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Abstract: This review analyzes the most influential artificial intelligence (AI) studies in health and life
sciences from the past three years, delineating the evolving role of AI in these fields. We identified
and analyzed the top 50 cited articles on AI in biomedicine, revealing significant trends and thematic
categorizations, including Drug Development, Real-World Clinical Implementation, and Ethical and
Regulatory Aspects, among others. Our findings highlight a predominant focus on AIs application
in clinical settings, particularly in diagnostics, telemedicine, and medical education, accelerated
by the COVID-19 pandemic. The emergence of AlphaFold marked a pivotal moment in protein
structure prediction, catalyzing a cascade of related research and signifying a broader shift towards
AI-driven approaches in biological research. The review underscores AIs pivotal role in disease
subtyping and patient stratification, facilitating a transition towards more personalized medicine
strategies. Furthermore, it illustrates AIs impact on biology, particularly in parsing complex genomic
and proteomic data, enhancing our capabilities to disentangle complex, interconnected molecular
processes. As AI continues to permeate the health and life sciences, balancing its rapid technological
advancements with ethical stewardship and regulatory vigilance will be crucial for its sustainable
and effective integration into healthcare and research.

Keywords: AI; machine learning; multiomics; medical imaging; personal medicine; health informat-
ics; drug development; biomedicine

1. Introduction

Recent artificial intelligence (AI) innovations such as transformer models based on
attention mechanisms have initiated a significant shift in health and life sciences research.
The impact of these models has entered a variety of domains and data types, and the
development of Large Language Models (LLMs) such as ChatGPT can process multi-modal
and multi-omics data simultaneously. Enhancements in AIs reasoning capabilities may
play a crucial role in scientific discovery and application in healthcare workflows. The
depth and breadth of AI applications in the field of biomedicine within the past decade
have been extensive and varied. There are several useful references to orient readers to the
background and context of AI in biology [1,2] and medicine [3,4] overall.

This paper seeks to investigate how important recent advancements (e.g., LLMs)
have affected the field of biomedicine by reviewing and synthesizing the most influential
AI studies in the past three years. Our focus is on identifying those groundbreaking
technologies and how they have impacted the field of biomedicine. We aim to identify
highly-cited key studies and categorize them into overarching categories. Furthermore, we
hope to expand these insights into prevailing trends in AI applications and project potential
future directions of research and development in this rapidly evolving field.

Appl. Sci. 2024, 14, 785. https://doi.org/10.3390/app14020785 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020785
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4515-8090
https://doi.org/10.3390/app14020785
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020785?type=check_update&version=1


Appl. Sci. 2024, 14, 785 2 of 13

This review paper is organized as follows: In Section 2, we describe the methods
utilized to perform this study, ranging from data retrieval to article selection; Section 3
provides the overall results of the investigation; Section 4 delves into a discussion of
the overall trends of the top 50 papers analyzed, separated by thematic subsections; and
finally, Section 5 concludes this work with a distillation of the findings in the context of the
biomedical field looking forward.

2. Methods

An overall schematic figure is depicted in Figure 1.
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Figure 1. Study Overview Schematic.

2.1. Data Retrieval and Processing

Data for this study was retrieved on 15 November 2023, using Python 3.10. We used
pymed, a Python library interfacing with PubMed, a free search engine accessing primarily
the MEDLINE database of references and abstracts on life sciences and biomedical topics.
Our search targeted articles related to Artificial Intelligence (AI) in life and health sciences.

2.2. Search Strategy

The search incorporated a combination of Medical Subject Headings (MeSH Terms)
and keywords in titles and abstracts. The terms included “Artificial Intelligence”, “Ma-
chine Learning”, “Deep Learning”, “Computer Neural Networks”, “Natural Language
Processing”, “Computer Vision”, “Reinforcement Learning”, “Large Language Models”,
“Transformer”, “OpenAI”, and “ChatGPT”. These terms were concatenated using the ‘OR’
operator to broaden the search scope, capturing a comprehensive range of articles relevant
to AI advancements in life sciences.

2.3. Citation Analysis

We used “pmidcite,” a tool for retrieving citation counts and relative citation scores
from PubMed [5]. The relative citation score is a metric that compares an article’s citation
count to the average citation count of other articles published in the same year, providing a
normalized measure of an article’s impact. Self-citations were not controlled for.

2.4. Article Selection

From the retrieved dataset, we selected the top 50 cited articles for analysis. This
selection was based on the citation counts and relative citation scores. The timeframe of the
query included papers published from the beginning of March 2020 to the end of March
2023. The authors performed a manual review to ensure applicability, i.e., that the papers
involved AI in health and life sciences. Some papers on the list were removed and replaced
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immediately after their ranking. For instance, papers were removed if they referenced the
terms (e.g., AI) in the abstract but did not actually utilize those techniques.

PubMed was queried for the top 50 cited papers in the past few years in the field of
biomedicine. All papers were categorized into five common themes, and the resulting
themes were analyzed and highlighted.

3. Results

We identified the top 50 most cited papers from a full list of nearly 75,000 works
within the inspected period. All data relating to the selected papers is available in the
Supplementary Materials. Based on the top 50 papers that were returned, we identified five
common themes that encompass broad sets of categories and placed each paper into them
(Table 1). The first category, Advancements in Protein Structure Prediction, had nine papers
that focused on AI for predicting protein structures, an area that has seen significant growth
and innovation, particularly in the understanding of protein folding and function [6–14].
The second category, Real-World Clinical Implementation, had 14 papers and generally
explored the practical applications of AI in healthcare, including diagnostics, educational
tools, and telemedicine, highlighting how AI technologies are transforming patient care
and medical education [15–28]. The third category, Ethical and Regulatory Aspects, had
five papers and primarily dealt with the critical examination of AI, focusing on ethical
considerations, transparency, and the explainability of clinical AI systems [29–33]. The next
category, Tools for Disease Subtyping and Drug Development in Personalized Medicine,
had 15 papers and focused on leveraging AI tools for reclassification of disease through
subtyping and patient stratification as well as how drugs can be developed towards this
personalization of medicine [34–48]. The last category, Molecular and Multi-Omic Biology,
had seven papers and showcased the use of AI on genomic, transcriptomic, and proteomic
data for understanding complex molecular biology processes [49–55].

Table 1. Categorical Overview of Trends by Classification Category.

Categories Number of
Papers Notable Journals Notable Paper

(PMID) Data Types Description

Protein Structure
Prediction 9 Nature, Science 34265844 Structural Data,

Protein Sequences

Advances in predicting
protein structures using AI
are significantly impacting

biological research

Real-World Clinical
Implementation 14

PLOS: Digital
Health, Nature

Medicine
33629156 Imaging Data, and

Clinical Data

Development and
deployment of AI for

diagnostic accuracy and
efficiency in clinical settings

Ethical and
Regulatory Aspects 5

The Lancet: Digital
Health, Nature

Medicine
34711379

Policy and
Regulation

Documents, Clinical
Data

Highlighting the need for
ethical guidelines, regulatory

standards, and possibly
explainability in AI

applications in healthcare

Tools for Disease
Subtyping and
Classification

15
Nucleic Acids

Research, Nature
Methods

33649564 Imaging Data,
Genomic Data

Tools and methods for how
AI can be used to refine

disease classification,
subtyping, and
drug discovery

Molecular and
Multi-Omic Biology 7 Nature Genetics,

Bioinformatics 33876751 Clinical Data,
Multi-Omic Data

Advanced AI applications for
understanding complex

multi-omic and
molecular interactions

A summary table outlining common classification categories for the papers represented in this work. This table
reflects examples of journals, notable papers, data types, and a description of each highlighted category.
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4. Discussion
4.1. Highlighted Impressions and Overall Themes

In this section, we present an outline of the general themes of these highly cited
works, highlighting key trends and topics as they relate to AI and machine learning in the
health and life sciences. With this rapidly moving field, this examination will hopefully
serve to explore how cutting-edge computational techniques are shaping recent trends in
focus areas.

4.1.1. Advancements in Protein Structure Prediction

Advancements in the field of protein structure prediction mark a significant leap
in our understanding of biological processes and have profound implications for drug
development and disease treatment. The papers in this category address the longstanding
challenge of accurately predicting protein structures, a problem that has been a bottleneck
in structural biology for decades. The advancements in protein structure prediction, as
highlighted in the selected papers, address a critical and long-standing challenge in the field
of structural biology: the accurate and efficient determination of protein structures. Before
the advent of these new methods, understanding protein structures largely depended on
experimental techniques like X-ray crystallography and NMR spectroscopy. These methods,
while powerful, are time-consuming, resource-intensive, and often limited in their ability to
resolve complex or dynamic protein structures. This limitation posed a significant barrier
to a rapid and comprehensive understanding of protein functions and interactions and
their implications for health and disease.

The breakthroughs represented by these papers, particularly the development of Al-
phaFold by DeepMind, mark a paradigm shift. AlphaFold’s success in protein structure
prediction using deep learning algorithms has achieved a level of accuracy that is unprece-
dented [7]. This method stands out because it can predict protein structures quickly and
with a high degree of precision, overcoming the limitations of traditional experimental
approaches. This is especially critical for proteins that have eluded structure determination
through experimental means, opening new possibilities for exploring the vast array of
proteins critical to understanding biological processes and disease mechanisms.

Researchers have built on AlphaFold’s momentum, exploring network architectures
that further refine the accuracy and efficiency of protein structure predictions [9]. Specifi-
cally, they developed a three-track neural network that can better encode information at
the 1-D sequence level, the 2-D distance map level, and the 3-D coordinate level, which
also allows for more rapid and accurate protein-protein complex models. Another group
utilized AlphaFold for protein structure prediction for the human proteome, which resulted
in a minimum increase of 19% of total residues identified, specifically from 17% to 36% [10].
To address the lingering challenge of structure prediction for proteins lacking homologous
templates, another group used deep neural networks to create C-I-TASSER, which correctly
folded 50% (4162/8266) domain families of unsolved Pfam families [11]. Another issue in
the protein folding space is the loss of contrast at high frequencies for cryo-EM, used for
protein structure modeling, which creates problems in utilization. Another group created
DeepEMhancer, a deep learning solution for cryo-EM volume post-processing that was
able to reduce noise levels and improve the quality of experimental maps [8].

These studies underscore the shift from traditional, experiment-based approaches
to AI-driven predictions. They highlight the role of advanced algorithms in deciphering
protein interactions and conformations, essential for understanding cellular processes at
a molecular level. This transition to AI-centric methods is a crucial advancement, as it
not only speeds up the process of structure determination but also enhances the ability to
predict the interactions and functions of proteins whose structures are not easily determined
through experimental means.
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4.1.2. Real-World Clinical Implementation, including Diagnostics, Education,
and Technology

A well-represented topic in this collection is the application of AI to various aspects
of healthcare, particularly within the realms of predictive models, diagnostics, medical
education, and technology, including telemedicine and devices. The utility of AI in clinic
implementation has been extensively applied throughout the past decade. However, novel
methodologies, including large language models, better system architecture, and new
regulatory procedures, have decisively created a shift into more real-world applications.

The use of AI as a prognostic or diagnostic screening tool is not something new, and
there are many studies showing its utility in fields like radiology, pathology, and beyond.
The COVID-19 pandemic, however, revealed the potential of these tools in challenging situ-
ations. During the pandemic, health systems were unable to operate at maximum efficiency
due to issues like overcrowding and resource limitations. Therefore, having systems to help
synthesize and analyze data to output initial diagnoses has shown promise to help clinical
practitioners make more rapid yet informed diagnoses, particularly for COVID-19. One
study in this list presented an early AI algorithm that analyzed CT images for COVID-19
diagnosis and achieved a robust performance of 89.5% accuracy with 0.88 specificity and
0.87 sensitivity on internal testing and 79.3% accuracy with 0.83 specificity and 0.67 sensi-
tivity when tested on an external dataset [20]. This performance hinted at the potential for
offering a rapid, reliable alternative to traditional pathogen detection methods. Another
study further advanced this domain by developing a deep learning-based CT diagnosis
system that not only distinguishes COVID-19 from bacterial pneumonia with high accuracy
but also identifies critical lesion features, enhancing diagnostic precision [22]. The third
study employed a DenseNet201-based deep transfer learning model to classify COVID-19
cases using chest CT images [17]. This approach demonstrated superior performance over
methods that existed at the time of the publication of their research. Together, these studies
underscore the possibilities of AI-enabled diagnostics in times of pandemics.

Another recently popular trend in the field of biomedicine is the utility of telemedicine,
which represents remote care utilizing technology like video conferencing and chatbots.
Telemedicine offers accessible and efficient medical services, especially in remote or un-
derserved areas, utilizing observations made from patient images or videos taken from a
smartphone. Telemedicine can also incorporate AI analysis of such remotely taken images
for initial screening and diagnostics, which can be used to determine if an in-person visit is
recommended. One such work represented in this list explores the power of telemedicine
within the field of ophthalmology on a global scale [18]. This review illustrates how digital
innovations can enhance remote medical services, a need that became particularly pressing
during the COVID-19 pandemic. It showcases AI’s role in screening eye images of patients
unable to routinely visit ophthalmologists in person, overcoming geographical barriers,
and making decentralized delivery of certain eye care recommendations possible, thus
broadening the accessibility of specialized medical services.

The last subtopic represented in this category is the role of AI in medical education.
Medical training is complex and dynamic, and it is now more rapidly changing given
the swift advancement of research and online dissemination, significantly outpacing the
traditional timelines of medical education and knowledge acquisition. One study evaluated
how ChatGPT can aid in medical training, offering a new dimension to learning that is
interactive, up-to-date, and highly accessible. This is especially vital in the rapidly evolving
field of medicine, where keeping abreast of the latest information is crucial [27].

Each of these studies not only reflects AIs growing influence in healthcare but also
underscores the multifaceted improvements it brings in terms of technology—from remote
care to education and rapid disease diagnosis.

4.1.3. Ethical and Explainability Concerns in AI Applications

The integration of AI into clinical settings brings forth a host of challenges and ethical
considerations. As AI models seek to influence clinical decision-making, concerns regarding
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bias, errors, and the interpretability of these systems become top of mind. AI models, while
powerful, can inadvertently perpetuate biases present in their training data, leading to
skewed or unfair medical decisions. Errors in AI predictions, especially in high-stakes
medical scenarios, can have suboptimal consequences, raising questions about liability
and oversight. In cases of medical errors or misdiagnoses involving AI, determining the
responsible party, whether it is the healthcare provider, the AI developer, or another entity,
is a complex and unsolved problem. This complexity underscores the necessity for clear
guidelines and regulations around the use of AI in healthcare.

One major concern with deep learning techniques being applied in the clinic is their
“black box” nature, or the fact that the architecture of these models does not allow for
easy interpretation. Unlike a regression model, in which the importance of coefficients can
be more easily weighed and measured, deep learning models are much more complex,
involving numerous nodes, edges, layers, and weights, making insight into how the input
affects the output a bit more complicated. One paper in this list argues that explainable
AI is crucial for optimal healthcare delivery and provides a survey of interpretability
approaches that can be used in various application settings [29]. This paper posits that
transparency, in the form of explainability and interpretability, measures reliability. The
other work included in this list provides a different point of view. The authors argue that, as
of now, incorporating transparency techniques into deep learning models is a “false hope”
and cannot reliably mitigate bias in their applications [31]. They showcase how various
failure cases can still obfuscate the clinical decision-making process, such as explainability
techniques being used for justification of a decision, reducing vigilance, and hampering
practitioners’ ability to detect when a serious error was made for an individual patient.
Finally, they argue that more comprehensive testing and external validation can be used to
mitigate biases. These studies both agree that there is a need for more advanced techniques
that offer greater and more accurate transparency.

The other subtopic of this category revolves around the need for regulation of AI-
based medical devices. One work highlights the challenges faced by regulatory bodies in
keeping pace with the rapid development of AI technologies in healthcare [30]. The authors
identified 222 and 240 devices approved in the USA and Europe, respectively. The paper
underscores the need for stringent regulations to ensure the efficacy, safety, and quality of
AI/ML-based medical devices. Governmental regulation is particularly important given
the rising number of such devices being approved for clinical use. The paper calls for
more transparency in the regulatory process to bolster public trust in these advanced
technologies. Put together, this topic explores the ethical and explainability issues that need
to be addressed in AI for healthcare. These issues include the potential for bias and errors,
the need for better transparent and interpretable AI models, and the development of robust
regulatory frameworks. Addressing these concerns will be necessary for long-term success
in the responsible and effective use of AI in improving patient care and outcomes.

4.1.4. Tools for Disease Subtyping and Drug Development in Personalized Medicine

An emerging trend in personalized medicine is the exploration of the fact that complex
diseases are multi-faceted and heterogeneous in nature. It is becoming increasingly clear
that disease etiologies, manifestations, and outcomes have patterns at the molecular and
phenotypic level that can be differentiated between groups of patients. For true precision
medicine to exist, the challenge of accurately diagnosing and treating complex diseases
hinges significantly on the ability to effectively subtype these conditions. Disease subtyping
is when one heterogenous disease can be stratified into subgroups that have differentiated
patterns, leading to targeted and personalized treatment plans. This facet is particularly
vital in cancer treatment, where the effectiveness of therapies can vary greatly depending
on the specific type and stage of cancer. The outcome of using tools to address these goals
can help drug development itself. One review paper describes how AI can be applied across
the lifecycle of pharmaceutical products, from drug discovery to clinical trial design [35].
On the development side, the review article further describes AI applications in drug
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repurposing, screening, and chemical synthesis. The paper also provides a useful table for
AI tools that have been developed for processing different types of data in silico. In terms of
disease applications, one study developed a deep learning methodology in computational
pathology to efficiently analyze whole-slide pathology images, which are time-consuming
to annotate and categorize [39]. The authors developed clustering-constrained-attention
multiple-instance learning (CLAM) to identify subregions of high diagnostic value, to
accurately classify whole slides, and for instance-level clustering. They applied CLAM
to three tasks, specifically the subtyping of renal cell carcinoma and non-small-cell lung
cancer, as well as the detection of lymph node metastasis, and showed that it was able
to localize well-known morphological features. In addition to the subtyping of known
cancers, like in the prior work, another paper created a deep-learning-based algorithm,
specifically Tumor Origin Assessment via Deep Learning (TOAD), to classify cancers of
unknown primary origin. Identifying the cancer’s source is critical for determining the
most effective treatment strategy [43]. This technique had strong performance, achieving a
top-1 accuracy of 0.83 on an internal, held-out set and 0.80 on an external testing set.

In addition to analyzing images for disease classification and subtyping, analyzing the
connection between genotypes and phenotypes is pivotal in personalized medicine as it can
reveal underlying genetic and biological features that differentiate etiologies and outcomes.
As such, with the increased availability of larger and richer patient datasets, performing this
analysis has become computationally expensive, especially when accounting for relatedness
within the population structure. As such, one group has developed REGENIE, which
is designed to fit a whole-genome regression model for quantitative and binary traits
in a computationally efficient manner while maintaining statistical efficiency [45]. By
accommodating multiple phenotypes and requiring only local segments of the genotype
matrix, REGENIE substantially reduces compute time and memory usage, which the
authors demonstrate in large-scale studies utilizing the UK Biobank. This work exemplifies
AI approaches that create solutions for effective analyses of personalized medicine-related
datasets, which are growing at substantial rates and for which traditional techniques
are infeasible. Collectively, these studies underscore the pivotal role of AI methods in
overcoming the challenges of disease subtyping, enhancing diagnostic accuracy, and paving
the way for large-scale genotype/phenotype analyses to discover patterns that produce
treatments targeted towards individual patient genetic profiles.

4.1.5. AI in Molecular and Multi-Omic Biology

Molecular and multi-omic biology, including genomics, transcriptomics, proteomics,
and beyond, is extraordinarily complex. Amazing progress in understanding this space
has emerged in recent years, partially due to the increased capabilities of measuring these
components. The resulting humongous volumes of data, however, pose challenges for anal-
ysis using conventional approaches. Therefore, AI is being used for processing, analyzing,
and interpreting associations in this space. This subsection comprises recent AI methods
that have been developed to unravel this biological complexity, from understanding the
intricacies of genetic splicing to the subtleties of drug-target interactions and beyond. These
following papers showcase how AI enhances our understanding of molecular interactions
and genetic regulation but also reshapes the methods and models we use to interpret the
vast and intricate data.

Understanding the multiplicative ways in which regulatory DNA elements affect gene
expression in various cell and tissue types is useful for mechanistic insights into potential
drivers of disease. One work tackled understanding the complex cis-regulatory code,
particularly how transcription factor binding motifs are arranged and interact within the
sequence of DNA. As hinted, the complexity of these interactions within the genome has
made it difficult to predict and understand how specific TFs influence gene expression. The
authors created a deep learning model named BPNet to predict base-resolution chromatin
immunoprecipitation-nexus binding profiles of transcription factors [51]. BPNet was able
to uncover the arrangement of transcription factor binding motifs. This model represents a
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significant leap in understanding the complex cis-regulatory code in genomics. Another
work addressed a separate challenge in a similar area. There is a longstanding challenge
of accurately predicting gene expression from noncoding DNA sequences. Traditional
methods have struggled to account for the influence of long-range interactions in the
genome on gene expression. This paper introduces a deep learning architecture called
Enformer, which significantly improves gene expression prediction by integrating informa-
tion from these distant interactions up to 100 kb away [55]. The advancement enables more
precise variant effect predictions on gene expression and enhances the understanding of
enhancer-promoter interactions directly from DNA sequence data.

Moving to proteomics, an active challenge in the space is mapping the billions of amino
acids across hundreds of millions of protein sequences to function. One group utilized
unsupervised protein language modeling, specifically a deep contextual language model,
on sequence information to form representations about primary, secondary, and tertiary
structures of proteins and beyond [53]. The authors applied this model for predicting
mutational effects, secondary structures, and long-range contact. Once association analyses
have been discovered in the –omics space, another challenge is how one can assign function
and insights from the multitude of findings. Gene set enrichment analysis is one such
method to discern patterns of function across biological domains. However, there may
be an ensuing multitude of pathways that are significant, and another challenge remains
in terms of how to prioritize those. Accordingly, one group developed KOBAS-i, which
reflects a development over prior iterations that now incorporates overrepresentation
analysis, functional class scoring, and pathway topology scoring [54]. They use their
machine learning method, CGPS, which incorporates several of the aforementioned scoring
tools to create one ensemble score for more intelligent prioritization and exploratory
visualization. Collectively, these works showcase A’s impact on molecular and multi-
scale biology, offering novel insights and methods that overcome challenges in traditional
approaches, such as efficiency and complexity, in understanding the intricate mechanisms
of human biology.

4.2. Overall Trends in Research

Analyzing the categories of publications in aggregate can reveal some trends about
recent highly cited research in AI within the health and life sciences. It is important
to remember, however, that these trends are for the selected papers only and are not
necessarily reflective of the entire field. Most articles were published in the Real-World
Clinical Implementation as well as Tools for Patient Stratification categories, indicating that
healthcare aspects dominate the trends (Figure 2). This trend is corroborated, as clinical
data and medical imaging data dominated these two categories. As expected, most of
the Real-World Clinical Implementation papers involved medical imaging data of some
kind, which has become increasingly utilized in the past decade, along with Electronic
Health Record research [56]. Original Research articles were similarly represented in all
categories except Ethics and Regulation which may be expected as many of these works
are discussions around considerations of the field.

In terms of trends over time (Figure 3), a clear inflection point emerged for the Pro-
tein Structure Prediction category with the introduction of AlphaFold in July 2021. This
monumental release seeded major future publications on various aspects of understanding
protein structure using the methodology that explained the surge of work soon after in that
category. The Real-World Clinical Implementation papers were the most steadfast across
time and had early representation, with pivotal works around medical image analysis
arising during the COVID-19 pandemic. The use of AI in multiomics also occurred around
this time in other areas in addition to protein structure, including genomics and transcrip-
tomics, as seen with the rise of publications in this space in early 2021. The developing
ways to characterize multi-omics and medical images (seen in Clinical Implementation)
also facilitated the rise of Tools for Disease Subtyping and redefining disease classification.
These works also fed into the drug development field and contributed to the rapid growth
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of this space at the end of 2021. As more and more multi-omic and multi-modal patient
data becomes available, along with the advancement of technology and machine learning
architectures, the utility of AI in biomedicine will continue to grow with proper safeguards
in place from regulation.
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5. Conclusions

This paper’s exploration of the top 50 cited AI studies in health and life sciences
over the past three years showcases rapid transformation, driven by key groundbreaking
advancements. The surge in AI applications spans a broad spectrum in biology, from
revolutionizing protein structure prediction with tools like AlphaFold, which marked a
paradigm shift in structural biology, to genomics and transcriptomic profiling. There is
also early permeation into clinical practices with computer-aided diagnostics, telemedicine,
and medical education. The COVID-19 pandemic facilitated many AI studies that were
developed and employed in a much more rapid timeframe than before. At the same time,
the continued incorporation of AI into healthcare has brought to the forefront critical ethical
and regulatory challenges. Issues surrounding the explainability of AI systems, potential
biases in AI-driven decisions, and the necessity for robust regulatory frameworks highlight
the complexity of responsibly integrating AI into high-stakes medical scenarios. The ethical
considerations and the push for transparent AI underscore the need for a balanced approach
that prioritizes patient safety and ethical standards.

There are several limitations to this work. First and foremost, the selection criteria that
we used for the citation count do not necessarily denote impact or importance. Additionally,
the query approach was imperfect, included incorrect papers (which were curated), and
may have missed relevant ones. Additionally, the categories and themes identified do not
necessarily reflect the grand scope of work in this space and are restricted to a small subset
of related published research. Accordingly, any insights derived should be held within
that context. Lastly, any temporal analysis does not consider important factors like time to
publication, which may vary by subfield and journal.

Furthermore, the evolution of AI in disease subtyping and drug development signifies
a move towards more personalized medicine, where tools are instrumental in tailoring
treatments to individual genetic profiles. This shift towards precision medicine is mirrored
in the increasing focus on molecular and multi-omic biology, where AI is being leveraged to
untangle complex biological data, offering unprecedented insights into genetic regulation
and molecular interactions. The future trajectory of AI in this field is poised for continued
innovation and expansion. However, many safety standards and rules are still being
written, and careful regulation still needs to be developed to oversee implementation into
practice. As AI continues to evolve and integrate deeper into the health sciences, it holds
the promise of not only advancing our technological capabilities but also enriching our
understanding of the complexities of human life and health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14020785/s1, Supplementary Table S1: publication and cate-
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