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Abstract: The fracture network generated by hydraulic fracturing in unconventional shale reservoirs
contains numerous microfractures that are connected to macroscopic fractures. These microfractures
serve as crucial pathways for shale gas to flow out from micro- and nano-scale pores, playing a
critical role in enhancing shale gas recovery. Currently, more attention is being given by academia
and industry to the evolution of macroscopic fracture networks, while the understanding of the
microfracture mechanisms and evolution is relatively limited. A significant number of microfractures
are generated during the hydraulic fracturing process of shale. These microfractures subsequently
propagate, merge, and interconnect to form macroscopic fractures. Therefore, studying the fracture
process of rock masses from a microscale perspective holds important theoretical significance and
engineering value. Based on the authors’ research experience and literature review, this paper pro-
vides a brief overview of current progress in shale microfracture research from five aspects: in situ
observation experiments of microfractures in shale, formation and evolution processes of discon-
tinuous microfractures, the impact of inhomogeneity on microfracture propagation, measurement
methods for microscale mechanical parameters and deformation quantities in shale, and numerical
simulation of shale microfractures. This paper also summarizes the main challenges and future
research prospects in shale microfracture studies, including: (1) quantitative characterization of in
situ observation experimental data on shale microfractures; (2) formation and evolution laws of
macroscopic, mesoscopic, and microscopic multi-scale discontinuous fractures; (3) more in-depth
and microscale characterization of shale heterogeneity and its deformation and fracture mechanisms;
(4) acquisition of shale micro-mechanical parameters; (5) refinement and accuracy improvement of
the numerical simulation of microfractures in shale. Addressing these research questions will not
only contribute to the further development of microfracture theory in rocks but also provide insights
for hydraulic fracturing in shale gas extraction.

Keywords: shale; microfractures; microfracture test; discontinuous fracture; heterogeneity; micro
mechanical parameters; numerical simulation; challenges and prospects

1. Introduction

The extraction of natural gas from shale presents a highly promising and environ-
mentally sustainable alternative to traditional fuel sources [1]. Shale gas, known for its
relatively low carbon emissions, possesses the potential to address escalating global energy
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requirements. Therefore, the development of advanced shale gas extraction technolo-
gies has emerged as a prominent subject at the forefront of scientific and technological
advancements [2,3]. In order to efficiently extract shale gas from micro- and nano-scale
gas-containing pores and fractures (Figure 1), hydraulic fracturing is required for shale
reservoirs. The fracture network generated by hydraulic fracturing in shale reservoirs
contains numerous microfractures. These microfractures serve as crucial pathways, allow-
ing shale gas to flow from micro- and nano-scale pores towards macroscopic fracturing
fractures and wellbores, thereby significantly improving the shale gas recovery rate [4–6].
However, the current academic and industrial focus is primarily on the evolution laws
and affected volume of macroscopic fracturing networks, with less attention given to the
microfractures connected to these macroscopic fracturing fractures [7,8]. As a result, there
is a lack of in-depth understanding regarding their formation mechanisms, distribution
characteristics, and dynamic propagation processes, which severely limits breakthroughs
in improving shale gas recovery processes [9–11]. Therefore, an in-depth exploration of the
causes, characteristics, and propagation patterns of the microfractures generated during the
process of hydraulic fracturing in shale holds urgent engineering practicality and significant
research value.
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Figure 1. (a) Organic matter pores in shale. (b) Microfractures connected to gas containing pores [12].

In addition to its practical significance in enhancing shale gas recovery [13], the
investigation of microfracturing in rocks holds equal importance for the development
of rock fracture theories. The theory of structural control in rock masses posits that the
influence of rock mass structure on rock fracturing is significantly greater than that of rock
materials, serving as a fundamental theory in rock mechanics. The microfracturing of rocks
is similarly influenced by microstructural features such as mineral distribution, porosity,
joints, cleavage, and fractures. Within rock masses, there exist abundant microstructures
and microfractures, which, upon experiencing stress, undergo processes of extension,
merging, and bridging, ultimately resulting in macroscopic fractures [14,15]. Therefore,
to gain in-depth insights into the fracture mechanisms of rock masses, the study of rock
fracture processes from a microscopic perspective is imperative.
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Compared to the research on macroscopic cracks, there has been relatively limited
investigation into microfractures in shale, and the mechanisms behind microfracture for-
mation remain unclear. The current state of research in this field is fragmented and lacks a
systematic approach, with a dearth of comprehensive review articles outlining the progress
made in the study of microfracturing in shale. Experimental testing serves as a fundamental
means to conduct research, and the observation of microfractures in shale after hydraulic
fracturing, as well as the continuous dynamic monitoring of microfracture initiation and
extension in situ, have confirmed that shale fracturing occurs through the generation and
connection of discontinuous fractures [16,17]. What are the formation and evolution mech-
anisms of discontinuous fractures? What factors influence the generation of discontinuous
fractures? How does the heterogeneity within shale affect the initiation and propagation
of discontinuous fractures? In-depth studies on these issues require the acquisition of the
micro-mechanical parameters of shale and the measurement of displacement, deformation,
and energy during loading. Hindered by experimental equipment and techniques, satisfac-
tory solutions to these problems have not yet been achieved [18–21]. Therefore, numerous
numerical models based on the microstructural distribution have been developed in current
research to investigate the initiation and evolution of microcracks [22–24].

Drawing upon the authors’ research experience and analysis of existing literature, this
paper provides a comprehensive overview of the current research progress in the following
five aspects: in situ observation experiments of microfractures in shale, the formation
and evolution processes of discontinuous microfractures, the impact of inhomogeneity on
microfracture propagation, measurement methods for microscale mechanical parameters
and deformation quantities in shale, and numerical simulation of shale microfractures.
Additionally, this paper highlights the current challenges and proposes future research
directions in this field.

2. In Situ Observation Experiment of Shale Microfractures

In order to investigate the microfracture characteristics of shale, some studies have con-
ducted static observation experiments on microfractures in shale after fracturing [16,25–27].
However, merely observing post-fracture microfractures cannot reflect the influence of the
loading process on them, nor can it reveal the initiation and extension process of microfrac-
tures in shale. Continuous and dynamic observation of the propagation characteristics of
microfractures is necessary in order to obtain a clear and comprehensive understanding of
the fracture propagation process and discover general rules [17,28,29].

Currently, there are several in situ observation techniques available for continuously
and dynamically observing microfracturing in shale, including optical microscopy with
an in situ loading stage, scanning electron microscopy (SEM), and computer tomography
(CT) scanning (Figure 2). In situ compression experiments were conducted under an op-
tical microscope to observe the initiation and propagation process of microfractures [30].
However, the low magnification of optical microscopy cannot represent the formation
and evolution characteristics of microfractures. SEM equipped with an in situ mechanical
loading device has made it possible to dynamically observe microfractures. Some stud-
ies have used SEM to observe the continuous propagation process of main fractures and
branch fractures in shale and analyze their fracture toughness [17,28]. In addition to SEM,
some studies have utilized micro-CT to conduct in situ loading experiments on shale at
the microscopic level, observing the generation of extensive microfractures. As the load
increases, these microfractures either connect with the main fracture or form new fractures
independently [31]. With the advancement of testing methods, some studies have also
employed advanced instruments such as positron emission tomography–computed tomog-
raphy (PET-CT) and high-energy CT to carry out experimental studies on the extension of
micro-fractures [32,33].
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Figure 2. In situ observation experiment of shale microfractures. (a) In situ fracture experiment
under an optical microscope [30]. (b) In situ fracture experiment under scanning electron mi-
croscopy [6]. (c) In situ fracture experiment under micro-CT [31]. (d) In situ rupture experiment
under high-energy CT [33].

The aforementioned in situ experiments have successfully observed the dynamic pro-
cess of microfracture initiation and propagation. Microfractures are typically discontinuous
and widely generated. As the load increases, these discontinuous fractures connect with
each other to form the main fracture and also generate branch fractures connected to the
main fracture, while microfractures that are not connected to the main fracture eventually
close [7,16,17,34–39]. What are the mechanisms behind the formation and evolution of
these discontinuous microcracks?

3. Research on the Formation and Evolution of Discontinuous Microfractures
3.1. Macroscopic Discontinuous Fractures

The study of unconnected, discontinuous fractures can be traced back to the macro-
scopic scale, where scholars extensively research natural phenomena such as en echelon
faults, segmented fractures, and en echelon vein array (Figure 3) [40–42]. Early studies
investigated the generation and evolution mechanisms of en echelon faults at the macro-
scopic scale based on exposed joints, fissures, and fault zones [43]. With advancements in
experimental testing techniques, some studies have conducted research on the connecting
process of discontinuous fractures within rocks to explore the mechanisms and precursory
characteristics of earthquakes [44–46].
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Figure 3. Macroscopic discontinuous fractures. (a) Aerial photographs of discontinuous en ech-
elon faults. Credit: US Geological Survey. (b) Discontinuous fractures on the road surface [47].
(c) Discontinuous fractures forming during incipient stages of faulting [48]. (d) En echelon vein array
in claystone [49].

3.2. Microscopic Discontinuous Fractures

For the entire continental crust, faults can be considered as microfractures, and the
study of en echelon faults can provide a cross-scale reference for understanding microscopic
discontinuous fractures. However, the generation, evolution, and mechanical mechanisms
of micro-discontinuous fractures still lack a comprehensive explanation. The current con-
sensus is that the formation of discontinuous fractures is influenced by the heterogeneity of
shale mechanical strength and complex stress fields, including factors such as porosity, frac-
tures, discontinuity planes, and mineral composition [17,35]. However, these viewpoints
lack quantitative evidence from in situ loading experiments.

There has been significant research on the connection forms of discontinuous fractures,
and researchers have made good progress in summarizing them [50–52]. The research
mainly focuses on the connection process of pre-existing fractures within rocks, including
tension fracture connection, shear-driven tensile fracture connection, shear fracture con-
nection, mixed-mode fracture connection, and non-direct connection [53–55]. Most of this
research on the connection forms of discontinuous fractures is based on observations of
fractured microscale rock samples, with limited research on in situ fracture propagation at
the microscopic scale. Therefore, further investigations are needed to study and validate
the connection forms of microscale discontinuous fractures.

Microscopic discontinuous fractures exhibit hierarchical distributions, and researchers
have summarized the hierarchical distribution characteristics of microfractures through
in situ scanning electron microscope tests (Figure 4) [17,34,56]. The spatial distribution of
microfractures follows a power law distribution and exhibits self-affinity and hierarchical
structure. Based on the evolution of micro-damage and the progressive process of fracturing,
laws for multiscale fracture propagation have been proposed, considering the geometric
evolution characteristics of fractures in a multiscale damage power law model [27,57].
Currently, the hierarchical distribution characteristics of discontinuous fractures are mostly
statistically significant, and hypotheses and numerical simulations are used to explain their
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formation mechanisms [15,35,58]. Further in situ observation experiments are required to
validate these conclusions.
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4. The Impact of Inhomogeneity on Microfracture Propagation

The mechanism for the formation of discontinuous fractures is attributed to the com-
bined effect of rocks’ internal heterogeneity and complex stress fields. The heterogeneity of
rocks is mainly manifested in mineral distribution, pores, joints, cleavages, and fissures.
Among them, mineral heterogeneity represents the most fundamental type of heterogeneity
in rock materials. Different minerals exhibit distinct mechanical properties at their bound-
aries, and variations in mineral distribution and geometric morphology also exert diverse
influences on the process of microfracture propagation.

(1) Intergranular fractures and transgranular fractures

Some studies have investigated the differences between transgranular fractures and
intergranular fractures during the loading process, and some of the major findings are
as follows [16,26,39,59]. In tensile loading, over 90% of the tensile fractures exist in the
form of intergranular fractures, while the remaining 10% exhibit transgranular fractures. In
shear loading, the proportion of transgranular fractures increases but still does not exceed
50% [26,39]. Regarding the distribution of microfractures, transgranular fractures in shear
loading tend to be closer to the shear centerline, with fewer transgranular fractures as
the distance from the shear centerline increases [16,59]. It is evident that the mechanical
properties of mineral boundaries are relatively low. Therefore, compared to propagating
through mineral grains, fractures are more prone to initiate and propagate along mineral
boundaries (Figure 5). However, there are variations in the occurrence of transgranular and
intergranular fracture phenomena depending on the loading conditions.

(2) Fracture modes of minerals

The propagation of fractures within different minerals exhibits variations in fracture
modes. Microfractures are more prone to propagate in mechanically weaker clay minerals,
predominantly through tensile fracture. Conversely, in mechanically stronger minerals
such as feldspar and quartz, microfracture formation is less frequent, with shear fracture
being the dominant mode [25,60]. Additionally, there are significant differences in the
fractal dimension and morphology of microfractures after fracture among different min-
erals. These variations arise from the distinct mechanical response characteristics and
mechanisms of different minerals [57]. Similarly to macroscopic fracture propagation,
the differences in mechanical properties between minerals influence the expansion of
microfractures (Figure 5).
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(3) The influence of mineral geometric morphology and distribution on microfractures

The geometric morphology and distribution of minerals have a significant influence
on the generation of microfractures. Scanning electron microscopy observations of mi-
crofractures in shale reveal that the distribution of minerals affects the distribution of
tensile stress, thereby influencing the location of tensile microfracture initiation [61]. Nu-
merical simulations further confirm that the size of mineral particles also impacts stress
distribution, thus influencing the mechanisms underlying microfracture formation [62,63].
Moreover, the morphology and distribution of minerals also exert an influence on the
connectivity patterns of microfractures [64]. Essentially, the geometric morphology and
distribution of minerals affect stress distribution, thereby influencing the generation and
propagation of microfractures.
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Figure 5. Microfractures in different minerals. (a) Due to the higher mechanical properties of pyrite,
fractures are unable to propagate through it. Therefore, fractures tend to extend along the boundaries
of pyrite [6]. (b) In comparison to pyrite, the mechanical properties of plagioclase are lower, allowing
fractures to directly propagate through the mineral [6]. (c) Fractures tend to propagate along the
boundaries of minerals with lower mechanical strength, as well as within clay minerals that have
the second lowest mechanical strength. Py = pyrite, Qtz = quartz, Dol = dolomite, Cal = calcite,
Cly = clays, Inter-OPM = internal microscopic pore [36]. (d) Clay minerals exhibit lower mechanical
strength, making them more prone to the formation of complex microfractures [65].

(4) The influence of natural bedding and fractures within shale on microfractures

The anisotropy of shale, which is caused by variations in its microscopic structures,
has a direct impact on the propagation of microfractures [66–69]. By integrating fracture



Appl. Sci. 2024, 14, 784 8 of 17

mechanics and damage theory, it has been established that the distribution and orientation
of microstructures are the primary factors influencing the anisotropy of shale fracture tough-
ness. Additionally, there is a strong correlation between the thickness and inclination angle
of bedding and fractures, as well as the initiation and evolution processes of microfrac-
tures [70–72]. The degree of consolidation and the mechanical properties of bedding planes
also affect the generation and propagation of microfractures [73]. Therefore, it can be in-
ferred that the influence of microscale discontinuities on the propagation of microfractures
in shale exhibits similarities to the mechanisms underlying macrofracture generation.

However, the previous experimental studies on shale heterogeneity, apart from nu-
merical simulations, have not considered the mechanical parameters and deformation
characterization of minerals, fractures, and discontinuities. These studies have solely pro-
vided static observations of microfractures. Incorporating mineral distribution, mineral
calibration, interface mechanical parameter acquisition, strain measurement, and fracture
path overlay into experiments would greatly advance research on the effects of heterogene-
ity on the generation and propagation of microfractures.

5. The Measurement Methods for Microscale Mechanical Parameters and Deformation
Quantities in Shale

The quantitative measurement of microscale mechanical parameters and deformation
quantities in shale is of significant importance for studying the microfracture behavior
in shale during loading processes. This section presents a comprehensive overview of
the existing methods for quantitatively obtaining microscale mechanical parameters and
deformation measurements in shale.

5.1. Measurement of Microscale Mechanical Parameters in Shale

Shale, as a heterogeneous material with complex microstructures and mineral compo-
sitions, exhibits deformation and fracture characteristics closely related to mineral distribu-
tion and structure. Therefore, obtaining microscale mechanical parameters is fundamental
for studying microfracture propagation in shale. Currently, nanoindentation technology
and atomic force microscopy (AFM) are widely employed for testing the microscale mechan-
ical properties of shale (Figure 6) [74,75]. Nanoindentation technology involves real-time
monitoring of the penetration of an indenter into the material, allowing for the calculation
of parameters such as elastic modulus, hardness, fracture toughness, and creep coefficient
from the displacement-load curves. AFM, on the other hand, scans the surface of the test
sample using a probe fixed on a microcantilever and measures the position changes of the
microcantilever through optical detection or tunneling current detection. This provides
information about the surface morphology and mechanical properties of the sample. A
comparison between nanoindentation technology and AFM testing results in shale revealed
that AFM yielded superior results. This is due to the large contact area in nanoindenta-
tion technology, while AFM offers nanoscale measurement precision and captures more
comprehensive information [76].

The mechanical mode of atomic force microscopy (AFM) provides a means to map
the modulus distribution of interfacial phases by generating numerous force-displacement
curves, which characterize the variation in modulus across interfaces and phases. By
connecting AFM probes to predetermined molecular structures and employing correspond-
ing test substrates, the adhesion forces between molecules and nanoscale particles can
be quantified. This technique has been successfully applied in various fields including
nanocomposites, biological cell materials, and protein enzymes, for characterizing the adhe-
sive forces between two media [77]. In the field of geotechnical engineering, some studies
have utilized AFM to measure the interaction forces between coal particles and the elastic
modulus field at micro and nanoscale levels [78,79]. The subsequent application of this
method to characterize the adhesive forces between different mineral crystals and between
grains with different crystal orientations will advance the theoretical understanding of
shale mineral interface phases.
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5.2. In Situ Strain Measurement Method for Shale

In macroscopic rock mechanics experiments, strain gauges and displacement sensors
are commonly employed to quantitatively characterize the deformation process of rocks,
providing insights into their fracturing mechanisms based on the evolution of strain [82,83].
However, in the microscopic domain, how can strain information be obtained quantitatively
while microfractures are propagating? This poses a challenge as traditional measurement
techniques such as strain sensors cannot be used due to the inability to cover the sample
surface during in situ observation of fracture propagation.

Currently, the main methods for microscale strain characterization include digital
image correlation (DIC) and electron backscatter diffraction (EBSD) techniques [84,85].
DIC is a non-contact strain measurement technique that has been widely used in various
fields such as medicine, materials science, and aerospace due to its wide application range
and high precision. In the field of macroscopic rock mechanics experiments, DIC has
been extensively applied to measure the deformation and strain during rock fracturing
processes, and theoretical analyses have been conducted [86–88]. However, applying this
method in microscale rock mechanics experiments presents some challenges. If the rock
surface is left untreated and only relies on natural speckles, it may result in low contrast,
leading to insufficient accuracy in calculating the strain field [89]. Using traditional black
and white spray coatings during the speckle production process can result in larger and
unevenly distributed particles. This restricts the use of high magnification scanning electron
microscopy (SEM) observation, making it difficult to obtain accurate microscale strain
information at high magnifications (Figure 7) [90,91]. In addition to SEM, some researchers
have attempted to combine computed tomography (CT) with DIC to quantitatively analyze
the initiation, closure, shear, and accumulation features of microfractures in rocks during
different loading stages. However, this study still relies on natural speckles on the rock
surface, resulting in less accurate strain information [92].

Electron backscatter diffraction (EBSD) is a technique used for point-by-point and line-
by-line automated orientation measurements on the surface of a sample, with the acquired
data stored [93]. By combining the coordinates of each point in the sample coordinate
system and using crystal orientation as imaging criteria, image reconstruction known as
orientation imaging microscopy can be achieved. Characterizing and quantitatively analyz-
ing crystal orientation changes during crystal deformation processes contribute to a deeper
understanding of the inherent connection between plastic deformation behavior and the
initiation and propagation of microfractures. When materials undergo plastic deformation,
dislocations are generated within the crystals, along with low-angle dislocation boundaries.
Although EBSD cannot directly observe dislocations, it can measure orientation changes
caused by a large number of crystal dislocations, and the extent of these changes (misori-
entation) reflects the degree of crystal deformation. Specifically, this orientation change
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can be studied through Euler angles, pattern quality, small angle grain boundaries, inverse
pole figures, and misorientation [94]. Quantitative characterization of crystal deformation
behavior can be achieved by studying the changes in grain orientation, misorientation
angles, and Schmid factor evolution during in situ loading processes. This technique is
widely applied in materials science, and in the field of microscale rock deformation. It has
only been utilized in tectonic geology to investigate structural deformations in rocks and
infer their geological evolution history (Figure 7) [95]. Its application in in situ loading
experiments is still limited but holds significant potential for future development.
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6. Microscale Fracture Simulation in Shale

Due to the high difficulty and limited measurement methods of in situ microfracture
propagation observation tests, a clear understanding of the microscale fracture propagation
behavior cannot be achieved experimentally. However, numerical simulation modeling
is flexible and not restricted by experimental conditions, leading to abundant research
achievements in related fields. Currently, commonly used fracture propagation simu-
lation methods include discrete element methods and finite element methods [96–101].
In numerical simulations, widely adopted microscale fracture theories in shale include
brittle fracture theory, elastic–plastic theory, damage mechanics theory, and microplane
constitutive model theory. However, it should be noted that due to the discontinuous,
heterogeneous, and anisotropic nature of rock materials, a single constitutive theory is
insufficient to comprehensively reflect the microscale fracture behavior of shale.

In order to capture the influence of microstructural features on fracture propaga-
tion, various numerical models based on microstructural distributions have been de-
veloped. For example, the universal distinct element code (UDEC) particle boundary
model [102,103], three-dimensional distinct element code (3DEC)–Voronoi model [104,105],
three-dimensional polygon-based discrete element method (DEM) model [106], particle
flow code (PFC)–grain based model (GBM) model [107–109], and Irazu–GBM model [110].
Li et al. [22,111] employed the mineral distribution-based finite-discrete element method
(FDEM) to investigate the effects of boundary conditions, mineral geometry, and loading
rate on the fracture process and the initiation, propagation, and connection of microfrac-
tures under uniaxial compression conditions in granite. Lan et al. [15] conducted uniaxial
compression experiments based on the UDEC mineral distribution model and found that
the nonuniformity of grain size affects the distribution of tensile stress, making rocks with
nonuniform grain size more prone to tensile microfractures compared to rocks with uniform
grains. Li et al. [106] studied the influence of grain size on microfracture propagation based
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on the 3D polycrystalline discrete element method (3PDEM) mineral distribution-based
finite-discrete element method (FDEM)–Voronoi model and found that when the grain
size is larger, fracture propagation along the loading direction is easier, leading to a series
of perpendicular tensile failures, while for smaller grain sizes, microfractures are more
scattered. Xu et al. [24] established a uniaxial compression experimental model based on
the microstructure of coal rock and suggested that mineral interface microfractures are
generated due to nonuniform mineral strain, and the formation of tensile microfractures
dominates the rock’s uniaxial compressive failure behavior. Zhou et al. [60] investigated
the proportions of shear and tensile microfractures during uniaxial compression using
the PFC–GBM model. Saadat et al. [63] studied the formation and propagation processes
of microfractures in shear bands under different uniaxial compression loads using the
cohesive contact model (CCM) in PFC. Based on the methods provided in the aforemen-
tioned literature, these models can be conveniently used to model mineral distributions
in experiments and conduct mechanical calculations for studying fracture propagation
mechanisms and other related aspects (Figure 8).
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Figure 8. Simulation and modeling of microscale fracture propagation in rock based on mineral dis-
tribution. (a) Experimental testing of rock mineral distribution. (b) Utilizing digital image processing
techniques to obtain a grain-based sketch. (c) Generating computational models based on sketches
within numerical simulation. (d–j) Simulation of microscale fracture propagation in rock [112].

Despite rapid advancements in experimental techniques, there is still a lack of mea-
surement methods at the microscale level. For instance, the measurement of microscale
stresses can be inferred through inverse methods [113–115], but it is difficult to directly
measure stress within the microzones of materials. However, the combination of experi-
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ments and numerical simulations provides a promising approach for studying microscale
fracture propagation and its mechanical mechanisms. By conducting experiments to obtain
mechanical properties, mineral distribution, and microstrains during the process of frac-
ture propagation, and subsequently performing targeted numerical simulations, a better
understanding of the mechanical mechanisms governing microscale fracture propagation
can be achieved [36,116,117].

7. Challenges and Future Perspectives

Based on the literature review, the authors have identified several major challenges in
current research on shale microfractures and provided future research prospects. These include:

(1) The difficulty in quantifying experimental data such as strain and energy in in
situ observation experiments of shale microfractures. To address this issue, future studies
can utilize quantitative research methods such as high-precision acoustic emission and
microscale digital image correlation during in situ observation experiments to obtain infor-
mation on energy and strain during rock fracture processes. In addition, developing thin
shale sections for transmission electron microscopy observations can reveal the atomic-scale
deformation and fracture mechanisms of shale, thus advancing in situ observation studies.

(2) Limited research on the formation and evolution of non-planar fractures at mul-
tiple scales (macro, meso, and micro). More investigations are needed to understand the
experimental phenomena, common patterns, and mechanisms involved in fractures at
different scales.

(3) In-depth exploration of the definition of microscale heterogeneity and its influence
on the initiation and propagation of microfractures in shale. Questions regarding the defini-
tion of microscale heterogeneity in shale and the identification of the fundamental elements
of heterogeneity at different magnifications have yet to be answered. The advancement
of research in constitutive rock relationships and fracture theory will lead to significant
changes alongside deeper and more detailed studies. This requires the improvement of ex-
perimental techniques and interdisciplinary research collaboration among rock mechanics,
materials science, and physics.

(4) Difficulties in obtaining microscale mechanical parameters of shale, leading to a
significant lag in research compared to fields such as metals and materials science. The
problem of acquiring macro-scale interface mechanical parameters of rocks remains un-
solved, and obtaining microscale interface mechanical parameters is even more challenging.
If the microscale interface mechanical properties of rocks can be obtained, it would facilitate
research on macroscale rock interface issues and further advance rock mechanics theory.

(5) The main challenges in numerical simulation studies of shale microfractures lie
in inaccurate microscale mechanical parameters, difficulties in determining boundary
conditions, and unclear microfracture criteria. Consequently, numerical simulation studies
often rely on assumptions, model simplifications, and other limitations, making it difficult
to reach widely accepted conclusions. Despite the short-term difficulty in overcoming these
challenges, numerical simulations still play a crucial role in exploring rock fracture theories,
qualitative analysis, comparative studies, and visualization presentations.

8. Conclusions

(1) Optical microscopy, scanning electron microscopy, and computer tomography with
in situ loading devices are excellent experimental methods for dynamic observation of
microfracture propagation in shale. Experimental findings indicate that microfractures
in shale mainly propagate through discontinuous fracture initiation and connection. The
mechanism behind the generation of discontinuous fractures lies in the internal heterogene-
ity of shale, including mineral distribution, pore spaces, joints, cleavage, and fissures.

(2) Quantitative measurement of microscale mechanical parameters and deformation
quantities in shale plays a crucial role in understanding the behavior of microfractures
during loading processes. However, there is still room for improvement in terms of relevant
experimental testing methods.
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(3) Numerical simulation methods have been developed to study microfracture be-
havior in shale, leading to significant research achievements. However, their effectiveness
can be enhanced by mutual validation with laboratory test results, allowing for a better
understanding of the mechanical mechanisms behind microfracture propagation.
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