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Abstract: Image—text matching is a research hotspot in the multimodal task of integrating image
and text processing. In order to solve the difficult problem of associating image and text data in the
multimodal knowledge graph of Thangka, we propose an image and text matching method based
on the Visual Semantic Embedding (VSE) model. The method introduces an adaptive pooling layer
to improve the feature extraction capability of semantic associations between Thangka images and
texts. We also improved the traditional Transformer architecture by combining bidirectional residual
concatenation and mask attention mechanisms to improve the stability of the matching process and
the ability to extract semantic information. In addition, we designed a multi-granularity tag alignment
module that maps global and local features of images and text into a common coding space, leveraging
inter- and intra-modal semantic associations to improve image and text accuracy. Comparative
experiments on the Thangka dataset show that our method achieves significant improvements
compared to the VSE baseline method. Specifically, our method improves the recall by 9.4% and 10.5%
for image-matching text and text-matching images, respectively. Furthermore, without any large-scale
corpus pre-training, our method outperforms all models without pre-training and outperforms two
out of four pre-trained models on the Flickr30k public dataset. Also, the execution efficiency of our
model is an order of magnitude higher than that of the pre-trained models, which highlights the
superior performance and efficiency of our model in the image-text matching task.

Keywords: Thangka; image-text matching; adaptive pooling layer; bidirectional residual connection;

masking attention mechanisms

1. Introduction

With the rapid development of multimedia and internet technologies, the form of
information dissemination has shifted from single modality to encompassing cross-media
data, including images, videos, texts, etc. The emergence of cross-media data has made
multimodal information processing a focus of research in both academia and industry. The
association and matching between images and texts are fundamental for tasks such as
image—-text generation, multimodal knowledge graph construction, and retrieval.

Early multimodal image—text matching methods predominantly utilized machine
learning techniques to construct models. For instance, Hotelling [1] proposed Canonical
Correlation Analysis (CCA) to measure the correlation and similarity between different
modalities by constructing a shared semantic space. These methods often required the
manual design of feature extractors and yielded suboptimal results when dealing with
complex image—text matching problems.

Deep learning approaches, leverage multi-layer neural networks to automatically
learn and extract features, eliminating the need for manual feature engineering and offering
greater flexibility and adaptability. Additionally, deep learning models possess powerful
representation capabilities, allowing them to capture complex relationships between images
and texts and achieve better performance in image-text matching tasks. Visual Semantic
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Embedding (VSE) [2] is a commonly used image—text matching method. It embeds images
and texts for efficient cross-modal retrieval, and typically has the following steps. The
image and text are extracted as features by separate visual and text encoders. These features
are then projected into a joint embedding space and pooled to form fixed-length vectors.
Then, the similarity calculation is utilized to measure the distance between instances and a
suitable target is chosen for optimization. For example, Lee [3] proposed the Stacked Cross
Attention Network (SCAN), which utilizes attention mechanisms to process features of
images and texts separately and compute potential relationships between corresponding
regions, achieving favorable results. However, this model overlooks potential semantic
relationships in the context. Zhang [4] introduced the Context-Aware Attention Network
(CAAN), which enhances the focus on potential local semantics in the context and effec-
tively aggregates contextual information, capturing deeper intra-modal correlations and
improving retrieval performance. Similarly, to enhance attention to semantic relationships,
Chen [5] proposed the Iterative Matching with Recurrent Attention Memory (IMRAM)
method, which iteratively updates cross-modal attention cores to explore fine-grained
correspondences between images and texts. However, there are still problems, such as
ignoring the relationship between text semantic features and insufficient acquisition of
correlation between modalities.

With the rise of large language models in the field of BERT [6] and NLP, various
large-scale pre-training models have appeared in the field of CV, which has also promoted
the development of visual-text cross-modal pre-training models. Their usual mode is,
first, pre-training on some set image and text tasks, and then fine-tuning on downstream
tasks. Thanks to the training of large-scale data, their performance on downstream tasks
far exceeds that of non-pre-trained models, and they have very good results in image and
text retrieval and matching. For example, Jiasen [7] proposed a BERT architecture to learn
the joint representation of images and text by integrating the feature extraction process,
and achieved good results. Li [8] proposed to use of object labels as anchors to align
image and language modalities in a shared semantic space. The model was pre-trained
on a public corpus of 6.5 million image-text pairs, including graphs. It has achieved good
results on multiple tasks, such as text matching. The multi-modal matching method based
on pre-trained models can effectively solve the limitations of manual feature extractor
design and the inability to handle complex image-text associations. However, it also has
some shortcomings, such as the large training dataset required for the model. As well as
problems such as long training cycles, low model efficiency, and lack of domain knowledge.

Thangka is an ancient Tibetan painting art form with rich color and complex back-
grounds, which has high aesthetic value and artistic quality. In addition, the Thangka
is known as the encyclopedia of Tibetan culture, and each Thangka image symbolizes
deep religious and cultural connotations. Thangka image and text matching are crucial for
bridging the semantic gap between images and text as well as achieving data intelligence
tasks such as multimodal fusion, relational reasoning, and content generation. Meanwhile,
due to the small amount of data and strong text-image correlation in the Thangka itself, the
existing image-matching methods are unable to solve the problem of image matching in
the Thangka domain better; so, a key unsolved problem is how to effectively extract image
and text features from Thangka and capture fine-grained global and local correlations for
image matching.

In order to solve the above challenges, this paper focuses on 30 kinds of Thangka
with different themes, and proposes a new image—text matching method based on the VSE
model, which combines adaptive feature aggregation and an improved Transformer [9].
This approach introduces three main improvements:

(1) The integration of adaptive pooling techniques in the model framework enhances
the feature extraction capability for semantic correlations between Thangka images
and texts.
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(2) The traditional Transformer architecture is improved by incorporating bidirectional
residual networks and masked attention mechanisms, increasing the stability of the
matching process and the representation capability of semantic information.

(3) A multi-granularity label modal alignment module is designed to map global and

local features of images and texts into a shared encoding space, fully exploring the
semantic correlations between modalities and within modalities, thereby enhancing
the precision of image-text matching.

2. Thangka Image-Text Matching Model

The proposed framework of the Thangka image—text matching model in this paper
is shown in Figure 1. It consists of four main components: the image feature extraction
module, the text feature extraction module, the encoder module, and the multi-granularity
alignment module.
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Figure 1. Model Framework Diagram.

For the imaging modality, considering the diverse target objects in Thangka images,
the small pixel blocks occupied by each object, and the existence of pixel adhesion among
different targets, we first use the top-down visual attention mechanism based on the Faster
R-CNN [10] model to extract the target regions in Thangka images. Then, in the process
of abstracting the feature matrix into feature vectors, adaptive pooling techniques are
introduced, allowing the model to automatically learn the weight determination process.
The subsequent visual and textual encoder modules learn and combine these features to
generate fixed-size embedding features, which better extract the local feature vectors of the
target objects in Thangka images and are represented as Ef, :{i1,ip,13,. .., 1y }; iy represents
the u-th feature dimension of the vector. The global features are extracted using the feature
extraction network of the trained Faster R-CNN, represented as C.

For the text modality, the given Thangka text is first converted into a vector representa-
tion. A pre-trained entity relation extraction model is used to extract (entity-relation-entity)
triplets from the Thangka text data, which are then merged into text. The merged text and
entity fragments are separately processed through a pre-trained bidirectional GRU [11]
model, which introduces adaptive pooling layers to extract text features while preserving
contextual semantic information as much as possible. This process yields local text feature
vectors containing contextual semantic structures, represented as Eg sttt b )
The global feature vector for the text is extracted using the feature extraction module,
represented as C'.

After extracting the global and local features from both the image and text modal-
ities, we use the encoder module to establish multi-granularity semantic associations
between the two modalities. The encoder adopts an improved Transformer network
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structure that combines bidirectional residuals and masked attention mechanisms. This
structure solves potential gradient vanishing and model collapse issues and focuses on
learning multi-granularity semantic information with similar structures between modali-
ties. It outputs multi-granularity feature representations that combine information from
different dimensions.

Finally, based on the obtained multi-granularity feature vectors, the modal alignment
module calculates the losses for minimizing the correlation of local corresponding region
features between positive samples, the correlation between regions and the whole, and
maximizing the correlation of local corresponding region features between negative sam-
ples. This ensures that the learned region features have good discriminability, thereby
guaranteeing the performance of Thangka image—text matching.

2.1. Thangka Image Information Feature Extraction Module

The Thangka image feature extraction module includes two parts: global features
and local features. Inspired by models like SCAN [2] and SGRAF [12], this paper adopts
a top-down visual attention mechanism based on the Faster R-CNN model to extract
the local features E} : {i1,ip,i3,...,iy} from the Thangka images. The global features
are obtained by extracting features using the trained feature extraction network of Faster
R-CNN, represented as C'.

The specific implementation process is as follows: Firstly, the target objects in the
Thangka image dataset are manually annotated and used to train a reliable and accurate
object detection model. Then, the trained object detection model is used to obtain visual
feature information and bounding box ranges of the Thangka images. Next, in the process of
abstracting the feature matrix into feature vectors, an adaptive pooling layer is introduced
to obtain local feature vectors with more key semantic information. At the same time,
the entire image is used as input to obtain the global feature information of the image to
enhance its semantic information. Finally, the feature attention information between each
region and other regions in the image is encoded, and a fully connected layer is used to
output the final image global feature vector C! and local feature vectors EL.

Considering the strong relevance and close entity mapping between Thangka images
and text, in order to further capture the correlation between image features and text
features, this paper, based on the work of Zhang [13], introduces an adaptive pooling layer
to associate the local fine-grained information of Thangka images and text features.

The adaptive pooling technique combines the learning results of both the token
layer and the embedding layer, allowing the model to automatically learn the weight
determination process. Meanwhile, regularization methods are used to ensure that the
abstract features of the image and text can be mapped to a similar space, so that the obtained
image and text features can capture more key semantic information. The calculation process
is shown in Figure 2.

Embedding
6 3 4 1 S 7 9 4 S 2 S 7
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Token | 2 [ 2 151210151 wigut —®cT2T3100 112 E le: 2.8
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Figure 2. Adaptive pooling module.

In the token layer, following the “sort-weighted sum” paradigm of the simple pooling
method, the feature matrix of the input matrix is first sorted along the embedding axis. Then,
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a fully connected layer is set up to learn how to automatically weight each weight vector.
In this way, the model can find the optimal combination of MeanPool and K-MaxPool in an
adaptive manner, as shown in Equation (1):

{Un ¥y = sort({tn}hls)

6= softmaX({Um}f\nAﬂWtok) 1)
M
ttOk = Z Gm * Um
m=1

Taking the blue row {tm}%:1 in Figure 2 as an example, the input matrix t is first sorted
along the embedding axis using the sort function to obtain the sorted row data {t,, }%:1.
After normalization, a fully connected layer is established to learn how to automatically
weigh each vector (brown rows in the matrix), resulting in the weight matrix 6,,. Then,
weighting is performed to obtain the pooled vector #"°f in the token layer.

Considering only the weights obtained from the token layer, which have a similar
distribution to MeanPool and K-MaxPool, a fully connected layer is also set up in the
embedding layer to learn how to automatically weight each weight vector. This is shown
in Equation (2).

pemb — % 8ii % tii Y]
P AU,
0 = clii : @
] = Zf\il etij ’

In the embedding layer pooling, each unsorted original vector ¢;; is separately com-
puted. The weight value for each vector is calculated using J;;, and then weighting is
performed to obtain the pooled vector " in the embedding layer.

The token and embedding vectors extract feature information in two dimensions. To
merge them, two hyperparameters wl and w2 are introduced. To avoid manually adjusting
these hyperparameters, we use a trainable linear layer to learn the parameters, as shown in
Equation (3):

ptotal _ o1 ytok T+ w2 gemb (3)

In the experiment, text features are first extracted using the adaptive pooling layer
described above, resulting in the text feature vector +/°'*. Then, using the trained pooling
layer weights 0 as the initial data for the adaptive pooling layer of the image, the adaptive
pooling layer can integrate the potential feature information of both text and image as
much as possible. Afterward, the token layer vector and embedding vector of the image are
computed through the same process and combined to obtain the image feature vector tf"ml .

2.2. Thangka Text Information Feature Extraction Module

The Thangka text feature extraction consists of two parts: global features and local
features. The local features E,Z : {t1,t2,t3,...,t,} of Thangka text are extracted using a
named entity recognition model. Then, the global feature vector CT is extracted from the
text using the feature extraction module of the model.

Extracting triplets from the Thangka text corpus is a complex task as a single sentence
often contains multiple triplets with overlapping entities. For example, the sentence “The
Buddha is the transliteration of the Sanskrit word “Buddha” and is commonly abbreviated
as “Budda” in English. There are other transliterations such as “Buddho”, “Buddhato”,
“Buddhata”, “Buddhota”, and “Buddhavacana”. Additionally, there are translated terms
like “Awakened One” and “Enlightened One” that represent the meaning of “Buddha”.
involves multiple entity relationships. There is a transliteration relationship between “Bud-
dha” and “Budda” in Sanskrit to Latin. The entities “Buddho, Buddhato, Buddhata, Bud-
dhota, Buddhavacana” are aliases of “Buddha”, and there are also translated relationships.
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To handle the complexity of overlapping entities and complex relationships in Thangka
texts, a sequence labeling approach, following the research method of Guo [14], is adopted
to annotate entities and relationships and obtain training data. Based on the annotated
data, a named entity recognition model based on Bert-BiLSTM-Crf [15] is used to extract
entity and relationship information from the text. The entity and relationship information
obtained from the named entity recognition model and reorganized and concatenated
into a triplet structure text. Word2Vec [16] word embedding model is used to represent
the text as word vector features. An adaptive pooling layer is introduced, and the word
vector features are fed into a bidirectional GRU [11] model to obtain contextual semantic
feature information.

2.3. Improved Transformer Encoding Module

Based on the work of Xie [17], this paper proposes an enhanced Transformer model as
an encoder for better establishing the correlation between Thangka images and text. The
Thangka images and text exhibit strong correlation and closely related entity mappings.
To address this, a modified Transformer model is constructed, incorporating a fusion of
bidirectional residual connections and a masked attention mechanism.

2.3.1. Improved Residual Structure

The traditional Transformer model typically uses residual structures for layer normal-
ization, as shown in Figure 3a with post-layer normalization (Post-LN) or in Figure 3b
with pre-layer normalization (Pre-LN). Two commonly used variants are the Post-LN and
Pre-LN transformers, which apply layer normalization after the output of each residual
block or before the input of each residual block, respectively. While both variants have their
advantages, they also have serious limitations: Post-LN leads to the gradient vanishing
problem, hindering the training of deep Transformers, while Pre-LN leads to the repre-
sentation collapse problem, limiting the model’s capacity. In this paper, we introduce the
Bidirectional Residual Connection [18], a novel Transformer architecture with Pre-Post-LN
(PPLN) that combines the connections from Post-LN and Pre-LN, inheriting their advan-
tages while avoiding their limitations. The residual is illustrated in Figure 3c. The vertical
lines on the left and right sides represent two residual connections, where the left side is
similar to the post-layer normalization module.

> o

Z
X
+»

<_I LN <_I—>+

—p( +
- P

(a)post-layer (b)pre-layer

izati <At bidirectional residual
normalization normalization (© residua

Figure 3. Residual structure of each type.

Assuming a Transformer network with N* residual blocks, where the input matrix has
a shape of N*d (N represents the sequence length, and d represents the dimension of the
sequence), let k denotes the tensor of the k-th block, XIZC” represents the normalized tensor
data, f; represents the feed-forward neural network (in this paper, self-attention is chosen

as the f), X{ represents the output tensor of the k-th block after the f; function, and X}
represents the tensor obtained by adding X{ and X]l{". By normalizing X7, the left-side

n

output matrix X,l( "\1 can be obtained as shown in Equation (4):
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X{ = X'+ X[ = X4 f(X{; wk); X = LN(XE) )

Similarly, for the right-side module, which is similar to the pre-layer normalization
module, allowing gradients to flow directly to each block, X,‘f represents the input matrix

from the previous layer and X]{ represents the output value obtained after the feed-forward

neural network calculation. Adding the two matrices gives the output matrix X? 41 onthe
right side, as shown in Equation (5):

xd = x?4+x/ )

Finally, the residual output y is computed by adding the representations from both
residual structures, as shown in Equation (6):

y=X{q+ LN(XZ‘iHl + 1) (6)

2.3.2. Improved Masked Attention Mechanism

In the original Transformer model, the self-attention mechanism calculates the atten-
tion weights equally for all elements within the input vectors. While this method effectively
captures the relationships between input vectors, it can lose the structural information
present in input vectors with specific structures. However, in this paper, the established
multi-granularity feature vectors for images and texts heavily rely on the structural infor-
mation between entities. Therefore, the self-attention mechanism is improved in this paper
by introducing a masking matrix M to the bidirectional residual Transformer network,
aiming to preserve the structural information between entities. The modified structure is
illustrated in Figure 4.

Linear

!

Concat

T

Scaled Dot-product

Attention
Linear Linear Linear Linear
M Q K A\

Figure 4. Masking attention mechanism.

The masking matrix is used to attenuate the influence of global semantic information
on the structural information between entities in the multimodal feature vectors. This
ensures the integrity of the structural information between entities. The masking matrix
M is a diagonal matrix with dimensions |X]| x|X|, where the default values of the matrix
elements are set to 1. However, to treat the attention between image region nodes and
global sentence nodes as unrelated, the elements of the masking matrix M are set to —oo.
This reduces the attention between global sentence nodes and image region nodes, thereby
preserving the structural information between entities. Similarly, to treat the attention
between text region nodes and global image nodes as unrelated, the elements of the
masking matrix M are also set to —co. This reduces the attention between text region
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nodes and global image nodes, ensuring the integrity of the structural information between
entities. The improved calculation process is shown in Equation (7):

QTK
atten(Q, K, V, M) = softmax <M\/ﬁ) 1% (7)
Here, Q, K, and V are parameter matrices from the original attention calculation
function, and M acts as the attention influence factor, implementing the masking for the
attention in the two mentioned scenarios and reducing the influence of unrelated nodes on
the final result.
With the improved Transformer, a sequence containing structural features between
entities can be obtained, as shown in Equation (8):

z =[x, X}, 0, X]| ®)

Here, x!, represents the local feature representation of the image, X/, represents the
global feature representation of the image, x! represents the local feature representation of
the text, and x] represents the global feature representation of the text.

2.4. Multigranularity Alignment Module

With the above processing, we obtain a series of multi-granular features for images
and text, which next need to be modal aligned.

The main job of the alignment module is to map the input samples into a shared
embedding space so that the similarity between them can be compared; the module
performs this by learning a mapping function that converts the input samples into a
low-dimensional vector representation. This has the advantage that it allows different
types of inputs (e.g., text, images, or other data) to be represented uniformly as vectors,
thus facilitating the computation of similarity between them. In matching problems, the
calculation of similarity between positive and negative samples is critical. Positive samples
are pairs of samples that belong to the same category or have similar attributes, while
negative samples are pairs of samples that belong to different categories or have dissimilar
attributes. By calculating the similarity between positive and negative samples, we can
quantify the degree of difference between them. The purpose of this is to make the similarity
between the positive samples as high as possible and the similarity between the negative
samples as low as possible during the training process. In this way, we can train the model
to learn the ability to distinguish between positive and negative samples, leading to better
matching performance.

Based on the positive and negative samples’ feature information, we construct four
types of matching relationships: matching between the global region of the image and
the text sentence, matching between the target region of the image and the text sentence,
matching between the text entity and the global region of the image, and matching between
the target region of the image and the text entity.

We calculate different matching scores and ensure that the matching score of the final
positive image-text pair is greater than the matching score of the negative image-text pair.
The calculation formulas are shown in Equations (9)-(11):

Lo = T(x|, X, x]) +T(x], x],x]) 9)
Ly = T(X, 2T, ) + 7(XT,xlx]) (10)
Lp = T(xf,xiT,x]T) + T(xiT,xf,xf) (11)

In these equations, XZ.I , XZT , XjT represent the image output sample, text positive sam-
ple, and text negative sample in the positive image—text pair, respectively. The subscripts
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i and j represent the data in the samples, and I and T correspond to the image and text
modalities, respectively. L¢q is used to calculate the matching relationship in (1), Lj; is used
to calculate the matching relationships in (2) and (3), and L, is used to calculate the match-
ing relationship in (4). The function T represents the triplet loss function T(u, P, N) [16],
and its formula is shown in Equation (12):

T(u,P,N) = max(%zpep Sim(u, p) + %ZneN Sim(u,n) +d,0) (12)

In this paper, a set of image—text pairs (I;, E;) is established, which includes negative
samples of text and negative samples of images. I; represents the positive image sample,
and E; represents the positive text sample. In the loss function T(u, P, N), u represents
the training prediction sample, P represents the positive samples, and N represents the
negative samples. The scalar d is used to control the distance range between the output
sample u and the positive and negative samples P and N. Sim is the similarity function
that calculates the similarity between the output sample and the positive/negative samples.
In this paper, the cosine distance similarity function is used. The max() function is used
to set the result to zero whenever the computed value of the function is less than or equal
to zero. If it is greater than zero, the loss is a positive value, aiming to minimize the loss
function to zero or less. The purpose of the loss function is to drive the output sample u to
be as close as possible to the data in the positive samples p € P, while keeping the output
sample u as far away as possible from the data in the negative samples n € N.

Based on the calculations of these two types of losses, we obtain the final total loss
function as shown in Equation (13). The hyperparameters Ag, A1, A, are used to balance
these losses, and their values are between 0 and 1.

L =AoLg1 + AL+ A2l (13)

The final total loss function L for the Thangka image—text domain is obtained by
splitting and fusing the global and local semantic feature information between the Thangka
image and text. This loss function encompasses the semantic relationship between the
Thangka image regions and text phrases, and extracts the overall structural information
from both modalities, thereby fully capturing the correlation between the Thangka image
and text modalities.

3. Results
3.1. Experimental Data and Preprocessing

To conduct comparative and ablation experiments, this paper chose two datasets: a
self-constructed Thangka image—text dataset and the widely employed Flickr30k dataset in
the field of image—text matching [19].

The Thangka image—text dataset comprises 3000 samples of Thangka-themed images.
In constructing image—text pairs for Thangka, we referenced the text structure of the com-
monly used Wikipedia dataset [20], combining it with the characteristics of Thangka themes,
such as academic nomenclature, production techniques, thematic symbolism, cultural back-
grounds, and more. For each Thangka theme category, we selected corresponding textual
descriptions, resulting in an initial set of 2231 Thangka image—text pairs. Subsequently,
data augmentation techniques were applied to expand the image and text datasets. For
image data, in addition to conventional methods like brightness, contrast, rotation, and
flipping, we employed a cut-and-replace approach to substitute entity parts within the
Thangka images, thereby increasing the dataset size. To address the issue of limited textual
data, we utilized Easy Data Augmentation (EDA) [21] for data augmentation. Following
data augmentation, a total of 5500 Thangka image—-text pairs were obtained. Consistent
with the practice of the commonly used Wikipedia dataset for cross-modal matching, the
constructed Thangka-themed image-text pairs were divided into a dataset in a 6:2:2 ratio.
Specifically, 3300 pairs were randomly chosen for the training set, 1100 pairs for the valida-
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tion set, and 1100 pairs for the testing set. An example of the Thangka image-text dataset is

illustrated in Figure 5.

Original

Lohan beliefs first originated in India, but in
India has not yet seen a systematic statue of
Lohan, basically can be regarded as the
creation of Chinese Buddhist art, is one of the
important products of the localization of
Buddhist art. There are three levels of
interpretation on the meaning of "luohan":
one says that it can help people get rid of all
the troubles in life; the second says that it can
accept the offerings from heaven and earth;
and the third says that it can help people no

Rotate

Toumu beliefs originated in India, but in India
has not yet seen a systematic statue of Toumu,
basically can be regarded as the creation of
Chinese Buddhist art, is one of the important
products of the localization of Buddhist art.
There are three levels of interpretation on the
meaning of "Toumou": one says that it can help
people get rid of all the troubles in their lives;
the second says that it can accept the offerings
from heaven and earth; and the third says that it
can help people no longer suffer from the pain of

Part replacement

Lohan beliefs first originated in, but in India has
not yet seen the systematic statue of Lohan,
basically can be regarded as the creation of
Chinese Buddhist art, is one of the Buddha
things. There are three levels of interpretation on
the meaning of "luohan": one says that it can
help people get rid of all the troubles in life; the
second says that it can accept all the troubles in
heaven and earth; and the second says that it can
accept all the troubles in heaven and earth.

longer suffer from the pain of reincarnation. reincarnation.

Original Randomly replace subjects Random deletion

Figure 5. Example of a Thangka dataset.

3.2. Experimental Environment and Parameter Settings

The experiments were conducted on the following platform and hardware configura-
tion: Ubuntu 16.04 operating system in the Internet open source and RTX A6000 GPU from
NVIDIA, Santa Clara, CA, USA The experiments were implemented using Python 3.6.12
programming language, and the deep learning framework used was PyTorch 1.11.0.

The feature extraction module consisted of two sub-networks: one for the image
modality and one for the text modality. For the image modality, the Thangka images were
trained using a resolution of 384 x 384 and input into a pre-trained Faster R-CNN network
to implement top-down attention. The global and local feature information of the images
was obtained through training and an adaptive pooling layer. For the text modality, a
pre-trained Bert-Bilstm-Crf model was used to train and extract entity and relationship
information from the text. The Word2Vec word embedding model was then employed to
obtain the word vector sequences of the text, with each word vector having a dimension
of 300. The text was further processed by introducing a bidirectional GRU model with an
adaptive pooling layer to capture contextual semantic feature information, resulting in the
extraction of global and local feature information for the text. The bidirectional GRU model
has a num_layers set to 2 and hidden_size set to 1024. The adaptive pooling layer consists
of two layers: a linear layer and a fusion layer with fusion weights set to 0.7 for tokens and
0.3 for embeddings. In the Multigranularity Alignment Module, we initialize three fixed
values (Ag, A1, Ap), all equal to 0.3, to start the training.

For the coding and alignment layers, the structure consisted of an encoding layer and
an alignment layer. The hidden layer dimension was set to 1024, the attention heads were
set to 16, and the internal dimension of the feed-forward network was set to 1024. These
settings were used to learn multi-granularity semantic correlations between the image and
text modalities.

During the training phase, an Adam optimizer with a batch size of 128 was em-
ployed. The learning rate was set to 0.0001, and the model was trained for 100 epochs.
By configuring the experimental environment and parameters as described above, the
researchers implemented and trained the model to conduct the experiments and obtain
results for analysis.
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3.3. Evaluation Metrics

To verify the accuracy of the experimental results, we designed two tasks for the
Thangka image—text dataset: Thangka image matching text and Thangka text matching
image, and conducted evaluations.

In this study, recall (R) [22] and OIPS were used as the evaluation metric for cross-
modal matching between Thangka images and text. Recall refers to the ratio of matched
samples returned by the matching model to the total number of matching samples in the
dataset. It is used to calculate the probability of correctly matching positive samples. The
calculation is shown in Equation (14):

- J“r 7 * 100% (14)

Here, a presents the number of correctly matched samples in the positive samples,
and b represents the number of incorrectly matched samples in the positive samples.

In the image—text matching task, recall is often set as R@K, which measures the
percentage of test images or test sentences that find at least one correct result among the
top K matching results. In this study, R@1, R@5, R@10 were used to represent the recall at
the top 1, 5, and 10 results, respectively.

OIPS is the number of operational projects per second, which serves as a measure of
a model’s execution efficiency and responsiveness, with larger numbers indicating better
model efficiency.

3.4. Model Comparison Experiment

We compared the proposed model with several powerful image-text matching baseline
models. We divided the baseline models into two groups, with the first five models being
VSE models and the remaining four models being pre-trained models. We chose the
Thangka dataset and the Flickr30k public dataset as the evaluation datasets. For the models
compared in this paper, on the Thangka dataset, we followed Section 3.2 and set the learning
rate as 0.0001, epochs as 100, and batch size as 128 for training to ensure the fairness of
the test results. On the public dataset, we tested the pre-trained models provided by the
respective baseline model’s official sources to validate the performance of our model on the
public dataset. All experimental models underwent at least two to three tests, with results
filtered to exclude deviations from the official data exceeding 5%, and the experimental
results were averaged. The experimental results are shown in Tables 1 and 2.

SCAN (Lee et al., 2018) [2]: Stacked Cross Attention for Image-Text Matching.
CAMP (Wang et al., 2019) [23]: Cross-Modal Adaptive Message Passing for Text-Image
Retrieval

e CAAN (Zhang et al., 2020) [3]: Context-Aware Attention Network for Image-Text
Retrieval

e IMRAM (Chen et al., 2020) [4]: Iterative Matching with Recurrent Attention Memory
for Cross-Modal Image—-Text Retrieval
GSMN (Liu et al., 2020) [24]: Graph Structured Network for Image-Text Matching
ViLBERT (Lu et al., 2019) [6]: Pretraining Task-Agnostic Visiolinguistic Representations
for Vision-and-Language Tasks
OSCAR (Li et al., 2020) [7]: Object-Semantics Aligned Pre-training for VisionLaguage Tasks
CLIP (Radford et al., 2021) [25]: Learning Transferable Visual Models From Natural
Language Supervision

e MVP (Liet al., 2022) [26]: Multi-stage vision-language pre-training via multi-level
semantic alignment
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Table 1. Comparison of the results of different methods on the Thangka dataset.
Image-Text Text-Image OIPS
Mark Model
R@1 R@5 R@10 R@1 R@5 R@10
VSE SCAN 23.2 53.5 72.1 16.3 55.6 68.9 48.7
VSE CAMP 36.1 68.2 82.7 21.2 59.1 79.7 46.5
VSE CAAN 37.5. 69.6 85.4 22.6 60.2 78.5 475
VSE GSMN 41.8 72.6 88.3 23.7 63.1 79.7 42.5
VSE IMRAM 429 71.2 87.6 25.7 62.5 79.1 44.8
Pre-trained ViLBERT 39.0 70.5 84.1 235 62.7 78.8 16.1
Pre-trained OSCAR 45.8 78.5 92.8 27.5 63.8 84.2 4.3
Pre-trained CLIP 48.5 82.8 93.1 29.8 64.1 86.8 6.7
Pre-trained MVP 49.8 84.4 93.8 304 66.3 85.5 52
Our
VSE Method 54.7 85.4 94.3 33.6 70.3 86.4 32.7
Table 2. Comparison of results of different methods on public datasets.
Image-Text Text-Image OIPS
Mark Model
R@1 R@5 R@10 R@1 R@5 R@10
VSE SCAN 61.8 87.5 93.7 45.8 74.4 83.0 48.3
VSE CAMP 68.1 89.7 95.2 51.5 77.1 85.3 459
VSE CAAN 70.1 91.6 97.2 52.8 79.0 87.9 48.1
VSE GSMN 72.6 93.4 96.8 53.9 80.2 87.1 43.5
VSE IMRAM 74.1 93.0 96.6 53.9 79.4 87.2 45.8
Pre-trained ViLBERT 71.5 91.0 96.9 52.9 78.5 86.9 28.6
Pre-trained OSCAR 76.4 94.3 98.2 59.4 84.4 91.6 5.4
Pre-trained CLIP 78.2 95.6 98.2 67.0 87.7 934 3.1
Pre-trained MVP 78.9 95.8 97.9 69.2 88.1 94.2 2.3
Our
VSE Method 77.9 95.9 98.3 57.3 85.7 92.3 40.5

Table 1 lists the recall rates (R@1, R@5, R@10) of different methods on the two matching
tasks Image-to-Text and Text-to-Image of the Thangka image and text dataset. As can be
seen from the table, without using any large-scale corpus for pre-training, the effect of this
method on Thangka image and text data exceeds other models, and the recall rate R@1
on I2T and T2l is 54.7% and 33.6%, respectively, which are 9.5% and 10.6%, respectively,
higher than the highest performance of the comparison method on the two matching tasks.
It reflects that this method has better applicability and effect on the Thangka image and text
dataset. At the same time, compared with the pre-trained model, the OIPS of this method
is much better than other pre-trained models, which reflects that the pre-trained models of
this method are much faster in training efficiency and execution speed.

For the I2T and T2I tasks on the Flickr30k dataset, the comparative results are shown
in Table 2.

The experimental results of different methods on the public dataset Flickr30k are
shown in Table 2. From the table, it can be observed that our method achieves a recall rate
(R@1) of 77.9% for image-to-text (I2T) retrieval and 57.3% for text-to-image (T2I) retrieval on
this dataset. Compared to the highest-performing IMRAM model in the best VSE method,
our method improves the performance by 5.1% for 12T and 6.3% for T2I. Compared to
the state-of-the-art pre-trained model MVP, our method has a lower R@1 recall rate for
T2I, with a difference of approximately 2—-3 percentage points for R@5 and R@10. For 12T,
the R@1 recall rate is 3 percentage lower, while R@5 and R@10 are roughly the same or
slightly higher.

It is noteworthy that our proposed method surpasses both pre-trained models, even
without utilizing any large-scale corpora for pre-training. This approach has led to signifi-
cant improvements in performance. Furthermore, our model outperforms the pre-trained
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models in terms of OIPS, indicating that it is more efficient and faster in execution. By em-
ploying our method, we can precompute and cache visual and textual features, which only
requires similarity calculations and sorting during the retrieval process. In conclusion, these
results demonstrate that our model achieves a favorable balance between performance
and efficiency.

3.5. Ablation Experiment

In order to verify the rationality of the design of the adaptive pooling layer and the
improved Transformer in the model of this paper, ablation experiments were conducted.
The results of the ablation experiments are listed in Table 3. Where A represents the
adaptive pooling layer module, and T represents the improved Transformer module. NA
indicates that the adaptive pooling layer module is not included, NT indicates that the
improved Transformer module is not used, and Ours (A + T) indicates the method of
this article.

Table 3. Ablation experiments on the Thangka dataset.

Image-Text Text-Image
Model
Re@1 R@5 R@10 R@1 R@5 R@10
NA + NT 421 65.2 84.1 22.3 50.1 70.9
A +NT 46.3 67.2 86.2 25.1 58.3 72.5
NA+T 49.6 744 87.7 29.6 67.2 743
Ours (A +T) 54.7 85.4 94.3 33.6 70.3 86.4

Based on the results in Table 3, it can be observed that by introducing the adaptive
pooling layer module, the model is better able to extract semantic information from the
Thangka text. This suggests that this method can more accurately capture entities and
relationships in the text, thereby enhancing the effectiveness of image-text matching. Addi-
tionally, the introduction of the improved Transformer module also has a positive impact.
This model combines bidirectional residual connections and masked attention mechanisms,
enabling the effective extraction of global and local correlations between Thangka images
and text. This indicates that the method can better align the semantic relationships between
the images and text, further enhancing the effectiveness of image-text matching.

In summary, the introduction of the adaptive pooling layer and improved Transformer
module allows for better extraction of semantic information from Thangka text and more
accurate alignment of global and local correlations between Thangka images and text. As a
result, the effectiveness of image-text matching is significantly improved.

4. Case Study

In order to better understand the image and text matching method proposed, a case
study was conducted. The study provides two examples: image-to-text matching in
Figure 6 and text-to-image matching in Figure 7. Examining Figure 6, it becomes evident
that the image pertains to Lohan, and our model excels in accurately pairing it with the
corresponding sentence while maintaining the correct order. The first text conveys, “Lohan
beliefs initially originated in India; however, a systematic statue of Lohan has not yet been
observed in India. Essentially, it can be regarded as a creation within Chinese Buddhist
art and stands as a significant outcome of the localization of Buddhist art...” This text
is accurate and aligns with the content of the image. At the same time, we notice that
the text in the third position, although sharing the same sentence structure as the first
one, is fundamentally incorrect. This indicates that the model excels at distinguishing
cases where sentence segments are similar but the topics are different. This is mainly
attributed to the model’s text enhancement. On the other hand, through Figure 7, we
can see that our model matches some similar images based on the text, which means
“Vajrasattva” is a transliteration of the Indian Sanskrit word, also translated as “Vajrapani”,
“Vajrapani” and “Pushyen”, meaning “brave and powerful”, and the first picture in the
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order is Vajrasattva, which corresponds to the text, indicating that our model’s matching
performance in matching images based on text is very good.

1.Lohan beliefs first originated in India, but systematic statues of Lohan have not yet been found in
India. They can essentially be seen as a creation of Chinese Buddhist art and are considered one of
the important products of the localization of Buddhist art.

Figure 6. Top-5 image match on Thangka datasets. The ground-truth results are marked with red,
and the wrong results are indicated in green.

Text: Vajrasattva is a transliteration of the Indian Sanskrit word, also translated as "Vajrapani", "Vajrapani" and "Pushyen", meaning "brave and
powerful". In Tibetan Buddhism, his identity is complicated, and there are two different ways to describe him: one is that he is the original Buddha. Many
Tibetan Buddhist classics claim that Dainichi Rulai is the first ancestor of Tantric Buddhism and Vajrasattva is the second ancestor, and that he and
Vajrapani and Pratyekabuddha Rulai are of the same body but with different names; one believes that he is a bodhisattva, a changed image of
Pratyekabuddha Bodhisattva, and that he and Pratyekabuddha Bodhisattva are of the same body but with different names.

et
Top-4

Figure 7. Top-5 text match on Thangka datasets. The ground-truth results are marked with red, and
the wrong results are indicated in green.

5. Conclusions

In this paper, we propose a Thangka image-text matching method that combines an
adaptive pooling layer and an improved Transformer. For the former, we build a Thangka
image-text feature extraction model, where named entity recognition and the Faster-RCNN
model are used to extract features for the text and image modalities, respectively. We
fully extract modality-specific feature information and introduce an adaptive pooling
layer that combines the features from token and embedding dimensions. This allows the
visual and textual encoders to learn the best way to combine their features and generate
fixed-sized embeddings. For the latter, we propose a masked attention mechanism and a
Bidirectional Residual model to improve the traditional Transformer, enhancing its focus
on local feature information in the Thangka domain. We evaluated the model on both
public datasets and Thangka datasets, comparing it with traditional VSE baseline models
and large-scale pre-trained models. The results showed that the adaptive pooling layer
improved feature extraction capabilities, and the improved Transformer outperformed the
traditional Transformer model in matching similarity calculation. Our proposed model
achieves good performance while maintaining good computational efficiency.
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However, there is still room for further improvement. For example, the traditional
Faster-RCNN model performs poorly in processing complex Thangka images, such as
those with multiple figures, due to the high similarity between different characters and the
similarity between some characters and the background color. Exploring the integration of
more effective target detection models, such as YOLO, into the feature processing for image-
text matching will be a future research direction. In addition, since the available graphic
data related to Thangka is still incomplete, this paper adopts graphic data augmentation
to expand the original data. However, this makes the model more sensitive to noise and
outliers during the training process. To address these issues, our future plans include
exploring new algorithms and methods to improve the accuracy and robustness of the
model, and attempting to apply the model to a wider range of datasets and application
scenarios. Furthermore, we will supplement and enrich the Thangka image and text dataset
to further enhance the performance of the model.
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