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Abstract: In addition to federated optimization, more current studies focus on incentive mechanism
design problems for federated learning (FL), stimulating data owners to share their resources se-
curely. Most existing works only considered data quantity but neglected other key factors like data
quality and training time prediction. In combination with all the above factors, we proposed an
online quality-aware incentive mechanism based on multi-dimensional reverse auction, QuoTa, for
achieving fast FL. In particular, it first designs model quality detection to eliminate some malicious
or dispensable devices based on their historical behaviors and marginal contributions. Due to the
possible fluctuations of CPU frequency in realistic model training, it next predicts model training time
based on the upper confidence bound algorithm. By combining the two modules, QuoTa incentivizes
data owners with high data quality, high computing capability, and low cost to participate in the FL
process. By rigorous theoretical proof and extensive experiments, we prove that QuoTa satisfies all
desired economic properties and achieves higher model accuracy and less convergence time than the
state-of-the-art work.

Keywords: incentive mechanism; federated learning; multi-dimensional reverse auction

1. Introduction

Federated learning (FL) has become a promising data circulation technique to break
data isolation and further promote secure data sharing, in consideration of raw data stored
in each data owner’s local device rather than a centralized data server [1–4]. However,
data owners’ computing and communication resources have to be compromised during
the FL training process, and thus they usually have no incentive to participate in the
training process unless sufficient monetary compensation in return. Insufficient data
owners’ training data hinders the aggregated model accuracy, thus failing the whole FL
training. Thus, how to incentivize abundant data owners’ participation is a key problem
in FL.

Most prior works [1,3] adopted a multi-dimensional reverse auction to incentivize
participants and facilitate FL, where the central server is the buyer, and data owners
are reversely considered as the sellers to trade the use of multiple resources by a bid to
reflect the minimum acceptable payment once chosen as a winner. However, a recent
work [5] selected data owners only by their claimed data quantity or privacy budget, but
neglected some key factors like data quality and device training time. Although other few
works [1,2,6] also measured data quality, they designed quality detection according to data
distribution similarity or aggregated reputations and thus cannot be applied to our scenario
directly. More importantly, they failed to choose data owners to achieve fast federated
learning. To facilitate model training, Peng et al. [7] also considered model convergency
speed, and they failed to achieve a satisfying training time guarantee.
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To address the above limitations simultaneously, it is nontrivial to design an efficient
incentive mechanism to select cost-effective data owners with high computing capability
under a limited budget. However, three key challenges have to be addressed. The primary
challenge is to quantify each data owner’s contribution before the current FL training round.
Wang et al. [1] measured data owners’ quality according to their claimed data amount,
privacy budget, and data distribution. Zhang et al. [2] aggregated weighted reputation
scores from multiple data requesters who ever selected them as a winner as these data
owner’s quality indicator. When the expected data distribution is unknown, or there are
still no other data requesters who ever recruited him, their solution cannot work in our
case. The next challenge is how to predict model training time. The CPU frequency cannot
usually reach the data owner’s claimed value due to the fluctuation in an actual working
environment. The actual low CPU frequency degrades the convergence time of the global
model. Thus, it is essential to predict each data owner’s actual CPU frequency used for FL
training. The last but not least challenge is how to prevent data owners from misreporting
their multiple-dimensional bids for higher profit. A strategic data owner probably submits
a false bid to manipulate the market, thus leading to the failure of the FL process.

In response to the above challenges, we propose a quality-aware incentive mechanism,
named QuoTa, for fast federated learning. It motivates data owners with high data quality,
high computing capability, and low cost to participate in FL training. In particular, we
first design a quality detection module to choose data owners with both large contribution
and marginal contribution for the global model. Then, QuoTa exploited a training time
prediction module to estimate each data owner’s computing capability at the current round,
in order to achieve faster convergence. Combined with these two modules, QuoTa propose
an efficient data owner selection and payment strategy to achieve all desired economic
properties.

We highlight main contributions as follows:

• We design a quality-aware incentive mechanism to achieve fast-federated learning.
To the best of our knowledge, QuoTa is the first work to take data quality and model
training time prediction into consideration.

• To mitigate negative impacts on global model accuracy by low-quality data owners,
we propose a model quality detection module to update their quality indicator and
eliminate malicious data owners. Moreover, to predict each data owner’s actual
training time, we propose reinforcement learning-based methods to estimate their
actual CPU frequency at the current round, in order to achieve faster convergence.

• Through extensive evaluations and rigorous theoretical analysis, QuoTa improves
model accuracy over the state-of-the-art and achieves all desired economic properties
like individual rationality, truthfulness, and budget balance.

2. Related Work

Federated learning [8] was first proposed by Google in 2016, based on the new
paradigm of data immobilization but model moving, which effectively guarantees data
privacy of edge data owners. For distributed computing, different data distributions will
greatly affect model aggregation. McMahan et al. [9] subsequently proposed a FedAvg
algorithm with better robustness to improve the model aggregation effect by randomly
selecting and averaging the aggregation method for non-Independent Identically Distribu-
tion (non-IID) data in federated learning. In addition, Zhao et al. [10] proposed a method
to share a small portion of training data through global sharing and the definition of
weight scatter, which refers to the distribution deviation of local model weights towards
the local data due to the differences in the distribution of training data. To counteract
this weight deviation, Wang et al. [11] proposed a reinforcement learning-based control
framework FAVOR, which is realized by intelligently selecting data owner sequences in
each communication round, with the benefit of accelerating model convergence.

Similar to the barrel effect, the convergence speed of global model in federated learning
is greatly determined by the data owner with the slowest training time. Improper data



Appl. Sci. 2024, 14, 833 3 of 18

owner selection will greatly increase the global aggregation time. Chai et al. [12] proposed
a data owner selection strategy based on dividing the training time hierarchy to cope with
the ’slow’ participants. To maximize the convergence speed of global model, Peng et al. [7]
ensured holding a saturated amount of training data while minimizing the total energy
consumption of the participant. Similarly, Lee et al. [13] proposed a Data Distribution
Aware Online data owner Selection (DOCS) algorithm to minimize the convergence time
while ensuring high learning accuracy. Different from the above work, considering the
increasingly powerful mobile processors, the main factor influencing the data owner’s
training speed is the CPU frequency. In practice, the frequency of model training fluctuates
so that it cannot reach the rated value. Our work proposes a training time prediction
module to solve the above problem.

To cope with possible backdoor attacks, gradient attacks, and model poisoning attacks
in federated learning, Fang et al. [14] first systematically investigated the impact of localized
model poisoning attacks on federated learning. Then, Zhang et al. [15] proposed the
FLDetector method to detect malicious data owners by comparing the consistency of data
owners’ model updates over multiple iterations through the observed differences in model
updates of the attacked model. To prevent attacks, Gupta et al. [16] proposed MUD-HoG, a
malicious data owner attack defense algorithm based on the long-short history gradient,
which can differentially treat detected malicious and low-reputation data owners and
identify whether there was a targeted attack from malicious data owners. Jebreel et al. [17]
proposed a lightweight protocol that allows participants to privately exchange and mix
their updated encrypted fragments, achieving client-side privacy protection, and designed
a reputation-based defense measure to achieve security.

Proper incentives can motivate data owners to actively participate in model training in
a federated system. Kang et al. [4] improved the incentive effect for highly reputable mobile
devices with high-quality data by effectively combining reputation and contract theory,
whereas Khan et al. [18] introduced the Stackelberg game to participate in the incentives.
Liu et al. [19] measured the marginal contribution based on the data owner’s local model.
However, the existing scenarios cannot satisfy the case where the data owner’s cost is
unknown, and, once the payment is lower than the expected, the data owner’s motivation
will be greatly undermined. Based on this, Zeng et al. [3] proposed an incentive mechanism
FMore with multi-dimensional procurement auctions with K winners for federated learning.
They exploited Nash equilibrium strategies for edge nodes and achieved data owner
payment guarantee and maximization of aggregation utility. Ying et al. [20] combined
differential privacy algorithms with reverse auctions to ensure the authenticity of the
bids with a security guarantee. Unfortunately, it is possible that malicious data owners
participated in the model training while their resources did not match the claimed quality.
Zhang et al. [2] then added model quality detection to the reverse auction and a reputation
management mechanism that combined the blockchain to store data owners’ reputations.
Domingo et al. [21] proposed a decentralized computing protocol based on common utility,
incentivizing nodes to correctly perform computing tasks through a reputation system.
However, most of the existing federated learning and auction mechanisms do not take into
account the scenario where data owners lie about resource quality, use unclaimed resources
for model training, and even malicious data owners may destroy the aggregation of the
global model. To address this problem, we will propose a model quality detection module
and update the reputation value of the data owner in real-time based on the detection
results in the previous communication round.

Existing works have provided certain solutions to the problems of aggregation impact
due to non-independent and homogeneous distribution of data, defense against malicious
attacks, and federated optimization. In this paper, we will combine the above problems and
propose a comprehensive data owner selection strategy that guarantees high accuracy and
fast convergence time, motivates data owner participation based on the multi-dimensional
reverse auction mechanism, and ensures high efficiency for the FL system.
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3. System Model and Problem Formulation

In this paper, we consider QuoTa consists of N = {1, 2, . . . , N} data owners and a
server platform(due to privacy concerns, only data parameters will be sent to the platform
rather than raw data from data owners. Moreover, the attack for data parameters is not
considered in this paper, and belongs to our future work). The platform selects data owners
to participate in FL training based on their quality indicators and estimated training time.
As data owners’ computing or communication resources have to be compromised once
they are chosen to participate in FL training, they have to be compensated reasonably.
Without loss of generality, we adopt a multi-dimensional reverse auction to incentivize
data owners’ participation.

Once a new data owner arrives, he must first register their personal information (the
information includes their personal account and hardware information of devices (such
as rated CPU frequency, etc.), and it will not change until the whole FL training ends.)
on the platform. Before each FL training round begins, the server will first publish task
specifications to each data owner, which mainly contain related data specifications, data
amounts, required CPU frequencies, etc. Then, the data owner makes a bid according to
their current spare resources. In addition, we consider there are probably malicious data
owners (without loss of generality, we only consider the multi-label flipping attack in this
paper, where all their data labels in the whole datasets will be flipped uniformly from one
class to another for each malicious data owner. The single label-flippling attack is beyond
the scope of this paper, and belongs to our future work.) who deliberately hamper global
model accuracy, and thus they have to be eliminated. Another concern is that we consider
that data owners with lower computing capabilities will affect the convergence speed of
the model, and the CPU frequency usually fluctuates, making it impossible to achieve
the claimed rated value. Thus, some data owners with lower actual computing capability
should also be removed.

3.1. QuoTa Framework

Different from existing work, QuoTa is equipped with both a quality detection module
and a CPU frequency prediction module to mitigate the potential impact of malicious
data owners and CPU frequency fluctuations on model convergence, respectively. The
framework of QuoTa is given in Figure 1, as follows.

• Step 1: The platform server broadcasts task specifications to each data owner, including
(1) Data specifications: required for model training, such as pictures of cars, dogs, cats,
birds, etc. Although the data provided by data owners are usually non-IID in a real
scenario, the platform wants to find data owners whose data are equally distributed as
far as possible for higher model accuracy (In general, the higher the degree of non-IID,
the worse the quality of local model. Therefore, in model quality detection, for data
owners with a high degree of non-IID, we will punish them and reduce their weight in
model aggregation. More details will be shown in Section 4.1). (2) The bidding format
that the data owner should submit to the server: the data owner’s quotation, the data
amount, and the rated CPU frequency. Note that the rated CPU frequency is known at
the time of registration.

• Step 2: Each data owner submits a bid based on the bidding format and their spare
resources. The bid submitted by a data owner i is: Bi = {bi, di, f rei}, where bi is
their claimed cost including computing and communication cost, di is their own data
amount, and f rei is their claimed rated CPU frequency.

• Step 3: Based on the received bidding information, the server selects winning a data
owner’s set within a limited budget, Bt, based on their current reputation value and es-
timated CPU frequency fi and then delivers the global model to selected data owners.

• Step 4: Each selected data owner uses its local resources to train the local model.
• Step 5: Each selected data owner uploads its local model parameter to the server.
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• Step 6: The server performs model quality detection on the uploaded local model,
updates each data owner’s reputation value, and uses reinforcement learning methods
to estimate the CPU frequency of each data owner.

• Step 7: The server assigns different weights to different local models based on each
data owner’s quality indicator and then aggregates them into a global model.

• Step 8: The server pays reasonable monetary payment pi(B) to each selected data
owner i.

Figure 1. Framework of the proposed incentive mechanism QuoTa.

Let ci denote each data owner’s real cost. Thus, their utility is defined as ui = pi(B)− ci.
The main notations are shown in Table 1. Next, we introduce data amount model and
computing capability model, which affect the global model accuracy and model convergence
time, respectively.

Table 1. Key Notations.

Notation Description

dt
i The amount of data bid by data owner i at round t

xt
i Whether data owner i is selected at round t

bt
i Data owner i’s bid price at round t

Bt Budget at round t
Dt The maximum data amount that the server can select within the budget at round t
f t
i CPU frequency of data owner i at round t

Ct
i The computing capability of data owner i at round t

GAt Global model accuracy at round t
LAt

i Local model accuracy for data owner i at round t
GAt
−i Global model accuracy after removing data owner i

St The set of selected data owners at round t
Qt The maximum resource quality that the server can select within the budget at round t
rept

i The direct reputation of data owner i at round t
Rept

i The overall reputation of data owner i in previous rounds t

3.2. Data Amount Model

Inspired by previous work [22], we find the data amount in bidding information is
one significant factor for model accuracy, assuming that each data owner reports their data
amount truthfully. In particular, when the total amount D of training data in the federated
system is larger, the global model accuracy GA is higher. In addition, more training data
di provided by each individual data owner i would produce a higher aggregated global
model accuracy. Thus, to obtain a higher global model accuracy, the server tries to select
the data owner set with both larger local data amount of data owners and a larger total
data amount with a limited budget, B. However, these two goals may not be achieved
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simultaneously. The main idea in this paper is to choose data owners with as a large local
data amount as possible while the total amount of training data reaches a given threshold.
More details will be shown in Section 3.4.

3.3. Computing Capability Model

In consideration of high computing capability of the server, the model convergence
time usually depends on the data owner with the lowest computing capability in the FL
system. In order to quantify each data owner’s training speed, computing capability Ci is
defined as the estimated CPU frequency fi divided by the data amount di in Formula (1):

Ci =
fi
di

. (1)

In order to ensure acceptable convergence time of the FL system, we restrict data
owners with slower training speeds from participating in model training. Specifically, we
set a computing capability threshold below which data owners will not be selected, in
order to prevent them from slowing down model convergence time. Assuming that most
data owners in the FL system have fair computing capability, the threshold can be set by a
heuristic approach. For example, we sort all data owners’ computing capability values in
the decreasing order then take the k-th value in the sequence as the threshold: Clow.

The real CPU frequency for model training may fluctuate in a long period due to
several factors, which cannot usually reach the claimed rated value. The possible reason is
a too high CPU temperature or other concurrent program process. Thus, how to predict the
real CPU frequency is one important problem. In consideration of low privacy sensitivity
of CPU frequency, in this paper, a CPU cycle meter is implanted on each data owner’s
device, in order to detect their real required number of CPU cycle for training one local
data sample [7], which is denoted as cyclei. Thus, the required training time for all local
training data are represented as T_loci = (cyclei ∗ di)/ f̂i, where di is local data volume,
and f̂i is their actual CPU frequency. Thus, once the data owner i completes model training
at round t, the least number of CPU cycles cyclet

i and local training time Tt_loci at round t
can be measured. Then, their real CPU frequency at this round is computed as:

f̂ t
i =

cyclet
i ∗ di

Tt_loci
. (2)

However, according to the above Equation (2), we can only compute the value f̂ t
i until

the round t ends, which cannot thus be predicted in advance. Consequently, we first use the
average CPU frequency f̄ t

i in the previous t rounds to reflect the expected CPU frequency
after the round t ends. Thus, the estimated CPU frequency f t

i at round t is computed as:

f t
i = f̄ t

i =
∑t

τ=0 f̂ τ
i ∗ xτ

i
nt

i
(3)

nt
i =

t

∑
τ=0

xt
i , (4)

where nt
i represents the number of times the data owner i was selected in the previous t

rounds. By exploiting the above expected CPU frequency, we measure each data owner’s
computing capability as an important indicator of data owner selection in order to achieve
faster model convergence. Although the claimed CPU frequency in bidding information
is no longer used for a selection indicator once the real CPU frequency is computed after
several rounds, it plays a part in winner selection at first. More details will be shown in
Section 4.2.
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3.4. Problem Formulation

As mentioned above, on the one hand, to guarantee a high global model accuracy, we
select winning data owners with large claimed data volume in bidding information. On
the other hand, to obtain faster model convergence time, we choose them according to data
owners’ estimated computing capability.

In this paper, we aim at designing a quality-aware incentive mechanism for achieving
fast federated learning. Our objective is to maximize total data volume of selected data
owners for any round t with limited budget and computing capability constraint, as shown
in Equation (5):

max
n

∑
i=1

dt
i ∗ xt

i (5)

s.t. xt
i ∈ {0, 1}, ∀i ∈ N (5a)
n

∑
i=1

bt
i ∗ xt

i ≤ Bt (5b)

Ct
i ∗ xt

i ≥ Clow, ∀i ∈ N , (5c)

where the constraint (5a) represents whether the data owner i is selected at round t, (5b)
is budget constraint, and (5c) means that any winning data owner should have the least
computing capability Clow.

In addition to the above objective function, we also need to select data owners with as
large local data volume as possible. Thus, the objective can be rewritten as follows:

min
n

∑
i=1

xt
i (6)

s.t. (5a)(5b) (6a)
n

∑
i=1

dt
i ∗ xt

i ≥ a ∗ Dt
i (6b)

Ct
i ∗ xt

i ≥ Clow, ∀i ∈ N , (6c)

where the total amount of selected data owners’ training data at round t should exceed
a given threshold, α ∗ Dt (the threshold value is set as a fraction of the objective function
value in Formula (5). Dt is the maximum total amount of selected data owners with a given
budget and computing capability constraint before round t starts. α ∈ (0, 1) is a given
parameter.) in (6b). The new objective function is to minimize the number of winning data
owners with the maximum total data amount constraint in (6b). The transformation of the
objective function is reasonable because we can guarantee each selected data owner with a
large local data volume by minimizing the number of winning data owners under a given
total amount of training data.

By solving the above optimization problem, we achieve a good balance between model
accuracy and convergence time. In addition to that, the proposed incentive mechanism
should also achieve the following properties:

• Budget Balance: The winning data owners’ total payment pi(B) should not exceed
the monetary budget Bt, i.e., ∑i pi(B) ≤ Bt.

• Truthfulness: Each data owner cannot obtain a higher utility by misreporting a false
bid B̃i, i.e., u(Bi, B−i) ≥ u(B̃i, B −i), where Bi = {bi, di, f rei} is their true user bid, B̃i
is the false one, and B−i is the set of bids except Bi.

• Individual Rationality: Any data owner i has non-negative utility for the truthful bid,
i.e., ui(B) ≥ 0.
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4. Design of QuoTa

The proposed mechanism QuoTa consists of four key components, i.e., model quality
detection, model training time prediction, data owner selection, and payment decision. In
particular, model quality detection and training time prediction help select the winning
data owner set.

4.1. Model Quality Detection

Data owners may use unclaimed data resources for model training and even make
a malicious attack, thus affecting global model aggregation. However, due to privacy
concerns, the server cannot access each data owner’s original data and thus fails to verify
whether he uses the claimed training data. Instead, only the local model will be sent to the
server after each FL round ends. Thus, we designed a model quality detection method for
quantifying the quality of local models uploaded by data owners.

After the t-th round of communication ends, the server will use the local test set
to perform accuracy detection for the local model submitted by data owner i and use
Formula (7) to update the quality detection value for each data owner.

vt
i = [(GAt − LAt

i)− ϵt
1]− [(GAt − GAt

−i)− ϵt
2], (7)

where GAt − LAt
i measures the difference between the data owner i’s local model accuracy

LAt
i and the global model accuracy GAt. The smaller above difference reflects their larger

contribution for FL aggregation. In addition to that, GAt − GAt
−i means the difference

between two global model accuracy values with or without these data owner i, which
quantifies their marginal distribution. Conversely, the smaller difference means their
smaller marginal distribution. Thus, the former difference minus the latter one is used to
quantify the whole difference in terms of both direct and marginal distribution.

Moreover, we compare the above two differences with two well-designed threshold
values, i.e., ϵt

1 and ϵt
2, respectively. Specifically, the thresholds ϵt

1 and ϵt
2 are determined by

Formulas (8) and (9), which take the average of all the differences.

ϵt
1 =

∑i∈St(GAt − LAt
i)

|St| (8)

ϵt
2 =

∑i∈St(GAt − GAt
−i)

|St| (9)

Consequently, the above quality detection value can be used for quantifying each data
owner’s direct quality at current round t. When vt

i is positive, it means this data owner
performs poorly at round t, and we subtract a penalty term from the previous compre-
hensive reputation value Rept−1

i in Formula (10). On the contrary, when vt
i is negative, it

means they perform better, and thus we exploit a reward item to be added to Rept−1
i in

Formula (11).

rept
i = Rept−1

i − vt
i (10)

rept
i = Rept−1

i +
(−vt

i)

2
, (11)

where Rept−1
i represents their comprehensive reputation value of the data owner i in

the past t − 1 rounds of communication, and rept
i means the direct reputation value at

current t-th round. Specifically, Rept
i is updated according to Formula (12) (Here, we

exploit an exponential moving average of data owner i’s reputation value to update their
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comprehensive reputation value considering that the reputation value closer to current
round reflects their real model quality better) .

Rept
i =

{
Rept−1

i , if xt
i = 0

λ ∗ Rept−1
i + (1− λ) ∗ rept

i , if xt
i = 1

(12)

where Rept
i is the exponential moving average about rept

i within [1, t], and λ is a decay
factor. When the data owner is selected at this round, their comprehensive reputation will
be updated. Otherwise, it remains unchanged.

When aggregating local models into global models, we compute the aggregated weight
at

i of each data owner by Formula (13):

at
i =

LAt
i

∑i∈St(LAt
i)

, (13)

where LAt
i is their local model accuracy at round t. Compared with FedAvg, our approach

is more effective at down-weighting malicious data owners and giving higher weight to
benign data owners. In this way, the global model obtained by our aggregation strategy
performs better than FedAvg.

4.2. Model Training Time Prediction

In real scenarios, the CPU frequency may fluctuate around the rated value due to
multiple factors, such as device CPU scheduling and multiprocess running. According
to the computing capability model in Section 3.3, the average CPU frequency in previous
rounds can be considered as an indicator of its computing capability at the next round. The
heuristic approach based on the above estimate would select data owner with the highest
estimated value, but the above intuitive method possibly falls into a local optimum. When
some data owners are barely selected as winners, the average estimate would fluctuate
within a large confidence interval, thus failing to reflect their real CPU frequency. Thus, we
design a model training time prediction algorithm to estimate each data owner’s actual
CPU frequency more accurately.

To obtain a more accurate CPU frequency prediction for model training, we adopt the
Upper Confidence Bound (UCB) algorithm [23] to update f̃ t

i :

f̃ t
i = f̄ t

i +

√
2 ln t

nt
i

, (14)

where f̄ t
i is the average CPU frequency in previous t rounds, and nt

i is the total amount of
being selected in these t rounds, as the exploitation part, indicating that data owners with
larger average CPU frequencies have higher probability of being selected. However, to
avoid choosing the same winning data owners repeatedly who have higher initial frequency
values, we also adopt the exploration part

√
2 ln t

nt
i

, i.e., we give more chances to select other

data owners who are hardly selected in the past. For this reason, their estimated CPU
frequency can be obtained by a more reliable confidence interval.

Before new round begins, the platform will use our prediction approach to calculate
each data owner’s estimated CPU frequency and then update their computing capability
C̃t

i by Formula (15):

C̃t
i =

f̃ t
i

dt
i

(15)

4.3. Data Owner Selection and Payment

As mentioned above, when making data owner selection, we should fully consider the
possible existence of malicious data owners in the system, as well as the problem of CPU
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frequency fluctuations in reality. In each communication round, we will first conduct model
quality detection on the uploaded local model, update each data owner’s reputation value
based on quality detection value, and further punish data owners with poor performance.
In addition, we then update each data owner’s estimated CPU frequency in the next round
according to the UCB algorithm. Combined with the above two components, we design an
efficient data owner selection algorithm to achieve a better global model accuracy with less
model training time.

First, we reformulate our optimization problem as follows:

max
n

∑
i=1

(dt
i ∗ Rept−1

i ) ∗ xt
i (16)

s.t. (5a)(5b) (16a)

Rept−1
i ∗ xt

i ≥ Replow, ∀i ∈ N (16b)

C̃t
i ∗ xt

i ≥ C̃low, ∀i ∈ N (16c)

where we use dt
i ∗ Rept−1

i to replace the previous objective function dt
i in formula (5), and

Rept−1
i is a weighted factor. In (16b), for data owners with too low reputation values, we

will restrict their participation in model training by setting a threshold Replow (we adopt a
similar heuristic approach to determine Replow with Clow in Section 3.3). By (16c), we use
the computing capability value estimated by the UCB algorithm to limit the data owner
with low computing capability.

As is similar to the problem reformulation (6) in Section 3.4, the server selects winning
data owners that guarantee both global model accuracy and convergence time within the
limited budget as follows:

min
n

∑
i=1

xt
i (17)

s.t. (5a)(5b)(16b)(16c) (17a)
n

∑
i=1

(dt
i ∗ Rept−1

i ) ∗ xt
i ≥ Qt

i (17b)

where the constraint (17b) sets the threshold value Qt
i as the lower upper of the objective

function (16). We get the optimal data owner selection scheme by solving the above
optimization problem according to the OPT tool.

Algorithm 1 describes the running process of the QuoTa mechanism. In each round of
communication, the platform server first computes the optimal data owner set to participate
in model training by the objective functions (16) and (17). After receiving the local model
parameter uploaded by each winner i ∈ S t, the server first performs model quality detec-
tion to compute their quality detection value vt

i and then calculates their direct reputation
value rept

i based on vt
i . After that, their comprehensive reputation value Rept

i is updated by
their direct reputation and selection according to line 9–11 before round t ends. In addition,
the server predicts each data owner’s computing capability C̃t

i based on their average CPU
frequency f̄ t

i by online exploration-exploitation algorithm in lines 13–15. After that, the
global model parameter is aggregated by line 16. Moreover, each data owner is paid a
critical payment, pi [24]. For each winning data owner i ∈ S t, the server first excludes them
from the whole candidate data owners N ′ , then tries to find an alternative one i∗ based on
N ′ , and finally uses the claimed cost of i∗ to make a critical payment to them.
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Algorithm 1: QuoTa Mechanism

Input: Budget Bt at each round t, set of candidate data owners N , each data
owner’s bid profile Bi = {bi, di, f rei}, initially estimated CPU frequency f̃ 0

i ,
initial comprehensive reputation value Rep0

i , initial global model w0.
Output: Set S = {S1,S2, . . .} of selected data owners at each round, their

payment vector p.
1 p← 0, S← ∅⃗;
2 for communication round t = 1,2,. . . do
3 // Data Owner Selection ;
4 compute S t by Formulas (16) and (17);
5 deliver global model wt−1 to i ∈ S t;
6 for i ∈ S t in parallel do
7 wt

k ← local model training by wt−1;
8 // Model Quality Detection;
9 calculate the detection value

vt
i = [(GAt − LAt

i)− ϵt
1]− [(GAt − GAt

−i)− ϵt
2];

10 calculated direct reputation rept
i by (10), (11) ;

11 update comprehensive reputation Rept
i by Formula (12);

12 calculate the aggregated weight at
i =

LAt
i

∑i∈St (LAt
i )

;

13 //Model Training Time Prediction;

14 calculate average CPU frequency f̄ t
i =

∑t
τ=0 f̂ τ

i ∗ xτ
i

nt
i

;

15 update estimated computing capability C̃t
i by Formulas (14) and (15);

16 aggregate global model wt = at
i ∑
|S t |
k=1 wt

k;
17 //Payment Decision;
18 for i ∈ S t, N ′ ← N do
19 N ′ ← N ′/ i;
20 Find an alternative data owner i∗ with the smallest claimed cost bi∗ ;

21 pi = min( Bt

|S t | , bi∗);

22 return (S, p);

Theorem 1. The proposed QuoTa mechanism satisfies truthfulness, individual rationality, and
budget balance.

Proof. We first prove that QuoTa is truthful. A winner with a smaller claimed bid is still
selected because their bid is yet smallest among all candidate data owners. Hence, we show
the monotonicity. In addition, according to line 21, when they claim a smaller bid b̂i, they
still obtain the unchanged payment because the received payment is only related to the
alternative data owner’s bid, and thus their utility is never improved. Conversely, when
he reports a higher bid, b̂i ≥ bi∗ , another data owner will replace them as the new winner.
Hence, their utility becomes zero. To this end, he has no incentive to misreport their cost.

Similarly, when they report a larger local data amount d̂i ≥ di, they would still be
selected and obtain the same payment. But, a smaller amount makes them lose. For
f rei, any misreporting about it would never improve their utility. Thus, QuoTa achieves
truthfulness on multiple-dimensional claimed resources.

For any data owner who loses, their utility is zero. Additionally, for any winning
data owner i ∈ S t, their payment is pi = min( Bt

|S t | , bi∗) ≥ bi = ci in terms of truthfulness.
Therefore, each data owner is individual rational.

Finally, since the total payment is ∑i pi = |S t|min( Bt

|S t | , bi∗) ≤ Bt, QuoTa also achieves
budget balance.
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5. Evaluation

In this section, the performance of QuoTa will be demonstrated through simulation
experiments to verify that the algorithm performs well in both model accuracy and model
convergence time.

5.1. Experimental Settings

To effectively evaluate the QuoTa mechanism, we conducted simulation experiments
on a laptop with an Intel® Core™ i7-12700H CPU, NVIDIA GeForce RTX 3060 Laptop GPU,
and 16G RAM with WIN11 operating system and built a federated learning framework
based on PyTorch deep learning framework.

We use the CIFAR10 and FMNIST datasets and the ResNet18 and LeNet5 models to
simulate the federated learning task. We cut the CIFAR10 and FMNIST training sets into
20 sub-datasets of 5*1000, 5*2000, 5*3000, and 5*4000 and 5*500, 5*1000, 5*1500, and 5*2000
to simulate 20 data owners in the federated system. Subsequently, label mislabeling is used
to simulate malicious data owners, i.e., the data output labels in the dataset are maliciously
labeled as other values. For the simulation of CPU frequency, we use the numerical values
to represent the rated CPU frequency and the real CPU frequency of the data owner’s
device. For example, the rated CPU frequency and the real CPU frequency of a data
owner can be represented as 5 GHz and 4.2 GHz, respectively. We use the mathematical
expectation of the rated CPU frequency based a normal distribution of variance of 0.2 to
simulate the CPU frequency fluctuation.

For the time consumption calculation of the federated system, as the server’s arithmetic
power is stronger, the time consumption is negligible. Then, the time consumption of the
federated system mainly depends on the slowest participating data owner, where the
stronger the data owner’s computing capability per unit (CPU frequency/data amount),
the shorter the time consumption is. We use a linear function to map the relationship
between the computing capability and the time consumption and then use the longest
data owner’s time consumption as the time consumption of training round. Additionally,
we take 80 percent of a data owner’s computing capability as the computing capability
threshold.

5.2. Comparison Algorithm

1. QuoTa-NT: Remove the computing capability constraints of this algorithm, i.e., the
time constraint is not considered when selecting data owners.

2. RRAFL-Variant: As the RRAFL algorithm [2] cannot be directly applied to our sce-
nario, we use RRAFL-Variant as a variant version, which uses the same selection
method in terms of reputation/quotation, the model detection method in [2] to detect
the local model, and the detected values to update the reputation value of each worker.
But, it never considers the training time constraint.

3. RANDOM: The platform randomly selects data owners to participate in training
within the budget.

4. SCORE: The bid of each data owner is scored as: scorei = 0.7× di + 0.3× Ci − bi,
where each term like di is normalized, and then the set of data owners with the highest
scores are selected within the budget. We add the similar model quality detection
method (below a certain reputation threshold can no longer be selected) and the
calculation of computing capability using estimated CPU frequency.

5. GREEDY: The server selects the data owner with the lowest bid within the budget
and never adopts our model quality detection method.

5.3. Model Accuracy and Model Convergence Time

Figure 2a,b depicts the scenario of training the ResNet18 model using the CIFAR10
dataset, where the system has 3*1000, 3*2000, 3*3000, and 3*4000 samples for a total of
12 normal data owners and 2*1000, 2*2000, 2*3000, and 2*4000 for a total of 8 malicious data
owners, who are mislabeled with data labels.
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Figure 2a represents the convergence accuracy achieved by the global model after
50 rounds of communication, and Figure 2b represents the total time taken to complete
the model training after 50 rounds of communication. Similarly, as can be seen from
Figure 2a, the QuoTa and QuoTa-NT algorithms both achieve better performance in terms
of model accuracy. Due to the limitation of computing capability, some workers with large
amounts of training data but poor computing capability may not be selected, so the final
convergence accuracy of QuoTa may be slightly lower than that of QuoTa-NT. But, it can
be seen from Figure 2b that QuoTa is significantly lower than QuoTa-NT in terms of final
time consumption. The RRAFL-variant algorithm ends up with a significantly lower model
accuracy than QuoTa and is a bit slower to converge. The main reason is that the data
owner selection considers high reputation value per bid price as an indicator. Hence, if
a low-reputation data owner makes a relatively low bid, it still has a high probability of
being selected, thus affecting the model accuracy.

Figure 2. The global accuracy and time for ResNet18 with CIFAR-10.
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As the RRAFL-variant algorithm does not take into account model training time by
device heterogeneity, it takes longer time to achieve model convergence. The RANDOM
algorithm possibly selects malicious data owners in each round of communication due to
random selection, so the global model cannot converge.

Figure 3a,b depict the scenario of training the LeNet5 model using the FMNIST dataset,
where there are 3*500, 3*1000, 3*1500, and 3*2000 samples for in total 12 normal worker data
owners in the system, as well as 2*500, 2*1000, 2*1500, and 2*2000 samples for 8 malicious
worker data owners, who are mislabeled with all data labels.

Figure 3. The global accuracy and time for LeNet5 with FMNIST.

Figure 3a represents the convergence accuracy achieved by the global model after
30 rounds of communication, and Figure 3b represents the total time taken to complete
the model training after 30 rounds of communication. As is similar to Figure 2a, QuoTa,
QuoTa-NT algorithms have achieved better performance in terms of model accuracy. Due
to the relatively simple structure of the LeNet5 model, the amount of data has less impact
on the accuracy, so the two algorithms converge to the same final convergence accuracy,
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and QuoTa is still dominant in convergence time. The RRAFL-variant algorithm is still
lower than QuoTa in terms of final model accuracy and has longer convergence time. The
global model of the RANDOM algorithm has also failed to converge. And, it takes near
time when performing the same rounds of communication with RRAFL-variant.

5.4. Impact of Malicious Data Owners on Accuracy

In general, the number of malicious data owners in the system has a great impact on
the global model accuracy. Figure 4 depicts the accuracy that the QuoTa algorithm achieves
in 50 rounds of communication for the global model when the percentage of malicious data
owners in the system is 20%, 40%, and 60%. It can be seen that the QuoTa algorithm has
good robustness to different percentages of malicious data owners. The convergence speed
and convergence accuracy of the global model decrease when the malicious data owners
account for a high percentage. Fortunately, the decrease is within an acceptable range for
the proposed QuoTa. Overall, our algorithm can effectively resist the influence of malicious
data owners.
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Figure 4. The impact of different numbers of malicious data owners on global accuracy.

5.5. Comparison of Data Owner Selection Schemes

The QuoTa framework can prioritize a winning data owner set that has a large local
data volume for a single worker and a large total amount of data in the federated system
and directly set a computing capability threshold for the selection of data owners. We exper-
imentally demonstrate that this selection scheme performs well in terms of model accuracy
and convergence time. We mainly compare the three algorithms, SCORE, GREEDY, and
RRAFL-Variant. Except for different data owner selection indicators, SCORE and GREEDY
adopt the same model quality detection, reputation value calculation, and computing
capability estimation.

From Figure 5a,b, we can see that QuoTa can converge to a higher accuracy faster with
the same number of communication rounds and has a significant advantage in convergence
time. The SCORE algorithm calculates the amount of data, computing capability, and the
bid price into a single score, which allows for a more effective balance between model
accuracy and convergence time. But, if the bid price of a data owner with the average
model quality is low enough, it still has a higher probability of being selected, and thus it
is inferior to QuoTa algorithm in terms of final global model performance. Similarly, if a
data owner’s bid price is low enough, the RRAFL-variant algorithm may still select them
to participate in the model training even if its reputation value is low. Additionally, the
RRAFL-Variant does not take training time into account, so it performs poorly in terms of
model convergence. The GREEDY algorithm prioritizes data owners with the lower bid
price. As data owners with average model quality may have a low bid price, the GREEDY
algorithm performs moderately in terms of the final model accuracy. In consideration of
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shorter convergence time than the RRAFL-variant algorithm, the reason lies in the fact that
many data owners with less data volume have lower bid prices, thus producing shorter
training time. Consequently, QuoTa performs better than other baseline algorithms in terms
of global model accuracy and convergence time.

Figure 5. The impact of different selection schemes on global accuracy and time.

6. Conclusions

In this paper, we proposed a quality-aware incentive mechanism, named QuoTa, for
fast federated learning. Specifically, we effectively quantified the data owner’s contribution
to the FL training and proposed a model quality detection module to solve the problem
of data owners using unclaimed resources to train models or even maliciously destroy
global model aggregation. To solve the problem that CPU frequency fluctuation could
not reach the standard value during model training in practice, we introduced the model
training time prediction module. We conducted extensive evaluations using the ResNet18
and LeNet5 models as well as the CIFAR10 and FMNIST data sets. The results showed that
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the QuoTa mechanism performed well in terms of model accuracy and convergence time,
effectively ensuring the effectiveness of the FL system.

7. Future Work

In our current work, we have not considered volatile data owners whose federated
learning environments are unstable. For example, some data owners cannot upload lo-
cal model parameters in time before a given training time deadline because their CPU
frequency drops dramatically. To adaptively adjust to varying conditions, we can use a
probability allocation indicator to record their historical success allocation. By combining
it with the training time prediction module, we probably obtain a more accurate training
time estimation. In addition, for model quality detection, we can further take the degree
of heterogeneity of the data distribution into consideration, which is also regarded as a
selection indicator for winning data owners. Thus, the quality detection module is further
enhanced. It is worth noting that, in this paper, we do not consider the dynamic arrival
of data owners and the fairness of data owner selection, which will be further studied in
subsequent work.
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