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Abstract: Advances in machine learning algorithms have allowed object detection and classification
to become booming areas. The detection of objects, such as rocks, in mining operations is affected
by fog, snow, suspended particles, and high lighting. These environmental conditions can stop the
development of mining work, which entails a considerable increase in operating costs. It is vital to
select a machine learning algorithm that is accurate, fast, and contributes to lower operational costs
because of the aforementioned environmental situations. In this study, the Viola-Jones algorithm,
Aggregate Channel Features (ACF), Faster Regions with Convolutional Neural Networks (Faster
R-CNN), Single-Shot Detector (SSD), and You Only Look Once (YOLO) version 4 were analyzed,
considering the precision metrics, recall, AP50, and average detection time. In our preliminary tests,
we have observed that the differences between YOLO v4 and the latest versions are not substantial for
the specific problem of rock detection addressed in our article. Therefore, YOLO v4 is an appropriate
and representative choice for evaluating the effectiveness of existing methods in our study. The
YOLO v4 algorithm performed the best overall, whereas the SSD algorithm performed the fastest.
The results indicate that the YOLO v4 algorithm is a promising candidate for detecting rocks with
visual contamination in mining operations.

Keywords: mining environments; rock detection; visual contamination; machine learning algorithms;
deep learning techniques

1. Introduction

Humans can naturally detect and recognize objects in their environment, but using
computational algorithms and methods to identify objects proves to be challenging. These
algorithms must recognize and isolate the desired object in an image, a task complicated by
various problems such as changes in illumination, noise, rotations, translations, variations
in perspective, and loss of information due to 3D to 2D mapping, among others. Therefore,
the field of object detection and recognition is continually evolving [1].

Traditional methods used for object detection rely on a combination of features such
as Haar-like features, speeded-up robust features (SURFs), histogram of oriented gradients
(HOG), edges, color, gradient, shape, and texture, with machine learning techniques such
as support vector machine (SVM), boosting, and k-nearest neighbor (k-NN) [2]. A scale-
invariant method was implemented in [3] to recognize objects in scenes with varying
complexity levels. In this case, an entropy-based feature detector selects the regions and
scales them within the images. In the recognition stage, the model is used in a Bayesian
manner to classify images. A design similar to the Bayesian network architecture was
used in [4] to construct probabilistic hierarchical image models. This network aims to
enhance the exploitation of context at each hierarchical level. In 2008, the Deformable
Part-based Model (DPM) [5] was proposed as an extension of a HOG detector. The main
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advantage of this model is that it regards training as a suitable method to decompose an
object for learning and detection as an ensemble of detections of different parts of the
object. Multiple kernels were proposed in [6] for object detection; in this sense, a three-stage
classifier was developed by combining linear, quasi-linear, and nonlinear SVM kernels.
Object detection [7] was proposed by measuring the saliency of a window sliding over
an image. This window saliency is defined as the cost of composing a window using the
remaining parts of the image. Because they use the complete image as context, a good
generalization of objects and complex backgrounds is achieved. In [8], they modify an
optimization algorithm called Grey Wolf to reduce calculation complexity and evaluate
petrophysical properties.

The rebirth of deep learning began in 2012 [9]. These networks can create robust high-
level representations of images. Deep learning-based object detectors highlight two types of
architectures: single-stage and two-stage architectures. Single-stage architectures are faster
than two-stage architectures, but they tend to be less accurate. Among the most prominent
are the Single-Shot Detector (SSD) [10] and You Only Look Once (YOLO) [11]. These
architectures revolutionized single-stage detectors as they are fast and achieve accuracy
levels similar to those of two-stage detectors. Various variants of these architectures have
been developed. YOLO was modified in [12] to be used in embedded devices, and in [13],
the authors incorporated a meta-algorithm into SSD to improve learning with little data.
Regions with a Convolutional Neural Network (R-CNN) family can be found among
two-stage architectures.

These deep networks have become so widespread that there are few areas where they
are yet to be applied. In agriculture, they have been used to detect diseases in apples [14]
and tomatoes [15], locate harmful insects [16], detect fruits [17], and identify defects in
bamboo [18]. Another significant area in which many advances have been made is medicine.
Most research has focused on semantic segmentation; however, some investigations have
been conducted to detect structures. A deep learning algorithm was used to detect and
classify oral tumors [19]. An analysis of state-of-the-art network architectures for the
detection and diagnosis of cervical cancer was performed in [20]. An architecture called DL-
Net [21] was designed to determine the type of grasp used in hand prostheses. Industries
have gradually been incorporating them due to the precision they provide. In [22], they
develop a lightweight CNN called WearNet for surface scratch detection. The authors
aim to use the built network in embedded systems; for this, they design a small and fast
network, achieving an accuracy of 94.16%. In [23], researchers employed machine learning
and UNet++ deep learning to investigate porosity and permeability features in CT images.
As a result, they found that the random forest technique was more effective at identifying
weakly connected fractures.

Mining is one of the areas that would greatly benefit from introducing the learning
techniques described earlier. Currently, several mining tasks are performed manually. This
increases operational costs and decreases production owing to operators’ lack of experience
or visual contamination, such as suspended dust, snow, and fog. Most research in this area
uses haptic teleoperation [24] and does not consider the presence of visual contamination. A
prototype of an autonomous robotic system for rock hammers was designed in [25], which
uses a 3D perception system. In this case, they used a stereo camera array and employed
the YOLO version 3 algorithm for rock detection. A system is proposed in [26] to learn to
break rocks with a rock hammer using Deep Double Deep-Q Networks (DDDQNs). In [27],
they analyze different clustering algorithms to recognize minerals in rocks. In this study,
they explore various color spaces and conclude that these are useful, especially the HSV
space, for segmenting rocks using the k-means algorithm. In [28], they compare ResNet 1
and ResNet 2 for Mineral Grain Segmentation and Recognition. As a result, they achieve a
validation accuracy of 90.5 % using ResNet 2.

Due to all of the above, the following article has the following contributions:

1. Various classic and deep learning methods for rock detection in mining operations
are analyzed.



Appl. Sci. 2024, 14, 731 3 of 19

2. Classic and advanced learning algorithms were evaluated in terms of parameter
variations using recall, precision, AP50, F1-score, and average detection time metrics.

3. Various visual contamination situations, such as rain, fog, and high brightness, were
considered.

4. One of the analyzed algorithms was proposed for rock detection in mining environ-
ments with visual contamination.

The rest of the article is organized as follows. Section 2 analyzes and describes the
described algorithms. Section 3 describes the configurations used and discusses the results.
Section 4 concludes the study and outlines future work.

2. Methodology

Multiple machine learning algorithms have been developed in the field of artifi-
cial intelligence for object detection. In this section, we cover the basic concepts of the
following algorithms: Viola-Jones [29], Aggregate Channel Features (ACF) [30], Faster
R-CNN [31], SSD, and YOLO v4 [32] for the detection of rocks in visually contaminated
mining environments. Although there are recent versions of YOLO, such as 7 and 8, we
have found that the accuracy of YOLO version 4 is relatively comparable to the previous
ones. While newer versions may introduce improvements, our choice to use YOLO v4 is
based on maintaining consistency and fairness compared with other detectors, such as SSD
and Faster R-CNN.

2.1. Viola-Jones Algorithm

The Viola-Jones algorithm was developed in 2001 to detect facial features. This
algorithm incorporates several contributions, such as the integral image, construction of a
robust classifier through weak classifiers using AdaBoost, and successful development of a
method to combine classifiers in a cascade structure. This cascade structure increased the
speed of the detector by focusing on the most critical regions of the image. Figure 1 shows
the Viola-Jones algorithm.

Figure 1. Viola-Jones algorithm [29].



Appl. Sci. 2024, 14, 731 4 of 19

The integral image was designed to accelerate the process of calculating the Haar-like
features. The value at any point (x, y) in the integral image is the sum of all pixels in the
input image that are above and to the left of (x, y). The sum of all pixels within rectangle
D of Figure 1 can be calculated using four numbers mentioned as [1, 2, 3, 4]. AdaBoost
is used to construct a robust classifier by assigning weights to the most relevant features.
Finally, the classifiers were introduced in a cascade to pay more attention to the windows
that present the target and less attention to those that contain the background.

2.2. ACF Algorithm

One of the goals of the ACF detector is to achieve a rich representation of the image
without high computational cost. The fractal features of images allow reliable prediction of
their structures across scales. Figure 2 shows the ACF algorithm.

Figure 2. ACF algorithm [30].
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In the first stage, features such as the LUV color space, gradient magnitude, and
HOG are extracted from input image I. The results were then smoothed to obtain low-
resolution channels (aggregations). In the second stage, a multi-scale feature pyramid
is constructed. To achieve this, image I is resized to scale s. Subsequently, linear and
non-linear transformations (Ω) are applied to the resized image I. Equation (1) shows the
steps in the second stage.

Cs = Ω(Is) = Ω(R(I, s)), (1)

where Cs is the feature channel at scale s, Ω represents linear and non-linear transformations,
and R is the resampling function. In the third stage, AdaBoost is used to train and combine
the decision trees on the features. Subsequently, a multi-scale sliding window was applied
for detection.

2.3. Faster R-CNN

One deep learning approach utilizes regions with convolutional networks. This
method integrates rectangular region proposals with features derived from Convolutional
Neural Networks (CNNs). This approach functioned as a two-stage detection algorithm.
In the initial stage, a subset of regions likely to contain the object of interest is identified.
Subsequently, the object within each proposed region was classified in the second stage.
Models based on these algorithms typically consist of three phases:

1. The detection of regions in the image that may contain an object, referred to as the
proposed regions.

2. Extraction of CNN features from the proposed regions.
3. Classification of objects using the extracted features.

In these algorithms, the three variants are R-CNN, Fast R-CNN, and Faster R-CNN.
Each variant attempts to optimize, accelerate, or improve the results of one or more phases.
Figure 3 shows the structure of the Faster R-CNN network used in this study.

Figure 3. Faster R-CNN structure [31].

2.4. SSD Algorithm

The SSD algorithm utilizes a single-stage detection network that merges the predicted
detections from the multi-scale features. This algorithm outperforms two-stage algorithms,
such as Faster R-CNN, in terms of speed and offers higher accuracy than specific one-stage
algorithms, such as YOLO v2. Figure 4 shows the SSD algorithm. The detector obtains a
prediction network across multiple feature maps that are derived by passing an image through
a CNN. Subsequently, the detector combines and decodes the predictions to generate bounding
boxes. The network leveraged the bounding box size to determine the class of the object under
analysis. For each bounding box width, the SSD predicts the following attributes:

1. Box width offsets. This refines the position of the width of the box.
2. Class probability. It predicts the assigned class label for each bounding box width.



Appl. Sci. 2024, 14, 731 6 of 19

Figure 4. SSD structure [10].

2.5. YOLO v4 Algorithm

YOLO is a deep learning algorithm that has been widely used for object detection
since its publication in 2015. To date, eight versions have been developed. The core of
YOLO consists of a small-sized and computationally efficient model, making it suitable for
object detection in videos. YOLO v4 introduced significant changes compared to previous
versions, focusing on substantial improvement and data comparison. Figure 5 shows the
structure of the YOLO v4 network used in this study.

Figure 5. YOLO v4 structure [32].

The main contributions of YOLO v4 are as follows:

1. An efficient and powerful model that enables fast and accurate detector training
is proposed.

2. During detector training, methods such as bag-of-freebies and bag-of-specials were
verified.

3. It includes methods that make it more efficient and useful for training on a single GPU,
such as Cross-Iteration Batch Normalization (CBN) and the Self-Attention Method (SAM).

The backbone is usually a pre-trained CNN. This backbone acts as a feature extractor
for the input image. The neck connects the backbone and head. It consists of a Spatial
Pyramid Pooling (SPP) module and Path Aggregation Network (PAN). In the SPP module,
the features are convolved three times and then maximally pooled with maximum pooling
layers of different sizes. The pooled results were concatenated first and then convolved
thrice. PAN performs convolution between the feature extraction layers and SPP. This mod-
ule reuses information from lower-level layers in higher-level layers through connections
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or inverse paths, thereby allowing the detection of objects of different sizes. YOLO v3
was used in the prediction module, where the class probabilities, object confidence, and
bounding box width and height were predicted.

2.6. Backbones

Backbones are usually part of the networks responsible for extracting features from
images. CNNs are often pre-trained on large databases. These backbones allow leveraging
of the learned features as a starting point for a particular task. In this research, several
backbones were evaluated in Faster R-CNN, SSD, and YOLO v4 architectures. The residual
Network (ResNet) [33] is a CNN, and among the most well-known variants are ResNet-50
and ResNet-101. ResNet was trained with over a million images from 1000 categories
in the ImageNet database [34]. The size of the input image was 224 × 224 px. ResNet
was designed to mitigate the problem of vanishing gradients that occur as network depth
increases. To achieve this, residual connections are introduced, as shown in Figure 6a.
These residual connections allow input X to skip the convolutional layers and be added
to the output of those layers, F(x). MobileNets [35] is designed for use in embedded and
mobile applications.

Figure 6. Units of ResNet and MobileNet. (a) Basic unit of ResNet [33]. (b) Basic unit of MobileNet [35].

MobileNet was trained using the ImageNet database. This network introduces two hy-
perparameters that allow for low latency, while maintaining adequate accuracy. Figure 6b
illustrates these hyperparameters. First, it transforms the standard convolution into a
3 × 3 depthwise convolution through factorization. Then, it performs pointwise convo-
lution using a 1 × 1 convolution. The introduction of these parameters primarily aims to
reduce the model size and computational cost. The combination of these layers is known
as depthwise separable convolution (DSC). MobileNetv2 [36] has a structure that is very
similar to that of MobileNet. It utilizes the layers mentioned above; however, in a differ-
ent manner, the input is transformed with a pointwise convolution layer to expand the
channels. It passes through a 3 × 3 depthwise convolution to decrease the computational
complexity. It passes through another pointwise convolution layer. These steps form the
basic unit of MobileNetv2, which is called at the residual bottleneck block.

YOLO v4 uses CSPDarkNet53 [32] as its backbone. This was derived from the Dark-
Net53 backbone of YOLO v3 [37]. It was trained on the Common Objects in Context (MS
COCO) database [38], which contains over 200,000 labeled images with approximately
1.5 million instances of objects in 80 categories. The input image size was 416 × 416 px. The
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addition of cross-stage connections (CSP) allows the integration of feature maps from the
initial to the final stage. The main goal is to achieve a rich combination of gradient while
reducing computational costs. CSP reduced the computational cost by approximately 20%.

3. Experiment Setup and Evaluation

In this section, we address the tools and database used, metrics for algorithm evalua-
tion, configuration of these algorithms, and evaluation results.

3.1. Tools

MATLAB ® version R2022a was used to train and test the models on a laptop with
the following specifications: Intel-Core i7-11800H CPU @ 64-bit 2.30 GHz, 16 GB RAM,
NVIDIA GeForce RTX 3060, and CUDA v11.7.

3.2. Dataset

In this study, we used the database reported in [25]. It has 23,850 images with a size
of 1280 × 720 px. The number of rocks in a scene can vary between one and fifteen. The
primary motivation for using this database is the presence of several scenes with visual
contamination. This contamination represents a challenge for machine learning algorithms,
in addition to being present in natural mining environments. Figure 7 shows the database
used in this study.

Figure 7. Database with visual contamination [25]. (a) Normal. (b) Fog. (c) Rain. (d) Snow.
(e) High illumination.

The labeling in this database has some drawbacks; for example, Figure 8a shows that
they only label the rocks on the grid. This is undesirable since, in many mines, rocks are on
the ground, and it can also positively affect the performance of detectors. All rocks in each
scene were labeled using the MATLAB® version R2022a Image Labeler App, as shown in
Figure 8b. We randomly selected 200 images for each visual contamination category. We
marked 1000 images with 9460 Regions of Interest (ROIs). We selected 80% (7565 ROIs) for
training, 10% (928 ROIs) for validation, and 10% (967 ROIs) for testing.

Figure 8. Labeling problems. (a) Database label. (b) Our label.
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3.3. Performance Metrics

To evaluate and validate the algorithms, we used the following metrics: precision
(P), recall (R), F1-score, and average precision (AP). These metrics are commonly used in
research studies [39–41] to analyze the performance of models. The precision, recall, and
F1-score are defined by Equations (2)–(4).

P = TP/(TP + FP), (2)

R = TP/(TP + FN), (3)

F1 = 2 × (P × R)/(P + R), (4)

where TP, FP, and FN represent the true positives, false positives, and false negatives,
respectively. AP is the area under the precision–recall curve. This measure describes the
overall performance of the model across the different confidence thresholds. The AP is
defined in Equation (5).

AP = ∑
n

(
(rn+1 − rn) · pinterp(rn+1)

)
, (5)

where pinterp(rn+1) = maxr̃≥rn+1 p(r̃). The precision value at a specific recall value is
denoted by p(r̃).The AP values ranged between 0 and 1 based on a specific Intersection
over Union (IoU). In this case, IoU was 0.5.

3.4. Algorithm Configuration

Machine learning algorithms require parameter settings for training. Various features,
such as Haar-like, local binary patterns (LBPs), and HOG, can be used in the Viola-Jones
detector. In this study, the detector is trained using these features. The ROI size was
automatically calculated as 32 × 32 px. The methodology followed in this study to train
and test the detector is shown in Figure 9 .

Figure 9. Methodology for the training and testing of the Viola-Jones detector [42].
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To create negative images, scenes that did not contain an ROI were selected. The ROIs
were then extracted from the positive images and used to generate 360,000 negative images
through 360° rotations. The NumCascadeStages and FalseAlarmRate parameters were
crucial to the process, and were set to 10 and 0.01, respectively. Although decreasing the
FalseAlarmRate or increasing the NumCascadeStages can improve the robustness of the
detector, it significantly lengthens the training time. For this study, it took approximately
60 h to train the Haar-like feature, whereas LBP and HOG features took 10 h and 20 h. All
other parameters were set to their default values.

Several experiments were performed on an ACF detector with 10 stages each. The
modified parameters were the number of weak classifiers and the ROI size. In the first
experiment, these parameters were not modified, that is, the ROI was 23 × 23 px, and the
number of weak classifiers was 2048 in all stages. In the other experiments, variations were
made in these parameters to analyze their influence on the final detector. The ROI used in
the combinations was 52 × 52 px, and the weak classifiers were [256 256 512 512 1024 1024
2048 2048 4096 4096]. This ROI was obtained from the maximum anchor box size of the
deep learning algorithms. The experimental details are presented in Table 1.

Table 1. Experiments with the ACF algorithm.

Parameters Exp-1 Exp-2 Exp-3 Exp-4

Epochs 10 10 10 10
ROI 23 × 23 23 × 23 52 × 52 52 × 52

Weak classifiers 2048 Var 2048 Var

In this case, the negative images were automatically generated by the algorithm. The
remaining parameters were set to default values. The total training time ranged from 0.15
to 0.20 h.

In the case of detectors based on deep learning, images were resized to 224 × 224 px.
The anchor boxes were then estimated. According to this database, the obtained anchor
boxes were [52 26; 42 28; 47 21; 34 25; 38 19; 26 24; 29 16; 22 15; 34 8]. A CSPDarkNet53
backbone was used in the YOLO v4 detector. ResNet-50 and MobileNetV2 were used as
backbones for the Faster R-CNN and SSD detectors. The selection of these backbones was
justified by the good results presented in [43–46]. The training times for the detectors were
2.25 h and 0.25 h.

3.5. Hyperparameters

Properly selecting parameters is a challenging task, especially for deep learning al-
gorithms. This research aimed not to find the optimal parameters for each algorithm but
to identify a potential candidate for use in challenging mining tasks. In the case of the
Viola-Jones algorithm, the selection of the learning rate and the number of cascades was
directly related to the training time. Decreasing the learning rate increased the training time
without substantially improving the algorithm’s accuracy. This effect was compounded
when using the Haar-like feature in the detector’s training. For the ACF algorithm, the
main modifications were directly related to the ROI and the number of weak classifiers.
The ROI size was obtained from the mean sizes of the training bounding boxes, and the
number of weak classifiers was varied to assess its impact on the results.

A straightforward guide must be used to select the appropriate parameters in the
deep learning-based detectors. However, specifically for rock detection, the optimizer that
yielded the best results was Adaptive Moment Estimation (ADAM), although it does not
imply it will always be the case. This method offers very good results and has been used in
several investigations [47,48]. Batch size selection is related to the computational power
available for loading images, depending on the machine’s hardware used for training.
The learning rate is the most crucial parameter in training, chosen primarily to avoid
significantly altering neuron weights during the stages. This decision was made because
pre-trained backbones from other datasets were used as the basis for training. Moreover,
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similar configurations have been used in other research studies [14–17]. The number of
epochs was chosen to be the same across all algorithms. The hyperparameters that were
used are listed in Table 2.

Table 2. Hyperparameters of the ADAM optimizer.

Hyperparameters ADAM

Epochs 10
Batch size 8

Learning rate 0.001
Weight decay 0.0001

Gradient decay 0.9
Squared gradient decay 0.999

3.6. Results of Rock Detection

Figure 10 shows the results of the Viola-Jones algorithm against the different types
of features used. It is observed that the Haar-like and HOG features present many FPs;
however, the LBP feature effectively identifies the rock characteristics. Figure 11 shows the
results of the ACF algorithm before the different experiments were conducted. Similar to
the Viola-Jones algorithm, many false positives were observed for all variants.

Figure 10. Results of the Viola-Jones detector. (a) Feature Haar-like. (b) Feature LBP. (c) Feature HOG.

Figure 11. Results of the ACF detector. (a) Exp-1. (b) Exp-2. (c) Exp-3. (d) Exp-4.

Figures 12 and 13 show the results of rock detection in a test image from the database
and in an image that does not belong to the database. This was done to analyze the gener-
alization capacity of these algorithms for images with different characteristics from the train-
ing images. The size of the images that were not from the database was
3264 × 2448 px. These two images correspond to a normal scenario without visual pollution.
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It is observed that the algorithms manage to detect rocks, but they have the problem of
presenting many false positives, except for YOLO v4. The YOLO v4 algorithm effectively
detects rocks even in images that do not belong to the database, and this demonstrates the
generalization capacity obtained.

Figure 12. Results of the detectors in database. (a) ACF detector. (b) Viola-Jones detector. (c) Faster
R-CNN detector. (d) SSD detector. (e) YOLO v4 detector.

Figure 13. Results of the detectors out of the database. (a) ACF detector. (b) Viola-Jones detector.
(c) Faster R-CNN detector. (d) SSD detector. (e) YOLO v4 detector.

3.7. Results of Evaluated Metrics

In this section, the results of the machine learning algorithms are analyzed with respect
to P, R, F1-score, AP50, and average detection time. Table 3 show the P, R, and F1-score
results of the Viola-Jones, ACF, and deep learning detectors.

Table 3. Metrics of detectors.

Algorithm
Metrics (%)

P R F1-Score

Viola-Jones
Haar-like 40 100 57.1

LBP 82.2 85 83.5
HOG 10 100 18.1

ACF

Exp-1 54 75.7 63.1
Exp-2 44.7 77.8 63.1
Exp-3 41.8 78.6 54.6
Exp-4 39.8 78.2 52.7

Faster R-CNN 97 93 94.9

SSD 99.6 90 94.5

YOLO v4 99.9 99.7 99.8

The results shown by these algorithms concerning precision are mainly due to the
presence of FP. Their authors have debated this large number of FP as a disadvantage,
because they detect the same object multiple times. Multiple detections occurred because
of the use of sliding windows at different scales. The Haar-like and HOG features generally
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performed worse than the LBP features. The increase in the ROIs and number of weak
classifiers in the ACF algorithm did not yield good results concerning precision; however, a
slight increase in recall was observed. The LBP feature in the Viola-Jones algorithm showed
the best results for all metrics compared to the analyzed classic algorithms. This feature
efficiently describes the characteristics of the object of interest. These algorithms require a
post-processing stage to decrease FP and thus increase the precision.

In general, deep learning algorithms achieve better results than classic algorithms.
This was expected because of their excellent generalization capabilities. In these detectors,
different types of networks, such as ResNet-50, MobileNetV2, and CSPDarkNet53, are
used as backbones. The Faster R-CNN algorithm achieved the lowest precision value
owing to the presence of FP. These algorithms have fewer FPs than the classic algorithms
owing to the Non-Maximum Suppression (NMS) technique. This technique helps eliminate
redundancy and reduce the number of overlapping bounding boxes. The SSD algorithm
produced the worst results in terms of recall, which might have been influenced by using
MobileNetV2 as a backbone. The YOLO v4 algorithm displayed excellent precision, recall,
and F1-score results.

The AP50 metric is widely used to evaluate object detection algorithms. This study
used this metric in deep learning algorithms because they achieved the best results for P, R,
and F1-score. Figure 14 shows the AP50. The AP provides a single performance metric that
summarizes the shape of the precision–recall curve. All deep learning algorithms achieved
an AP50 above 89%, with YOLO v4 achieving the highest value at 99.7%. This metric is
important because it shows the average precision of the model when the recall is 50%.

Figure 14. AP of the deep learning algorithms.

Figure 15 shows the precision vs. recall curve for the deep learning algorithms under
analysis. This curve is a valuable tool for understanding the performance of the trained
classification models. It also offers insight into how the performance of the models fluc-
tuates across different thresholds. Given these factors, it is apparent that the YOLO v4
algorithm outperforms the other algorithms.

The detection time of an algorithm is a crucial parameter when it is used in real-time
applications. In this regard, we tested the previously mentioned algorithms to assess their
detection speed. We conducted 50 runs for each test image and calculated the average
detection time. Figure 16 shows the average number of detections.

As a result, the fastest algorithm is SSD, with an average of 0.025 s, and the slowest
is Faster R-CNN, with an average of 1.32 s. The latter is expected because one-stage
deep learning methods are faster than two-stage methods. All algorithm times were low,
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enabling them to be used in real-time applications. The speed of the SSD algorithm is
mainly attributed to using a lightweight network like MobileNetv2. Its main advantage is
that it can be employed in embedded systems, which is common in practical applications
in mining environments. Although it is less accurate than other analyzed deep learning
algorithms, we could improve it by incorporating attention modules.

Figure 15. P-R curve for the deep learning algorithms.

Figure 16. Average detection time.

3.8. Influence of Visual Contamination on the Analyzed Algorithms

Figure 17 illustrates rock detection in various evaluated scenarios of visual contami-
nation. The presented machine learning algorithms exhibit superior results compared to
their variants. The ACF algorithm showed a significant number of FPs. It was observed
that visual contamination from snow resulted in the highest number of FPs, followed by
rain, while others maintained relatively similar amounts of FPs. Regarding the Viola-Jones
algorithm, few FPs were observed in the LBP feature, demonstrating its efficiency in cap-
turing rock characteristics across all scenarios. In the normal scenario, FP occurrences were
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observed at larger scales due to the processing performed by the algorithm, which utilizes
a sliding window at multiple scales.

Figure 17. Rock detection in various evaluated scenarios of visual contamination.

Regarding deep learning algorithms, all showed promising results; however, YOLO
v4 demonstrated excellent performance. The Faster R-CNN algorithm exhibited FP occur-
rences, while the SSD algorithm had no FPs but failed to detect some objects. In all cases,
the YOLO v4 algorithm correctly detected rocks. Figure 18 illustrates a case where the
YOLO v4 algorithm fails to detect one rock, primarily due to the absence of a well-defined
boundary between two rocks and their overlapping level. The scenarios that most affected
the algorithms overall were snowy and rainy conditions.
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Figure 18. YOLO v4 algorithm failure.

3.9. Some Benefits and Limitations of Deep Learning vs. Machine Learning Algorithms

Deep learning algorithms have come to revolutionize multiple areas, primarily due to
the efficiency they provide. However, they are still represented as black boxes and in-depth
studies are needed to explain their functioning thoroughly. Among the main advantages of
deep learning algorithms is a considerable increase in efficiency across various evaluation
metrics compared to classical algorithms. This has led to widespread use in crucial areas
such as medicine, industry, agriculture, autonomous driving, and robotics.

The utilization of CNNs eliminates the need for the feature engineering phase, which
is customary and essential in classical algorithms. This phase involves selecting and
normalizing features, among other procedures. Additionally, they can adapt to various
conditions through parameter tuning, flexibility not achievable in classical algorithms. The
primary disadvantage of these networks is the need for more understanding of their internal
workings and the requirement for a large amount of labeled data for proper performance.

On the other hand, classical algorithms provide a better understanding of their internal
workings, and some require a smaller amount of labeled data. However, they generally
exhibit lower overall performance.

In the context of rock detection in visually contaminated mining environments, YOLO
v4 has implemented substantial improvements in various areas, including:

1. Efficient backbone with CSPDarknet53. Incorporates CSPDarknet53, an enhanced
version of Darknet, using the CSP concept to improve feature learning efficiency. This
results in a more adequate representation of visual features, which is particularly
beneficial in visually complex mining environments.

2. PANet as Head. YOLO v4 uses this module to enhance information integration at
different spatial scales. This is crucial in rock detection, as there can be significant
variations in the size and shape of rocks in mining environments. PANet helps handle
these variabilities, improving the model’s ability to detect objects at different scales.

3. Hyperparameter optimization. Enables hyperparameter optimization, including grid
size and anchor dimensions. Adjusting these parameters for rock features and mining
environments improves the model’s accuracy.

4. Improvements in post-processing. YOLO v4 has enhanced post-processing to reduce
false positives and improve accuracy. For example, it uses an improved NMS to
eliminate redundant detections. It has improved model stability, influencing the
mitigation of issues such as oscillations in predictions or unstable behaviors in certain
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scenarios. It offers the ability to adjust specific post-processing parameters, such
as thresholds and suppression criteria, providing flexibility to adapt the model to
different conditions and application requirements.

4. Conclusions and Future Work

The various complexities in images render object detection and classification a con-
tinuously developing area. In mining operations, fog, snow, and suspended particles can
interfere with the detection of objects, such as rocks. Therefore, any machine learning
algorithm used in these operations must meet specific requirements such as acceptable
speed, adequate recall, and precision. This study evaluated various machine learning
algorithms used for object detection.

Training algorithms in both machine learning and deep learning is a challenging task.
Fundamental limitations or challenges include the selection of training parameters, manual
database labeling, hardware requirements, primarily for deep learning algorithms, the proper
selection of metrics, and the evaluation function. Additionally, difficulties were encountered
in the training quality of deep learning algorithms when different versions of CUDA were
installed, which was resolved by installing the required version according to the installed
GPU. Challenges were identified in developing SSD and Faster R-CNN detectors regarding the
selection of layers to build the detection network, leading to potential areas for future research.

The Viola-Jones and ACF algorithms showed the lowest precision, recall, and F1-score
results. The low precision of these algorithms is primarily due to the occurrence of FPs,
which their authors address as a present inconvenience. The local binary patterns (LBP)
feature efficiently encoded the rock characteristics compared to Haar-like and histogram
of oriented gradients (HOG) features. The ACF algorithm improved the recall when the
number of weak classifiers was varied, but the precision decreased. The low detection
time of these algorithms enables their real-time use. A post-processing stage, such as
Non-Maximum Suppression (NMS), could increase the evaluated metrics.

In general, algorithms based on deep learning achieved the best results in terms of
precision, recall, F1-score, and AP50. This is expected owing to their significant improvements
in machine learning. The increase in the training data was not used in these algorithms
to make a proper comparison with the classic algorithms. The YOLO v4 detector with the
CSPDarkNet53 backbone achieved the best results in the metrics evaluated compared with the
SSD and Faster R-CNN architectures. The detection times were generally comparable to those
obtained through the Viola-Jones and ACF algorithms, except for the Faster R-CNN detector,
which had an average time of more than 1 s. The increase or decrease in these times depends
on the architecture used and the backbone network, among other parameters.

Regarding the AP50 metric, all the deep learning algorithms surpassed 90%, with the
YOLO v4 detector achieving the best results. Generally, YOLO v4 has been proposed as a
candidate for use in mining environments with visual pollution.

Future lines of research, including improvements in the analyzed algorithms, espe-
cially those related to deep learning, are being considered. Variations in the backbones,
including attention mechanisms, could be explored. Additionally, an algorithm is cur-
rently being developed to reduce false positives. We appreciate the significance of this
aspect in validating the functionality of the analyzed algorithms. The experimentation
with hardware is indeed part of our planned next stage of research. Currently, we are
actively engaged in the process of applying for research projects to secure funding for the
acquisition of the necessary hardware.
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