of leaf nodes is 2h−1. The probability that an attacker can distinguish
a node (nodei) from the others, i.e., P(nodei), is ଵଶ೓షభ. Because nodei includes the same num-
ber of data items as fanout, the probability that an attacker can distinguish a data item
from the others in nodei, i.e., P(nodei.dataj), is ଵ௙௔௡௢௨௧ = ଵ೟೓೐ ೙ೠ೘್೐ೝ ೚೑ ೏ೌ೟ೌమ೓షభ = ଶ೓షభ௡ . Therefore,

the probability of data access pattern leakage (PAPL) is as shown in Equation (13).

PAPL is equal to the probability that an attacker distinguishes a specific data item from
the others in the entire set of data items. Therefore, the proposed algorithm can preserve
the access pattern privacy in CA. In CB, the access pattern privacy is preserved because CB
does not have any data items.

8.4. Practical Example of the Proposed k-Means Clustering Algorithm
The proposed secure k-means clustering algorithm can be used in various fields. For

example, the proposed algorithm can be applied in healthcare to diagnose diseases using

𝑃஺௉௅ = 𝑃(𝑛𝑜𝑑𝑒௜) × 𝑃൫𝑛𝑜𝑑𝑒௜, 𝑑𝑎𝑡𝑎௝൯ = 12௛ିଵ × 2௛ିଵ𝑛 = 1𝑛 (13)

Figure 11. Time taken in a brute force attack on the Paillier encryption system.

(2) Theoretical analysis of query privacy

In CA, an attacker only obtains the ciphertext of a query. Because the query is protected
by the Paillier cryptosystem, the security performance is measured through the time
complexity of the brute force attack used to break down the Paillier cryptosystem. Since
our Paillier cryptosystem uses a 512-bit encryption key size, the time required to decrypt
the ciphertext by changing the key is as shown in Equation (10), where the CPU cycle
is 4GHz. It is impossible to break down a Paillier cryptosystem because it takes about
4.2 × 10146 years with a 512-bit key size. This means that the proposed privacy-preserving
k-means clustering algorithm is secure in terms of query privacy even if the ciphertext is
exposed. The time taken in a brute force attack on CA is the same as that for data privacy
in CA (Figure 11). In CB, query privacy is preserved because CB does not receive the query.

(3) Theoretical analysis of access pattern privacy

An access pattern describes the access sequence for a data item. In the proposed
algorithm, the sequence for accessing a data item consists of accessing the leaf node of
the kd-tree and accessing the data in the leaf node. In CA, an attacker only obtains the
ciphertext of the leaf node. Because all the leaf nodes have the same number of data items,
an attacker cannot distinguish the leaf node by using the density of data items. If the kd-tree
level is h, the number of leaf nodes is 2h−1. The probability that an attacker can distinguish
a node (nodei) from the others, i.e., P(nodei), is 1

2h−1 . Because nodei includes the same
number of data items as fanout, the probability that an attacker can distinguish a data item

Appl. Sci. 2024, 14, 835 26 of 28

from the others in nodei, i.e., P(nodei.dataj), is 1
f anout = 1

the number o f data
2h−1

= 2h−1

n . Therefore,

the probability of data access pattern leakage (PAPL) is as shown in Equation (13).

PAPL = P(nodei)× P
(
nodei, dataj

)
=

1
2h−1 ×

2h−1

n
=

1
n

(13)

PAPL is equal to the probability that an attacker distinguishes a specific data item from
the others in the entire set of data items. Therefore, the proposed algorithm can preserve
the access pattern privacy in CA. In CB, the access pattern privacy is preserved because CB
does not have any data items.

8.4. Practical Example of the Proposed k-Means Clustering Algorithm

The proposed secure k-means clustering algorithm can be used in various fields.
For example, the proposed algorithm can be applied in healthcare to diagnose diseases
using big data by clustering patients’ symptoms. This allows for the assessment of the
adaptability of the proposed algorithm in practical applications [31,35]. Because the existing
disease diagnosis system depends only on the doctor’s knowledge and experience, it may
cause harm to patients due to misdiagnoses. Therefore, k-means clustering algorithms can
help doctors classify the pattern of the patient’s symptoms so as to diagnose what kind of
disease it is. However, because patient information contains sensitive data, such as past
medical history, family history, and allergies, the proposed privacy-preserving k-means
clustering algorithm can be used to protect the sensitive data of patients. In addition,
the proposed privacy-preserving k-means clustering algorithm can be used to solve the
problem of insurance coverage recommendations where insurance companies provide the
most suitable coverage to customers [36]. The insurance coverage recommendation clusters
customers based on various types of customer information, such as movement patterns
and lifestyles. To perform the grouping of customers, the proposed privacy-preserving
k-means clustering algorithm can be used to protect the personal information of customers.

9. Conclusions and Future Work

In this paper, we proposed novel arithmetic-based encryption protocols (ASMIN,
ASMINn) designed for encrypted databases in cloud computing. These protocols address
the challenges of the existing secure protocols, where the performance degradation is
proportional to the data size. Our proposed protocols overcome these limitations, providing
excellent processing performance that is independent of the data size. Additionally, we
proposed a k-means clustering algorithm that supports privacy preservation using the
proposed secure protocols. The algorithm utilizes enhanced secure protocols to perform
encrypted index searches and queries, ensuring the protection of data, queries, and access
patterns while providing superior processing performance. Additionally, the proposed
k-means clustering algorithm requires moderate computational overhead because it uses
decimal-based encryption operations, while the existing k-means clustering algorithms,
i.e., Liu et al.’s work [24] and F. Rao et al.’s work [25], have high computational overhead
due to the use of binary-based encryption operations.

Furthermore, we proposed a parallel k-means clustering algorithm for multi-core
environments that leverages thread pools and random value pools. To the best of our
knowledge, this is the first work to study a privacy-preserving parallel k-means clustering
algorithm. For efficient support of k-means clustering, we utilized a thread pool to prevent
data bottlenecks and parallelized encryption operation protocols. However, when paral-
lelizing homomorphic encryption techniques, there is the issue of the increased operational
overhead per core, leading to bottlenecks and performance degradation. To mitigate this
bottleneck, the proposed parallel algorithm uses a random value pool to reduce the com-
putational cost by preprocessing operations that generate random values. This algorithm
optimizes its performance by eliminating the overhead associated with random number
generation and encryption during k-means clustering.

Appl. Sci. 2024, 14, 835 27 of 28

Through performance evaluations, our proposed k-means clustering algorithm demon-
strated approximately 10–12 times better performance than the existing algorithm. More-
over, the proposed parallel k-means clustering algorithm exhibited around 13 times better
performance compared with the parallel processing versions of the existing algorithm.

Our future work will involve the actual implementation of a privacy-preserving
healthcare system using the proposed k-means clustering algorithm in a cloud computing
environment. For instance, within the healthcare system, the proposed algorithm can be
applied to diagnose diseases using big data by clustering patients’ symptoms. This allows
for the assessment of the adaptability of the proposed algorithm in practical applications. In
addition, our future work will focus on leveraging the advanced secure protocols proposed
in this paper to support various cloud-based data analysis algorithms, including association
rules, deep learning, and federated learning.

Author Contributions: Conceptualization, Y.S.; methodology, Y.S.; software, Y.S. and H.-J.K.; vali-
dation H.-J.K. and H.-J.L.; resources, Y.S. and H.-J.K.; data curation, H.-J.K.; writing—original draft
preparation, Y.S.; writing—review and editing, Y.S., H.-J.L. and J.-W.C.; supervision, J.-W.C.; project
administration, J.-W.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not relevant.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used for the performance evaluation in our paper is the
synthetic uniform dataset reference [34].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Agrawal, D.; Das, S.; Abbadi, A.E. Data management in the cloud: Challenges and opportunities. In Synthesis Lectures on Data

Management; Springer Nature: Cham, Switzerland, 2012; Volume 4, p. 138. [CrossRef]
2. Grolinger, K.; Higashino, W.A.; Tiwari, A.; Capretz, M.A. Data management in cloud environments: NoSQL and NewSQL data

stores. J. Cloud Comput. Adv. Syst. Appl. 2013, 2, 22. [CrossRef]
3. Zhao, L.; Sakr, S.; Liu, A.; Bouguettaya, A. Conclusions. In Cloud Data Management; Springer: Berlin/Heidelberg, Germany, 2014;

p. 189. [CrossRef]
4. Bisht, J.; Vampugani, V.S. Load and cost-aware min-min workflow scheduling algorithm for heterogeneous resources in fog,

cloud, and edge scenarios. Int. J. Cloud Appl. Comput. (IJCAC) 2022, 12, 1–20. [CrossRef]
5. Kumbhojkar, N.R.; Menon, A.B. Integrated predictive experience management framework (IPEMF) for improving customer

experience: In the era of digital transformation. Int. J. Cloud Appl. Comput. (IJCAC) 2022, 12, 1–13. [CrossRef]
6. Sun, Y.; Zhang, J.; Zhu, G. Data security and privacy in cloud computing. Int. J. Distrib. Sens. Netw. 2014, 10, 190903. [CrossRef]
7. Sharma, Y.; Gupta, H.; Khatri, S.K. A security model for the enhancement of data privacy in cloud computing. In Proceedings of

the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019;
pp. 898–902. [CrossRef]

8. Garigipati, N.; Krishna, R.V. A study on data security and query privacy in cloud. In Proceedings of the 2019 3rd International
Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 337–341. [CrossRef]

9. Sen, J. Security and Privacy Issues in Cloud Computing. Cloud Technol. Concepts Methodol. Tools Appl. 2015, 2015, 1585–1630.
[CrossRef]

10. Jansen, W.A. Cloud hooks: Security and privacy issues in cloud computing. In Proceedings of the 2011 44th Hawaii International
Conference on System Sciences, Kauai, HI, USA, 4–7 January 2011; pp. 1–10. [CrossRef]

11. Yiu, M.L.; Ghinita, G.; Jensen, C.S.; Kalnis, P. Enabling search services on outsourced private spatial data. VLDB J. 2010, 19,
363–384. [CrossRef]

12. Boldyreva, A.; Chenette, N.; Lee, Y.; O’Neill, A. Order-preserving symmetric encryption. In Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, 26–30 April 2009;
pp. 224–241. [CrossRef]

13. Boldyreva, A.; Chenette, N.; O’Neill, A. Order-preserving encryption revisited: Improved security analysis and alternative
solutions. In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2011; pp. 578–595.
[CrossRef]

14. Qi, Y.; Atallah, M.J. Efficient privacy-preserving k-nearest neighbor search. In Proceedings of the 28th International Conference
on Distributed Computing Systems, Beijing, China, 17–20 June 2008; pp. 311–319. [CrossRef]

https://doi.org/10.1007/978-3-031-01895-4
https://doi.org/10.1186/2192-113X-2-22
https://doi.org/10.1007/978-3-319-04765-2
https://doi.org/10.4018/IJCAC.2022010105
https://doi.org/10.4018/IJCAC.2022010107
https://doi.org/10.1155/2014/190903
https://doi.org/10.1109/AICAI.2019.8701398
https://doi.org/10.1109/ICOEI.2019.8862675
https://doi.org/10.4018/978-1-4666-6539-2.ch074
https://doi.org/10.1109/HICSS.2011.103
https://doi.org/10.1007/s00778-009-0169-7
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1109/ICDCS.2008.79

Appl. Sci. 2024, 14, 835 28 of 28

15. Shaneck, M.; Kim, Y.; Kumar, V. Privacy preserving nearest neighbor search. In Machine Learning in Cyber Trust: Security, Privacy,
and Reliability; Yu, P.S., Tsai, J.J.P., Eds.; Springer: Boston, MA, USA, 2009; pp. 247–276. [CrossRef]

16. Vaidya, J.; Clifton, C. Privacy-preserving top-k queries. In Proceedings of the 21st International Conference on Data Engineering
(ICDE’05), Tokyo, Japan, 5–8 April 2005; pp. 545–546. [CrossRef]

17. Elmehdwi, Y.; Samanthula, B.K.; Jiang, W. Secure k-nearest neighbor query over encrypted data in outsourced environments.
In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March–4 April 2014;
pp. 664–675. [CrossRef]

18. Kim, H.J.; Kim, H.I.; Chang, J.W. A privacy-preserving kNN classification algorithm using Yao’s garbled circuit on cloud
computing. In Proceedings of the 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), Honolulu, HI, USA,
25–30 June 2017; pp. 766–769. [CrossRef]

19. Zhou, L.; Zhu, Y.; Castiglione, A. Efficient k-NN query over encrypted data in cloud with limited key-disclosure and offline data
owner. Comput. Secur. 2017, 69, 84–96. [CrossRef]

20. Kim, H.I.; Kim, H.J.; Chang, J.W. A secure kNN query processing algorithm using homomorphic encryption on outsourced
database. Data Knowledge. Eng. 2019, 123, 101602. [CrossRef]

21. Sun, X.; Wang, X.; Xia, Z.; Fu, Z.; Li, T. Dynamic multi-keyword top-k ranked search over encrypted cloud data. Int. J. Secur. Its
Appl. 2014, 8, 319–332. [CrossRef]

22. Zhang, W.; Liu, S.; Xia, Z. A distributed privacy-preserving data aggregation scheme for smart grid with fine-grained access
control. J. Inf. Secur. Appl. 2022, 66, 103118. [CrossRef]

23. Hozhabr, M.; Asghari, P.; Javadi, H.H.S. Dynamic secure multi-keyword ranked search over encrypted cloud data. J. Inf. Secur.
Appl. 2021, 61, 102902. [CrossRef]

24. Liu, D.; Bertino, E.; Yi, X. Privacy of outsourced k-means clustering. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, Kyoto, Japan, 4–6 June 2014; pp. 123–134. [CrossRef]

25. Rao, F.Y.; Samanthula, B.K.; Bertino, E.; Yi, X.; Liu, D. Privacy-preserving and outsourced multi-user k-means clustering. In
Proceedings of the 2015 IEEE Conference on Collaboration and Internet Computing (CIC), Hangzhou, China, 27–30 October 2015;
pp. 80–89. [CrossRef]

26. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Conference
on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; pp. 223–238.

27. Hazay, C.; Lindell, Y. Efficient Secure Two-Party Protocols: Techniques and Constructions. In Information Security and Cryptography;
Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [CrossRef]

28. Zhu, H.; Meng, X.; Kollios, G. Privacy Preserving Similarity Evaluation of Time Series Data. In Proceedings of the 17th
International Conference on Extending Database Technology, Athens, Greece, 24–28 March 2014; pp. 499–510. [CrossRef]

29. Hu, H.; Xu, J.; Xu, X.; Pei, K.; Choi, B.; Zhou, S. Private search on key-value stores with hierarchical indexes. In Proceedings of the
2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March–4 April 2014; pp. 628–639. [CrossRef]

30. Liu, A.; Zhengy, K.; Liz, L.; Liu, G.; Zhao, L.; Zhou, X. Efficient secure similarity computation on encrypted trajectory data. In
Proceedings of the 2015 IEEE 31st International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April 2015;
pp. 66–77. [CrossRef]

31. Yang, Y.; Zheng, X.; Guo, W.; Liu, X.; Chang, V. Privacy-preserving smart IoT-based healthcare big data storage and self-adaptive
access control system. Inf. Sci. 2019, 479, 567–592. [CrossRef]

32. Bugiel, S.; Nurnberger, S.; Sadeghi, A.R.; Schneider, T. Twin clouds: An architecture for secure cloud computing. In Proceedings
of the Workshop on Cryptography and Security in Clouds, Zurich, Switzerland, 15–16 March 2011.

33. Goldreich, O. Foundations of Cryptography: Volume 2, Basic Applications; Cambridge University Press: Cambridge, UK, 2009; Volume 2.
34. Gray, J.; Sundaresan, P.; Englert, S.; Baclawski, K.; Weinberger, P.J. Quickly generating billion-record synthetic databases. In

Proceedings of the 1994 ACM SIGMOD international conference on Management of data, Minneapolis, MN, USA, 24–27 May
1994; pp. 243–252. [CrossRef]

35. Hashi, E.K.; Zaman, M.S.U.; Hasan, M.R. An expert clinical decision support system to predict disease using classification
techniques. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering
(ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 396–400. [CrossRef]

36. Khalili-Damghani, K.; Abdi, F.; Abolmakarem, S. Solving customer insurance coverage recommendation problem using a
two-stage clustering-classification model. Int. J. Manag. Sci. Eng. Manag. 2019, 14, 9–19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-0-387-88735-7_10
https://doi.org/10.1109/ICDE.2005.112
https://doi.org/10.1109/ICDE.2014.6816690
https://doi.org/10.1109/CLOUD.2017.110
https://doi.org/10.1016/j.cose.2016.11.013
https://doi.org/10.1016/j.datak.2017.07.005
https://doi.org/10.14257/ijsia.2014.8.1.30
https://doi.org/10.1016/j.jisa.2022.103118
https://doi.org/10.1016/j.jisa.2021.102902
https://doi.org/10.1145/2590296.2590332
https://doi.org/10.1109/CIC.2015.20
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.5441/002/edbt.2014.45
https://doi.org/10.1109/ICDE.2014.6816687
https://doi.org/10.1109/ICDE.2015.7113273
https://doi.org/10.1016/j.ins.2018.02.005
https://doi.org/10.1145/191839.191886
https://doi.org/10.1109/ECACE.2017.7912937
https://doi.org/10.1080/17509653.2018.1467801

	Introduction
	Background and Related Research
	Background Knowledge
	Related Work

	Overall System Architecture
	System Architecture
	Secure Protocol
	Advanced Secure MINimum (ASMIN) Protocol
	Advanced Secure MINimum out of n Numbers (ASMINn) Protocol

	Privacy-Preserving k-Means Clustering Algorithm
	Preprocessing Phase
	k-Means Clustering Phase

	Privacy-Preserving Parallel k-Means Clustering Algorithm
	Parallel Preprocessing Phase
	Parallel k-Means Clustering Phase

	Security Analysis
	Security Analysis of Security Protocols
	Security Analysis of the k-Means Clustering Algorithm
	Security Analysis of the Parallel k-Means Clustering Algorithm

	Performance Analysis
	Discussion
	The Time Complexity of the Proposed Secure Protocols
	The Time Complexity of the Proposed k-Means Clustering Algorithm
	Theoretical Analysis of the Proposed Algorithm in Terms of Privacy
	Practical Example of the Proposed k-Means Clustering Algorithm

	Conclusions and Future Work
	References

