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Abstract: With the rapid development of deep learning, researchers are actively exploring its ap-
plications in the field of industrial anomaly detection. Deep learning methods differ significantly
from traditional mathematical modeling approaches, eliminating the need for intricate mathematical
derivations and offering greater flexibility. Deep learning technologies have demonstrated outstand-
ing performance in anomaly detection problems and gained widespread recognition. However, when
dealing with multivariate data anomaly detection problems, deep learning faces challenges such
as large-scale data annotation and handling relationships between complex data variables. To ad-
dress these challenges, this study proposes an innovative and lightweight deep learning model—the
Attention-Based Deep Convolutional Autoencoding Prediction Network (AT-DCAEP). The model
consists of a characterization network based on convolutional autoencoders and a prediction network
based on attention mechanisms. The AT-DCAEP exhibits excellent performance in multivariate time
series data anomaly detection without the need for pre-labeling large-scale datasets, making it an effi-
cient unsupervised anomaly detection method. We extensively tested the performance of AT-DCAEP
on six publicly available datasets, and the results show that compared to current state-of-the-art
methods, AT-DCAEP demonstrates superior performance, achieving the optimal balance between
anomaly detection performance and computational cost.

Keywords: deep learning; anomaly detection; convolutional autoencoder; attention mechanism;
unsupervised learning

1. Introduction

With the rapid development and widespread adoption of the Industrial Internet of
Things (IIoT), which involves the real-time collection of large volumes of industrial envi-
ronmental data through sensors, devices, and other IoT devices for data gathering, analysis,
and automated control in industrial environments [1–4], there has been an explosive growth
in time-series data. This presents significant challenges for information mining and pro-
cessing in modern industry [5,6]. The Industrial Internet of Things is a crucial driver for
the digital transformation of traditional manufacturing, energy, and power industries into
Industry 4.0. Any abnormal behavior in devices within the Industrial Internet of Things
nodes can lead to a series of errors, potentially causing major production accidents and
significant economic losses. Implementing automatic and accurate anomaly detection can
contribute to reducing such events. However, time-series anomaly detection remains a com-
plex task and continues to be a subject of significant research and attention [7]. Industrial
time-series anomaly detection faces the following challenges.

While deep learning shows promise in industrial anomaly detection, the multivariate
time-series data anomaly detection field still encounters significant challenges. In real
industrial production environments, the data generated often lack labels. Labeling the
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extensive data collected from sensors and smart devices requires substantial human and
material resources. Additionally, the challenge of data imbalance arises because the proba-
bility of actual device anomalies is extremely low. Improving model anomaly detection
capabilities in the absence of sufficient anomaly data samples is difficult. This poses a
substantial challenge to model training, necessitating research into how to train models to
recognize anomaly data in unbalanced datasets to achieve the desired outcomes. Further-
more, anomalies often result from the combined effects of multiple variables rather than
a single variable. Therefore, the inter-variable correlations cannot be ignored. However,
as the feature dimensions increase, it becomes more challenging to grasp the correlations
between variables [8,9].

To address these challenges, this paper proposes a multivariate time-series anomaly
detection method. Essentially, it extracts features through a convolutional autoencoder as a
characterization network to obtain reconstruction errors. It then utilizes an attention-based
prediction network to capture the time-dependent relationships of the reconstruction errors.
Finally, the two subnetworks are jointly optimized to minimize both reconstruction and
prediction errors, significantly enhancing the model’s anomaly detection performance.

The contributions of this paper are summarized as follows:

1. Introduction of the AT-DCAEP, a model that characterizes spatiotemporal patterns by
simultaneously performing reconstruction and prediction analyses. In the characteri-
zation network, we construct a convolutional autoencoder to extract spatial features
from multivariate time-series data. In the prediction network, we build an externally
attention-based prediction model to capture time dependencies.

2. Addition of multi-head attention between the convolutional encoder and decoder to
focus on crucial information in low-dimensional space. The inclusion of multi-head
attention is intended to model the distribution of low-dimensional feature space,
enhancing the characterization network’s reconstruction capabilities. Experimental
results show the effectiveness of this method in improving model accuracy.

3. Performance benchmarking of the AT-DCAEP against state-of-the-art anomaly detec-
tion methods on six publicly available datasets. Experimental results demonstrate that
AT-DCAEP significantly outperforms baseline methods, with a 5.68% improvement in
F1 score. Additionally, the AT-DCAEP achieves the optimal balance between anomaly
detection performance and computational cost.

In the conclusion of the introduction, we briefly outline the structure of the paper.
Section 2 reviews relevant work in the field of multivariate time series anomaly detection,
while Section 3 provides detailed explanations of the data processing methods and describes
our proposed approach. In Section 4, we elaborate on the data used and evaluation
metrics, with a focus on the results obtained on public datasets. Section 5 conducts a
thorough analysis of the proposed model, including ablative analysis, cost analysis, and
sensitivity analysis. Finally, Section 6 delves into the discussion of conclusions and outlines
future work.

2. Related Work

Classical methods for handling time-series anomaly detection problems can be catego-
rized into clustering [10], density-based [11], distance-based [12], and isolation-based [13]
approaches. Despite making some progress in time-series anomaly detection, these meth-
ods have limitations such as suboptimal performance due to insufficient consideration of
time dependencies and correlations between high-dimensional features.

As deep neural networks continue to evolve and improve, researchers are increas-
ingly exploring the use of deep neural networks to address time-series anomaly detection
challenges. Unlike traditional mathematical modeling approaches, deep neural networks
eliminate the need for explicit feature engineering, allowing them to better capture complex
patterns in data. In current anomaly detection benchmarks, one common approach involves
using recurrent neural networks (RNNs) [14] to identify pattern sequences and predict
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expected values. This is achieved by recognizing differences between predicted signals and
actual signals to determine anomalies.

Furthermore, researchers have proposed innovative approaches to address the chal-
lenges of unsupervised anomaly detection. For example, Chen et al. [15] introduced the
AutoEncode ensemble method, an unsupervised anomaly detection approach. It deter-
mines the presence of anomalies by randomly adjusting the connection architecture of
autoencoders and randomly dropping certain connections. This method achieves unsuper-
vised training, overcoming the lack of labeled data. Chen et al. [16] integrated LSTM and
AutoEncode, constructing an LSTM-AE performance evaluation model applied to the con-
tinuous monitoring of wind turbine states. They validated the effectiveness of this method
on real wind turbine condition monitoring (CM) data. Park et al. [17] employed a Long
Short-Term Memory Variational Autoencoder (LSTM-VAE). They introduced a progress-
based change prior, identifying anomalies by merging signals and reconstructing their
expected distributions. If the reconstructed anomaly score exceeds a state-based threshold,
it is considered an anomaly. Due to the capability of Convolutional Long Short-Term Mem-
ory (ConvLSTM) [18] in modeling spatiotemporal correlations using convolutional layers
instead of fully connected layers, Kim et al. [19] proposed a method called the C-LSTM
neural network for effectively detecting anomalies in network traffic data. This method
combines Convolutional Neural Networks (CNNs) [20] for extracting spatial features and
LSTM models for extracting temporal features.

The DAGMM method proposed by Zong et al. [21] utilizes a deep autoencoder Gaus-
sian Mixture Model for dimensionality reduction in feature space and uses a recursive
network for time modeling. Li et al.’s MAD-GAN [22] employs an LSTM-based GAN
model to simulate the distribution of time series using a generator. This work not only
utilizes prediction errors but also incorporates discriminator loss in anomaly scores. Su et al.
proposed OmniAnomaly [23], a random recursive neural network for multivariate time-
series anomaly detection. The network learns robust representations of multivariate time
series through random variable connections and plane normalization flow, determining
anomalies using reconstruction probabilities. CAE-M [24] uses a convolutional autoencoder
memory network similar to MSCRED [25]. However, these recursive neural-network-based
models often come with higher computational costs and face challenges in scalability. These
innovative approaches bring new perspectives and solutions to the field of unsupervised
anomaly detection.

The recent USAD [26] method takes an innovative approach, utilizing an autoencoder
with two decoders and an adversarial training framework. By using a simple autoencoder,
this method significantly reduces training time. The GDN [27] method focuses on learning
the relationship graph between data patterns and adopts attention-based prediction and
bias scoring to generate anomaly scores. The transform-based anomaly detection and
diagnostic network, TranAD [28], uses attention-based sequence encoders to quickly infer
more extensive time trends in the data. These methods represent cutting-edge research
in the field of time-series anomaly detection, offering new possibilities for addressing
complex problems.

Recently, researchers have increasingly focused on leveraging adversarial training to
enhance the ability of autoencoders in normal data reconstruction. While this approach
has proven effective, it typically requires more training time. Considering that industrial
anomaly detection often involves research on large-scale datasets, computational perfor-
mance remains a crucial metric. To address this issue, this study proposes an innovative,
lightweight, deep spatiotemporal network anomaly detection method based on attention
mechanisms. Our goal is to significantly reduce training time while enhancing anomaly de-
tection performance, meeting the dual requirements of high performance and fast training
in industrial anomaly detection.
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3. Materials and Methods
3.1. Problem Formulation

Industrial multivariate time series data involve multiple variables. In this research, mul-
tivariate time series sampled at regular intervals are denoted as X = {x1, · · · , xT} ∈ RT×k,
where T represents the maximum length of timestamps and k represents the number of
variables. Each time observation xt ∈ Rk represents data from multiple variables collected
at timestamp t, and each xt is a k-dimensional vector. Multivariate time series anomaly
detection is utilized to identify whether a time observation point is anomalous. When given
a time series X, the corresponding anomaly label sequence is denoted as Y = {y1, · · · , yT},
where yt ∈ {0, 1}. A label of 0 indicates that the time point at timestamp t is normal, while
a label of 1 indicates an anomaly at timestamp t.

3.2. Data Preprocessing

In the analysis of industrial multivariate time series, due to significant variations in
numerical values across different variables, this study utilizes the Min–Max normalization
method to alleviate the adverse effects stemming from large numerical differences among
variables in time series data. Normalization is applied to each dimension of the time series
data using the following formula:

xi =
xt − min(xtrain,i)

max(xtrain,i)− min(xtrain,i)+ ∈′ , (1)

where max(xtrain,i) and min(xtrain,i) represent the maximum and minimum values, respec-
tively, on the i-th dimension in the training set. The symbol ∈′ denotes a small constant
vector used to prevent division by zero. Since time series exhibit temporal correlations,
i.e., there is temporal dependence between different time points, this study takes into
account the dependency relationship between the current time point and historical time
points. A fixed-length input is created using a sliding window of length n, denoted as
St = {xt−n+1, · · · , xt−1, xt}. For model training, instead of directly using X as the model
input, the multivariate time series X is segmented into sliding windows S to serve as the
model input. This approach enables the model to assess the anomaly of the time obser-
vation xt by considering not only xt itself but also the historical temporal dependencies
associated with xt.

3.3. Proposed Model

The model proposed in this paper mainly consists of two subnetworks. The first
subnetwork is the characterization network, responsible for extracting low-dimensional
spatial features from multivariate time-series data and calculating reconstruction errors.
The second subnetwork is the prediction network, designed to capture time-dependent
relationships. The characterization network encodes spatial information from multivariate
time-series data into a low-dimensional representation. The incorporation of multi-head
attention aims to focus on crucial information in the low-dimensional feature space. Subse-
quently, the characterization network calculates reconstruction errors. These reconstruction
errors are then provided to the prediction network, which is based on an attention mecha-
nism. The prediction network captures the temporal dependencies of the reconstruction
errors from the characterization network and utilizes external attention to focus on impor-
tant temporal information. Finally, both the characterization network and the prediction
network undergo end-to-end training. For normal data, the reconstruction values gener-
ated by encoding the data are like the original input sequence, and the predicted values
are like the future values of the time series. In contrast, for anomalous data, there is a
significant deviation in both reconstruction and prediction values. Therefore, during the
inference process, anomalies are precisely detected by calculating the anomaly score in the
composite model.
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We use the POT algorithm [29] to automatically calculate the anomaly threshold.
When the anomaly score exceeds the threshold, we identify it as an anomalous event;
otherwise, we consider it as a non-anomalous event. Figure 1 illustrates the proposed
network architecture. In the figure, S′ represents the output of the characterization network,
and R denotes the reconstruction error of the characterization network, computed as the
square difference between the original input data S and S′. R′ signifies the extracted low-
dimensional key feature information D′ combined with the downsampled features of R.
P represents the prediction error of the prediction network, calculated by subtracting Pout
from R.
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3.4. Characterization Network

To better learn the spatial features of multivariate time-series data, we adopt a con-
volutional autoencoder structure suitable for handling anomaly detection in multivariate
time-series data [30]. This structure integrates CNN into the AutoEncode framework,
where the convolutional kernel slides in the time dimension, extracting features at different
time steps. By stacking multiple convolutional layers, higher-level time-series features are
gradually extracted, learning the features and patterns of multivariate time-series data.
The AutoEncode structure, through backpropagation and optimization methods like gra-
dient descent, uses the input data itself as supervision to guide the neural network in
attempting to learn a mapping relationship, resulting in a reconstructed output, achieving
unsupervised training. The characterization network consists of three main parts: encoder,
low-dimensional feature extraction, and decoder. The structure of the characterization
network is illustrated in Figure 2.
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The encoding process from the input layer to the hidden layer for the raw data S:

D = Encoder(S). (2)
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The process of extracting low-dimensional features:

D′ = MultiHeadAtt(D, D, D). (3)

The decoding process from the hidden layer to the output layer:

S′ = Decoder
(

D′). (4)

The role of the encoder is to encode the high-dimensional input S into a low-dimensional
latent variable D, enabling the neural network to learn the most informative features. The
encoder achieves this by mapping the input S to the hidden representation D through
two one-dimensional convolutional layers and one dropout layer. The addition of the
dropout layer aims to enhance the network’s robustness, contributing to improved per-
formance on noisy or highly variable data. The stride of each convolutional layer is set to
2, reducing the dimension of features and generating smaller-sized output feature maps
based on the size of the convolutional kernel.

The intermediate hidden layer features encoded by the encoder, which represent the
low-dimensional spatial feature information D, play a crucial role in identifying anomalies.
Methods like CAE-M and DAGMM emphasize the significance of these features. To focus
on the crucial information in the low-dimensional spatial features D, we introduce multi-
head attention [30] into the low-dimensional space. Multi-head attention is capable of
learning relationships between different low-dimensional features, combining various
features to enhance the representation of the low-dimensional space, and capturing diverse
dependencies within the low-dimensional space.

The calculation for each attention head di(i = 1, · · · , h) in multi-head attention, given
query q ∈ Rdq , key k ∈ Rdk , and value v ∈ Rdv , is as follows:

di = f
(

W(q)
i q, W(k)

i k, W(v)
i v

)
∈ Rpv , (5)

W(q)
i ∈ Rpq×dq , W(k)

i k ∈ Rpk×dk , and W(v)
i ∈ Rpv×dv are learnable parameters. f represents

the attention pooling function. The output of multi-head attention undergoes a linear
transformation by concatenating multiple heads together and can be expressed as

Wo · di ∈ Rpv , (6)

where Wo ∈ Rpo×hpv is a learnable parameter. Based on this design, each head can focus
on different parts of the low-dimensional features. Through this multi-head attention
mechanism, the model can capture the intrinsic relationships within the low-dimensional
spatial features. We have demonstrated the effectiveness of this approach through abla-
tion experiments.

The role of the decoder is to map the crucial information from the low-dimensional spa-
tial features D′ through reconstruction back to the original input space. Decoding involves
transforming from a narrow representation to a wide reconstruction matrix, accomplished
using transpose convolutional layers to increase width and height. The working principle
of these layers is almost identical to convolutional layers but in reverse. We use the Rectified
Linear Unit (ReLU) as the activation function for the convolutional layers.

During model training, only normal data are provided as training data, enabling the
model to learn to reconstruct normal input data as accurately as possible. The ideal scenario
is that the decoder’s output S′ can perfectly or approximately recover the original input S.
The reconstructed values S′, having the same structure as S, represent the reconstruction.
The square of the difference between the original input data and their reconstruction is
defined as the reconstruction error R. In this context, we utilize the Mean Squared Error
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(MSE) to measure the proximity between the original input and its reconstruction, as
described by the following equation:

Lreconstruction =
∥∥S − S′∥∥

2 (7)

3.5. Prediction Network

To simultaneously capture the temporal and spatial dependencies of multivariate
time series data, our proposed model characterizes the complex spatiotemporal patterns of
multivariate time series data through both reconstruction analysis and prediction analysis.
We use the reconstruction error of the characterization network as the original input R
for the prediction network. A prediction network with a large reconstruction error will
be more challenging to predict, resulting in a larger prediction error, while a prediction
network with a smaller reconstruction error will be easier to predict, leading to a smaller
prediction error.

The reconstruction error R is first fed into a one-dimensional convolutional layer with
a stride of 4 and a kernel size of 1. The convolution operation downsamples the input
sequence, reducing the number of time steps to one-fourth of the original. This helps reduce
the computational cost of the model, improving training and inference efficiency. Using a
kernel size of 1 in the convolutional layer is equivalent to performing independent linear
transformations on the features of each time step. This aids the model in extracting and
learning specific features for each time step without introducing a local perception field.
Additionally, it allows for the reduction in the number of channels in the output of the
convolutional layer while preserving input features. This helps compress the input data,
making the model’s representation more compact and enhancing its ability to abstract input
features. By aligning feature sizes, we merge the downsampled reconstruction loss with the
low-dimensional feature information D′ extracted by the characterization network to obtain
R′. The purpose of this fusion is to introduce the low-dimensional feature representation
learned by the characterization network into the features encoded after the reconstruction
error. This fusion enables the network to comprehensively consider the information of
the reconstruction loss and effectively handle it in the prediction network. In this way,
a balance is achieved between the reconstruction error and the features learned by the
characterization network to improve the overall performance and generalization ability
of the entire network. Finally, R′ is upsampled to the original size to obtain the input
E of the prediction function through a similar transpose convolution, as shown in the
following equation:

D′ = Downsample(R) + D′, (8)

E = Upsample
(

D′). (9)

Prediction functions come in various types, such as the Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) [31]. The
original RNN struggles to learn long-term dependencies. In this work, we employ LSTM, a
type of Recurrent Neural Network introduced by Hochreiter and Schmidhuber in 1997 [32].
Unlike conventional feedforward neural networks, LSTM networks can analyze input
sequences over time. LSTM proves effective in transmitting and expressing information
in long-time sequences, addressing the common issue of long-term dependencies being
overlooked or forgotten in general recurrent neural networks. Additionally, LSTM resolves
the problem of vanishing/exploding gradients present in RNNs. It employs a specialized
architecture that integrates “gates” into the structure, consisting of four main components:
forget gate ft, input gate it, output gate ot, and a memory cell Ct. et represents the input at
the t-th time step in E. The computation process for the hidden state ht is as follows:

ft = σ (W f ·[ht−1, et] + b f ), (10)

it = σ(Wi·[ht−1, et] + bi), (11)
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ot = σ(Wo·[ht−1, et] + bo), (12)
∼
Ct = tanh · (Wc · [ht−1, et] + bc), (13)

Ct = ft × Ct−1 + it ×
∼
Ct, (14)

ht = ot × tanh(Ct), (15)

Here, [ht−1, et] represents the horizontal concatenation of the hidden state ht−1; the
input et,σ(·) and tanh(·), respectively, represent the sigmoid and tanh activation functions;
Wg denotes weights; g stands for the gate neuron; bg is the bias of the gate; and h is the
output of the previous LSTM cell. The LSTM forget gate, memory gate, and output gate
control the information preservation and transmission in the LSTM, ultimately reflecting
in the cell state Ct and output signal ht. The key to LSTM is the cell state, which is like a
conveyor belt running through the entire chain. The LSTM cell state allows the unit state to
forget and replace values; then, it decides which values to output and sends them to the
next unit. It controls the information passed to the next time step during the computation
of the hidden state. It can consider global and local time information when calculating the
hidden state.

To better handle time series data, we also introduce an attention mechanism, allowing
the model to focus more on important information. Self-attention mechanisms [33] are
widely used in computer vision [34], natural language processing [35], and other tasks due
to their ability to capture long-term dependencies. However, self-attention mechanisms
have a significant drawback: they require a considerable amount of computation, leading
to some computational redundancy. Moreover, self-attention mechanisms only utilize infor-
mation within their samples, neglecting potential connections between different samples.

To extract long-term dependencies in time series data and the potential connections
between samples while reducing computational costs, we employ an external attention
mechanism [36] using a small, learnable, and shared memory. External attention only uses
two linear layers and normalization layers, possessing linear complexity and implicitly
considering relationships between different feature maps.

External attention is achieved by introducing two external memory units, implicitly
learning features of the entire dataset. It computes attention between the input and ex-
ternal memory units. The memory unit is represented as M ∈ RF×d, where F and d are
hyperparameters. It can be expressed as

A = (α)i,j = Norm (OMT ), (16)

Pout = AM, (17)

where O represents the output of the LSTM at each time step in the input sequence and (α)i,j
represents the similarity between the i-th element and the j-th row of M. The memory unit is
a parameter independent of the input, serving as the memory for the entire training dataset.

In the output layer, the prediction error P is obtained by calculating the difference
between the output Pout of the prediction network and the true value R. The loss function
of the prediction network can be expressed as

Lpredict = ∥R − Pout∥2. (18)

3.6. Loss Function

We aim to minimize the loss function of AT-DCAEP, which consists of two parts:
the reconstruction loss of the characterization network and the prediction loss of the
prediction network. Our objective is to obtain better low-dimensional representation
and reconstruction scores for multivariate time series data, along with crucial temporal
information. The optimized loss function can be expressed as

L =
∥∥S − S′∥∥

2 + ∥R − Pout∥2, (19)
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where ∥S − S′∥2 represents the reconstruction loss of the characterization network. A lower
reconstruction loss indicates a good reconstruction of normal data. If the characterization
network reconstruction is not good, the use of the prediction network to obtain prediction
scores will be unreliable.

The term ∥R − Pout∥2 denotes the prediction loss of the prediction network. By mini-
mizing the prediction loss, we ensure that the low-dimensional representation and recon-
struction error in the characterization network accurately express key information for the
current period. By minimizing both terms, we enable AT-DCAEP to effectively learn useful
low-dimensional representation information for multivariate time series data, excelling in
both reconstruction and capturing critical temporal information.

3.7. Inference

During the inference process, the reconstruction error is first obtained through the
characterization network. Higher reconstruction scores are assigned to time steps with
sudden changes in the time series. In the prediction network, greater attention is given
to time series with larger deviations. The anomaly score is a linear combination of the
reconstruction score and the prediction score, where α and β determine their relative
influences, serving as tunable hyperparameters. The final expression for the anomaly score
is as follows:

Anomaly score = α
∥∥S − S′∥∥

2 + β∥R − Pout∥2, (20)

After processing with the anomaly score function, the anomaly score for each sample
is calculated. To ensure a fair comparison with other testing methods, we also use the POT
(Peak Over Threshold) algorithm to select the threshold automatically and dynamically.
Essentially, this is a statistical method that fits the data distribution to the generalized
Pareto distribution using the “extreme value theory”. During the inference process, if
the anomaly score is greater than the threshold automatically calculated by POT, the test
sample is labeled as anomalous (1); otherwise, it is labeled as normal (0). Algorithm 1
outlines the complete training and inference process for AT-DCAEP.

Algorithm 1: Training and Inference procedure of AT-DCAEP

Training process
Input: Training dataset S
Output: Model parameter w
Randomly initialize parameter w;
1: while not converge do
2: Calculate low-dimensional representation D′ and reconstruction error R at each time step;
//Equations (2) and (3)
3: Apply downsampling to the reconstruction error R to get R′′ ; //Equation (8)
4: Add D′ and R′ and upsample to get E for each sample; //Equations (8) and (9)
5: Predict the value Pout using E by Attention-based LSTM model; //Equations (10)–(17)
6: Update w by minimizing the compound objective function; //Equation (19)
7: return Optimal w;

Inference process
Input: Testing dataset Ŝ, model parameter w, hyperparameters α and β

Output: Label of all Ŝi
1: for all Ŝi do
2: Calculate the Anomaly Score; //Equation (20)
3: Calculate the decision threshold THR by using POT;
4: if Anomaly Score > THR then
5: yi = 1;
6: else
7: yi = 0;
8: return Label of all Ŝi;
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4. Experiments
4.1. Datasets

We utilized six publicly available datasets in our experiments. Table 1 summarizes
their characteristics, where (%) indicates the percentage of anomalous data points in
the dataset.

1. Soil Moisture Active Passive (SMAP) Dataset: This dataset comprises soil samples
and telemetry information from NASA’s Mars rover [37].

2. Secure Water Treatment (SWaT) Dataset: Originating from an actual water treatment
plant, this dataset includes 11 days of continuous operation data, with 7 days of
normal operation and 4 days of anomalous operation [38]. The dataset consists of
sensor values (water level, flow, etc.) and actuator operations (valves and pumps).

3. Water Distribution (WADI) Dataset: An extension of the SWaT system, it has more
than twice the number of sensors and actuators compared to the SWaT model [39].
The dataset spans 16 days, with 14 days of normal operation and 2 days of anoma-
lous operation.

4. Server Machine Dataset (SMD): SMD is a newly released dataset collected by a large
internet company over 5 weeks, containing monitoring data from 28 machines in a
computing cluster [23]. SMD is divided into two equally sized subsets: the first half
serves as the training set and the second half as the testing set.

5. Multi-Source Distributed System (MSDS) Dataset: This dataset comprises high-quality
multi-source data, including distributed traces, application logs, and metrics from a
complex distributed system [40]. Constructed specifically for artificial intelligence
operations, it involves tasks such as automatic anomaly detection, root cause analysis,
and remediation.

6. MIT-BIH Supraventricular Arrhythmia Database (MBA): Collected from four patients,
this dataset includes electrocardiogram recordings with multiple instances of two
different types of anomalies (atrial premature contractions or premature beats) [41,42].
It is a widely used, large-scale dataset in the data management community [43,44].

Table 1. Benchmarked datasets.

Dataset Train Test Dimensions Anomalies (%)

MSDS 146,430 146,430 10 5.37
SMD 708,405 708,420 38 4.16

WADI 1,048,571 172,801 123 5.99
SWaT 496,800 449,919 51 11.98
SMAP 135,183 427,617 25 13.13
MBA 100,000 100,000 2 0.14

4.2. Evaluation Metrics

We employ Precision (P), Recall (R), Receiver Operating Characteristic/Area Under
the Curve (ROC/AUC), and F1 score (F1) to assess the performance of anomaly detection:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2 · P · R
P + R

, (21)

where TP represents true positives, FP is false positives, and FN is false negatives. P and
R signify precision and recall, respectively. A higher F1 score indicates better performance.
We partition 20% of the original testing dataset as the validation set and the remaining
80% as the testing set. After completing all model training, we measured the AUC and F1
scores on the test dataset.

4.3. Results

We conducted comparative experiments with various baseline methods, including
DAGMM [21], MAD-GAN [22], OmniAnomaly [23], CAE-M [24], MSCRED [25], USAD [26],
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GDN [27], TranAD [28], MERLIN [45], and MTAD-GAT [46]. We evaluated these methods
on six different datasets, measuring their performance through comparisons of precision,
recall, AUC, and F1 scores. For a direct comparison with the benchmarks proposed by
TranAD, we adopted their evaluation methodology.

As shown in Table 2, on average, the AT-DCAEP model achieved an average F1
score of 0.9191 across the six datasets. While it performed slightly poorer on the SWaT
dataset compared to other methods, it exhibited significantly superior F1 scores on the
remaining five datasets. Due to the longer sequence length and complex data patterns
in the WADI dataset, all models showed relatively inferior performance on this dataset.
However, our proposed approach demonstrated remarkable effectiveness on the WADI
dataset compared to other methods. Specifically, the AT-DCAEP outperformed state-of-the-
art baseline models with a 5.68% increase in the average F1 score across the six datasets.
These results indicate the significant advantages of the AT-DCAEP in multivariate time
series anomaly detection tasks.

Table 2. Performance comparison of AT-DCAEP with baseline methods. P: Precision, R: Recall, AUC:
Area Under the ROC Curve, F1: F1 score on the entire training dataset. The best F1 and AUC scores
are highlighted in bold.

Method
MBA SMAP SMD

P R AUC F1 P R AUC F1 P R AUC F1

DAGMM 0.9475 0.9999 0.9858 0.9730 0.8069 0.9999 0.9884 0.8931 0.9402 0.9973 0.9954 0.9679
OmniAnomaly 0.8595 0.9999 0.9581 0.9244 0.7991 0.9999 0.9878 0.8883 0.9884 0.9985 0.9986 0.9934

MERLIN 0.9846 0.0492 0.5244 0.0937 0.1577 0.9999 0.7426 0.2725 0.2849 0.5628 0.7084 0.3783
MSCRED 0.9249 0.9999 0.9792 0.9610 0.8175 0.9216 0.9821 0.8664 0.7276 0.9974 0.9921 0.8414

MAD-GAN 0.9396 0.9999 0.9835 0.9688 0.8157 0.9999 0.9891 0.8984 0.9999 0.4023 0.7011 0.5737
USAD 0.8953 0.9999 0.9700 0.9447 0.8139 0.9999 0.9889 0.8974 0.9069 0.9973 0.9933 0.9499

MTAD-GAT 0.9897 0.9897 0.9973 0.9948 0.7517 0.9999 0.9840 0.8582 0.8210 0.9215 0.9921 0.8683
CAE-M 0.8789 0.9999 0.9647 0.9355 0.8395 0.9999 0.9907 0.9127 0.6954 0.9973 0.9933 0.9499

GDN 0.8441 0.9999 0.9527 0.9154 0.9476 0.4117 0.7047 0.5740 0.7169 0.9973 0.9783 0.8342
TranAD 0.9569 0.9999 0.9884 0.9779 0.8043 0.9999 0.9882 0.8915 0.9072 0.9973 0.9934 0.9501

AT-DCAEP 0.9923 0.9999 0.9980 0.9961 0.8904 0.9999 0.9940 0.9420 0.994 0.9981 0.9987 0.9960

Method
SWaT WADI MSDS

P R AUC F1 P R AUC F1 P R AUC F1

DAGMM 0.9932 0.6878 0.8435 0.8128 0.4940 0.8295 0.9047 0.6192 0.9999 0.8125 0.9062 0.8965
OmniAnomaly 0.9760 0.6956 0.8465 0.8123 0.7837 0.6541 0.8249 0.7131 1.0000 0.7964 0.8982 0.8867

MERLIN 0.6559 0.2546 0.6174 0.3668 0.0635 0.7669 0.7499 0.1174 0.7254 0.3110 0.5022 0.4353
MSCRED 0.9999 0.6770 0.8385 0.8074 0.2513 0.7319 0.8412 0.3741 1.0000 0.7983 0.8943 0.8878

MAD-GAN 0.9593 0.6956 0.8456 0.8064 0.2233 0.9124 0.8026 0.3588 0.8157 0.9216 0.9891 0.8654
USAD 0.9977 0.6878 0.8438 0.8143 0.1989 0.8295 0.8753 0.3208 0.7480 0.9627 0.9890 0.8419

MTAD-GAT 0.9760 0.6956 0.8465 0.8123 0.2818 0.8012 0.8821 0.4169 0.9997 0.8888 0.9441 0.9410
CAE-M 0.9593 0.6956 0.8456 0.8064 0.2782 0.7918 0.8728 0.4117 0.9999 0.8815 0.9407 0.9370

GDN 0.9696 0.6956 0.8462 0.8101 0.2912 0.7931 0.8777 0.4260 0.9726 0.8606 0.8988 0.9132
TranAD 0.9977 0.6878 0.8438 0.8143 0.3992 0.8295 0.9000 0.5390 0.9999 0.8125 0.9062 0.8965

AT-DCAEP 0.9977 0.6770 0.8383 0.8066 0.7880 0.8295 0.9121 0.8082 0.9924 0.9406 0.9609 0.9658

4.4. Hyperparameter Experiments

To explore the impact of the number of stacked convolutional layers (denoted as N)
on the model’s performance, we experimented with different values of N. By comparing
the model’s AUC and F1 scores when N = 2 and N = 3, we observed that stacking more
convolutional layers did not necessarily lead to better performance. The specific results
are presented in Figure 3. In the case of N = 3, both AUC and F1 scores showed a slight
decrease across the six datasets. This suggests that increasing the number of convolutional
layers does not always significantly improve model performance and may even have a
negative impact.
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We also conducted a study on the impact of the number of convolutional kernels
on the effectiveness of anomaly detection. We configured different numbers of convo-
lutional kernels to compare their performance in the model. Specifically, we designed
three configurations with different numbers of convolutional kernels: the first layer of
the convolutional encoder had 32 kernels and the second layer had 16 kernels (denoted
as AT − DCAEPA); the first layer had 48 kernels and the second layer had 24 kernels
(denoted as AT − DCAEPB); the first layer had 64 kernels and the second layer had
32 kernels (denoted as AT − DCAEPC). The convolutional decoder mirrored the hier-
archical structure of the convolutional encoder. We compared the performance of these
three configurations with different numbers of convolutional kernels, and the results are
presented in Table 3. It is observed that, for the SWaT, SMD, and SMAP datasets, adopting
a larger number of convolutional kernels did not enhance the performance of anomaly
detection. In the MSDS, WADI, and MBA datasets, increasing the number of convolutional
kernels even led to a decrease in performance. This indicates that augmenting the number
of convolutional kernels does not always significantly improve performance; instead, it may
increase computational costs. Therefore, careful consideration is required when choosing
the stack depth of convolutional layers and the number of convolutional kernels, balancing
performance and computational costs.

Table 3. Impact of the number of convolutional kernels on performance.

Method
AT−DCAEPA AT−DCAEPB AT−DCAEPC

P R AUC F1 P R AUC F1 P R AUC F1

MSDS 0.9924 0.9406 0.9609 0.9658 0.8881 0.9956 0.8344 0.9387 0.8400 0.9983 0.7516 0.9123
SWaT 0.9977 0.6770 0.8383 0.8066 0.9977 0.6770 0.8383 0.8066 0.9977 0.6770 0.8383 0.8066
SMD 0.9940 0.9981 0.9987 0.9960 0.9940 0.9981 0.9987 0.9960 0.9940 0.9981 0.9987 0.9960

WADI 0.7880 0.8295 0.9121 0.8082 0.7421 0.8295 0.9113 0.7834 0.7438 0.8295 0.9114 0.7843
SMAP 0.8904 0.9999 0.9940 0.9420 0.8904 0.9999 0.9940 0.9420 0.8883 0.9999 0.9939 0.9408
MBA 0.9923 0.9999 0.9980 0.9961 0.9870 0.9999 0.9966 0.9934 0.9900 0.9999 0.9974 0.9950
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The adjustment of parameters α and β in the model is crucial, as they serve as tunable
parameters with a significant impact on model effectiveness. A larger α corresponds to a
stronger emphasis on the reconstruction contribution of the convolutional autoencoder in
anomaly scoring, while a larger β corresponds to a greater emphasis on the contribution of
prediction. Adjusting these parameters without retraining the model is essential for tuning
detection sensitivity. Table 4 reports the impact of different α and β values on detection
performance, including precision, recall, AUC, and F1 scores.

Table 4. Anomaly detection results on the WADI dataset based on different sensitivities.

α β P R AUC F1

0.1 0.9 0.6968 0.8295 0.9105 0.7574
0.2 0.8 0.7660 0.8295 0.9117 0.7966
0.3 0.7 0.7880 0.8295 0.9121 0.8082
0.4 0.6 0.7791 0.6541 0.8248 0.7111
0.5 0.5 0.7981 0.6541 0.8251 0.7190
0.6 0.4 0.8233 0.6541 0.8254 0.7290
0.7 0.3 0.8585 0.6541 0.8257 0.7425
0.8 0.2 0.8758 0.6541 0.8259 0.7489
0.9 0.1 0.8938 0.6541 0.8261 0.7554

It is observed that by increasing α and decreasing β, precision improved by 28.27%
but recall decreased by 21.14%. The best AUC and F1 scores were achieved at α = 0.3
and β = 0.7. Therefore, by adjusting α and β, the sensitivity of anomaly detection in the
AT-DCAEP model can be parameterized to meet the requirements of real production
environments. This tuning allows a single model to achieve different levels of sensitivity,
catering to various needs in different layers of real production environments.

4.5. Visualizing Anomaly Results

Regarding the effectiveness of anomaly detection, taking the SMD 1-1 sensor dataset
as an example, we illustrate the fluctuation of real values for variables 1 and 12 on the
test set and their corresponding anomaly scores at each timestamp. Figure 4 indicates that
the model performs well on the testing set, effectively expressing normal data. However,
for anomalous data, the model struggles to represent them accurately, leading to higher
anomaly scores.
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To vividly showcase the effectiveness of our proposed anomaly detection method,
we also visualize its performance on the MBA dataset. In Figure 5, subplots 1–4 and 5–8,
respectively, display the real time series data, reconstruction scores, prediction scores, and
anomaly scores for variables 1 and 2 in the MBA dataset. In Figure 6, subplots 1–4 present
the real time series data, reconstruction scores, prediction scores, and anomaly scores. The
blue area represents true anomaly regions, while the pink area indicates predicted anomaly
regions. Anomalous behavior in one variable in multivariate time series data may trigger
a series of events, leading to anomalies in other variables. The AT-DCAEP accurately
localizes anomalous behavior to specific variables. As observed in the figure, our method
accurately identifies most anomalous states in variables 1 and 2. Additionally, we find
that combining reconstruction scores and prediction scores effectively enhances anomaly
detection performance.
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Through the visual presentation of anomaly detection results, the effectiveness of our
method in multivariate time series data anomaly detection is clearly demonstrated, making
a significant contribution to the advancement of the field.
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5. Analysis
5.1. Ablation Study

To investigate the relative importance of each component in the model, we conducted
ablation experiments, observing the change in model performance after removing each
major component. The evaluation was based on AUC and F1 scores. Specifically, we
considered the following scenarios:

• AT−DCAEPw/o Pre: removal of the prediction network, retaining only the characteriza-
tion network for computing reconstruction error;

• AT−DCAEPw/o LSTM: removal of the LSTM component from the prediction network;
• AT−DCAEPw/o EAT: removal of the external attention component from the predic-

tion network;
• AT−DCAEPw/o LDFF: removal of low-dimensional feature fusion, i.e., no fusion of

low-dimensional features extracted by the characterization network in the predic-
tion network;

• AT−DCAEPw/o MAT: removal of the multi-head attention module for low-dimensional
feature extraction in the characterization network.

The experimental results are summarized in Table 5, indicating a corresponding
performance decrease in F1 scores when different components are removed. Specifically,
the AT-DCAEP model without the prediction model experiences an average decrease of
5% in F1 scores. This decrease is more pronounced in the WADI and MSDS datasets, with
reductions of 8.5% and 12.7%, respectively, emphasizing the effectiveness and necessity of
our composite model for anomaly detection in multivariate time series data.

Table 5. Ablation study of AT-DCAEP and its ablated versions with AUC and F1 scores.

Method
WADI MSDS MBA

AUC F1 AUC F1 AUC F1

AT − DCAEPw/o Pre 0.8257 0.7393 0.5163 0.8433 0.9545 0.9183
AT − DCAEPw/o LSTM 0.8257 0.7425 0.9577 0.9613 0.9978 0.9957
AT − DCAEPw/o EAT 0.8259 0.7467 0.9591 0.9630 0.8383 0.8066
AT − DCAEPw/o LDFF 0.9120 0.8063 0.9577 0.9613 0.9979 0.9959
AT − DCAEPw/o MAT 0.9105 0.7574 0.7461 0.9106 0.9708 0.9461

AT − DCAEP 0.9121 0.8082 0.9609 0.9658 0.9980 0.9961

Method
SMAP SMD SWaT

AUC F1 AUC F1 AUC F1

AT − DCAEPw/o Pre 0.9933 0.9355 0.9982 0.9945 0.8425 0.8061
AT − DCAEPw/o LSTM 0.9939 0.9408 0.9983 0.9956 0.8424 0.8054
AT − DCAEPw/o EAT 0.9938 0.9396 0.9983 0.9956 0.8451 0.8035
AT − DCAEPw/o LDFF 0.9938 0.9402 0.9983 0.9956 0.8423 0.8047
AT − DCAEPw/o MAT 0.9938 0.9402 0.9982 0.9942 0.8423 0.8047

AT − DCAEP 0.9940 0.9420 0.9987 0.9960 0.8383 0.8066

Compared with the original AT-DCAEP model, removing the external attention com-
ponent (AT − DCAEPw/o EAT ) results in a 7.6% decrease in the F1 score for the WADI
dataset and a 19% decrease for the MBA dataset, highlighting the critical role of external
attention in the model. Similarly, removing the multi-head attention for low-dimensional
feature extraction significantly reduces performance on most datasets, indicating the effec-
tiveness of multi-head attention in capturing the relevance of low-dimensional features.

5.2. Overhead Analysis

The computational cost of the model is also a crucial evaluation criterion. An excel-
lent algorithm for large-scale data should efficiently detect anomalies. To compare the
computational cost and performance of these benchmark algorithms with our proposed
method, we examined the time each model spent training for one epoch on different
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datasets. Additionally, we calculated the average training time and average F1 score over
the six datasets.

Figure 7 illustrates the computational cost and average F1 score for each algorithm.
Although our proposed method has a slightly higher average computational cost than
TranAD, it is significantly lower than that of other methods. Moreover, our method achieves
the highest average F1 score, with an 8.79% improvement compared to TranAD.
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5.3. Sensitivity Analysis

Figure 8 analyzes the sensitivity to training set size, showing the average F1 scores
and AUC scores on different datasets as the training data ratio varies. It also presents the
change in training time as the training data ratio ranges from 20% to 100%. From the figure,
it is evident that our proposed AT-DCAEP method achieves a significant performance
improvement when the training dataset ratio reaches 60%. This strongly validates the
excellence of our method in scenarios with small datasets. As the training data size
increases, predictive performance shows an upward trend, accompanied by an increase in
training time.
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Additionally, we systematically tested the sensitivity of our proposed method to
different window sizes, considering window sizes of [4,8,12,16,20,24]. As shown in Table 6,
for the MSDS and SMAP datasets, the F1 score and AUC achieved the best performance
when the window size was 8, while for the MBA, WADI, and SMD datasets, the best F1
score and AUC were obtained with a window size of 4. It is noteworthy that the SWaT
dataset achieved the best F1 score with a window size of 4, but the AUC was better with
a window size of 8. Choosing a larger window size may enhance anomaly detection
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performance but could also increase computational costs. Conversely, smaller windows
can detect behavioral changes more quickly but may miss longer-term anomalies.

Table 6. Impact of window size parameter on performance.

Size
AUC F1

MSDS MBA SMAP SWaT WADI SMD MSDS MBA SMAP SWaT WADI SMD

4 0.8129 0.9980 0.8373 0.8383 0.9121 0.9987 0.9318 0.9961 0.7869 0.8066 0.8082 0.9960
8 0.9609 0.9824 0.9940 0.8423 0.9090 0.9983 0.9658 0.9733 0.9420 0.8047 0.7156 0.9956

12 0.9004 0.9570 0.9934 0.8409 0.9064 0.9979 0.8895 0.9333 0.9361 0.7960 0.6554 0.9806
16 0.9004 0.9378 0.9924 0.8387 0.9000 0.9977 0.8895 0.9056 0.9274 0.7826 0.5399 0.9787
20 0.9003 0.9070 0.6973 0.8391 0.8882 0.9972 0.8894 0.8530 0.5180 0.7847 0.4071 0.9742
24 0.9003 0.8606 0.6962 0.8359 0.8703 0.9975 0.8894 0.7879 0.5111 0.7657 0.2969 0.9767

Therefore, when selecting the window size, a balance between performance and
computational costs is crucial. In real-world production environments, the choice of the
most suitable window size should be based on specific needs and the context of the problem
to achieve optimal anomaly detection performance.

6. Conclusions and Future Works

In this paper, we proposed the AT-DCAEP, a deep spatiotemporal network-based
unsupervised anomaly detection method for multivariate time series data. The AT-DCAEP
captures the spatiotemporal information of multivariate time series data through a con-
volutional autoencoder and extracts crucial information from the low-dimensional space
using multi-head attention. This significantly improves the model’s reconstruction ability,
particularly in reconstructing normal data, resulting in a substantial gain in reconstructing
normal data. This characteristic enhances the model’s sensitivity to anomaly data, allowing
for more accurate identification of anomalies. The prediction network based on external
attention is then used to capture the temporal dependence of the reconstruction error.
Finally, by simultaneously optimizing both subnetworks, the model’s anomaly detection
performance is improved. We validated the effectiveness of this method on six different
public datasets. Based on F1 score performance, the AT-DCAEP surpassed the current
state-of-the-art techniques in five out of six datasets, achieving a significant improvement
in average F1 score across all six datasets compared to the best baseline. The experimental
results demonstrate that our proposed model is competitively robust in the field of anomaly
detection and has broad application prospects.

However, despite these advancements, the proposed model exhibits limitations in
coupling spatiotemporal features, as the predictive network solely analyzes reconstruction
errors, overlooking global trend analysis. If the performance of the reconstruction network
is subpar, it may significantly impact the accuracy of the predictive network, and its inde-
pendence needs enhancement. In the future, we will focus on researching more effective
multivariate time series anomaly detection methods to address these limitations, exploring
approaches for spatiotemporal feature coupling to enhance the model’s adaptability and
robustness. Additionally, we plan to investigate anomaly detection methods suitable for
edge devices with limited computational capabilities. By deploying the model on edge
intelligent devices, we aim to achieve real-time online monitoring of anomalies, which
holds significant implications for advancing Industry 4.0.
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