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Abstract: This paper presents a novel geohash-based approach for predicting traffic incident locations
using machine learning algorithms. The study utilized a three-stage model for predicting the locations
of traffic incidents, which encompassed accidents, breakdowns, and other incidents. In the model,
firstly, ArcGIS was used to convert the coordinates of traffic incidents into geohash areas, leading to
the definition of incident locations. Secondly, variables affecting traffic incidents were extracted, and
a dataset was created by utilizing the values of these variables in geohash fields. Finally, machine
learning algorithms such as decision tree (DT), k-nearest neighbor (k-NN), random forest (RF),
and support vector machine (SVM) algorithms were used to predict the geohash region of traffic
incidents. After conducting hyperparameter optimization, we evaluated the efficacy of various
machine learning algorithms in predicting the location of traffic incidents using different evaluation
metrics. Our findings indicate that the RF, SVM, and DT models performed the best, with accuracy
percentages of 91%, 88%, and 87%, respectively. The findings of the research revealed that traffic
incident locations can be successfully predicted with the geohash-based forecasting model. The
results offer traffic managers and emergency responders new perspectives on how to manage traffic
incidents more effectively and improve drivers’ safety.

Keywords: geohash; machine learning; prediction; traffic accident; traffic incident location

1. Introduction

Today, the rapid growth of cities and the increase in the population and number of
vehicles pose a significant challenge in terms of traffic management and safety. Traffic
incidents are defined as events that interrupt traffic flow and endanger the safety of
drivers [1]. These incidents can occur due to numerous factors, including accidents, vehicle
breakdowns, roadworks, traffic congestion, and other emergencies. The prediction of the
location, timing, and nature of such events is essential, reducing their impact and enhancing
traffic management.

Traffic incident management is a well-coordinated and planned process that involves
multiple disciplines. Its purpose is to identify, respond to, and recover from traffic accidents
as safely and efficiently as possible [1–3]. This process assesses the locations, timing, and
potential causative factors of traffic incidents by analyzing historical traffic data, weather
conditions, road infrastructure, and other relevant elements [4–7]. Accurate predictions
resulting from this analysis can aid traffic management teams in responding promptly to
incidents and recommending alternate routes for drivers. Therefore, precise estimation of
the affected area due to road traffic accidents is crucial to enhance traffic flow efficiency
and mitigate adverse traffic impacts.

This study investigates the geohash-based approach for predicting traffic incident
locations. Geohash is a geocoding method used to represent geographic coordinates as a
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concise alphanumeric string, effectively defining specific areas on a map. This technique
holds significant value in geographical data analysis, as highlighted by Xiang (2019) [8]
and Zhang et al. (2022) [9]. This study investigates the potential of a geohash-based
methodology for predicting traffic incidents.

Numerous studies in the literature address the topic of traffic accidents and their after-
math. These studies present valuable information for professionals in the field. Specifically,
recent studies investigate traffic incident management [2,3,10], the duration of traffic inci-
dents [11–13], traffic accident risk [14,15], traffic congestion [16,17], and traffic flow [18–20].
Traffic accident studies have explored topics such as severity [21,22], injury level [23], the
number of accidents, and safety indicators [24–26]. While this research topic is applicable
to various fields, no empirical studies exist on using machine learning algorithms to predict
the location or scene of traffic incidents by identifying geohash areas. In this context, this
study is the first attempt to use geohash to create spatial context for traffic events.

Ferreira-Vanegas C. et al. (2022) [27] conducted a comprehensive literature review
on the methods used in traffic accidents and accident determinants. They found that in
recent years, there has been an increase in prediction studies on traffic accident patterns
using artificial intelligence techniques instead of traditional methods, which has garnered
more attention. Today, several machine learning algorithms are used to predict traffic
incidents [16,17,24,28,29]. In addition, deep learning [15,23,30–32] and fuzzy logic [19]
have also been applied. Several studies in the literature have investigated traffic accidents
and employed various methods to identify hotspots [33–35]. However, studies on the
prediction of traffic incident locations have been conducted on traffic accidents or traffic
congestion locations. For the first time, our study contributes to the literature by predict-
ing the locations of traffic events, including traffic accidents, vehicle breakdowns, road
maintenance, and emergencies, from a broader perspective, rather than focusing only on
the locations of traffic accidents or congestion. Identifying hotspots requires extensive
analysis. This is because accidents are considered random events and can vary in time
and location [34]. In recent years, studies have been carried out to map road accidents or
congestion hotspots using geographic information system (GIS)-based methods and spatial
analysis [36–41]. With the advancement of data collection and processing technologies, GIS
accident information systems have been increasingly used to understand traffic accidents.
GIS-based systems aim to reduce the number of accidents by identifying accident hazards
using spatial data analysis and statistical analysis methods [42]. However, it is an important
problem to divide the regions where traffic incidents occur into reasonable dimensions
and to collect and process data by considering these regions. Another contribution of this
research is the utilization of geohash zones with suitable dimensions within the three-stage
model to identify the locations of traffic incidents. Traffic data were collected and pre-
processed for various variables that impact traffic events, including time, region, vehicles,
traffic index, road structure, and weather conditions, specifically for these areas.

In recent years, there has been an increasing use of GIS-based systems and data-driven
models in the study of traffic incidents. Liang et al. (2005) [43] provide an introduction
to a GIS-based system for accident analysis, which is considered to be one of the earlier
works in this area of research. The system aims to determine the accident location and
sequence. A prototype Geographic Information System and Road Accident View System
(GIS-RAVS) has been developed to reduce accidents. It allows users to quickly identify
high-accident locations, view relevant road accident and location details, input and retrieve
accident data, and conduct statistical analyses on selected accident locations. Shariff et al.
(2018) [38] analyzed traffic accident data over a four-year period to determine if there was
a clustered pattern of accidents in a particular area. To identify hotspots, the data were
visualized using ArcGIS software, and two spatial analysis techniques were employed:
nearest-neighbor hierarchical clustering and spatial-temporal clustering.

In Mali’s (2020) [44] research, which developed a GIS-based model for detecting traffic
accident hotspots using XY coordinate data, traffic accident records reported by road users
and police officers were the sensors used to determine the location of the application. This
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analysis supports the strategic deployment of traffic police resources in areas of high accident
frequency, commonly referred to as “hot spots”. In their study, Feng and Zhu (2020) [45]
introduced an innovative spatial autocorrelation method to identify traffic accident hot
zones. Using ARC-GIS software and a spatial autocorrelation algorithm, the method takes
into account accident characteristics and attributes. It works on road sections of 100 m and
allows the identification of accident locations independent of their occurrence rates.

Alkhadour et al. (2021) [46] conducted a study to analyze the temporal and spatial
patterns of traffic accidents in Amman, with a focus on hotspot detection. They used
statistical analysis to examine temporal factors such as accident year, severity, road type,
and lighting conditions. Additionally, they used GIS to evaluate the spatial distribution over
three years and revealed high-density clusters. The study utilized the Nearest Neighbor
Index (NNI) to identify clusters among all groups and hotspots in the study area through
an experimental study. Xie et al. (2021) [47] presented a cell-grid model for mapping
cyclist risks in their study. The study employed a Bayesian framework to construct a
random parameter model that links bicycle accident costs in Manhattan, New York, to land
use, transportation, and sociodemographic data. The proposed approach was compared
with various models and was claimed to be more effective. Manap et al. (2021) [41]
conducted a study to identify high-risk road areas in terms of heavy vehicle crashes despite
low traffic volumes. The study used three criteria: heavy vehicle accident incidents, the
number of heavy vehicles involved in accidents, and accident severity index values. Spatial
autocorrelation (Moran’s I) and the Getis-Ord Gi statistic are used to detect clustering
and assess the probability of risk. This approach guides the development of targeted
countermeasures for identified hotspots, prioritizing segments with a high risk of heavy
goods vehicle accidents.

The prediction of traffic incidents based on coordinates is a challenging task, resulting
in scarce literature on this topic. To overcome this drawback, the geographical information
system was used to convert past accident coordinates (latitude and longitude information)
into geohash codes to predict traffic incident locations. It is not possible to determine the
exact coordinates of traffic accidents, so appropriate geohash codes and defined regions
were utilized to determine their location. These regions also consider the areas in close
proximity to the accident location. The main purpose of our study is to make more accurate
predictions by using geographic data and machine learning algorithms to determine the
locations of traffic events. Including predictions of traffic incident locations in studies related
to traffic predictions will offer significant insights into traffic control and potential traffic
incidents. In the study, a three-stage model was utilized to estimate the location of traffic
incidents requiring intervention by traffic teams. First, we analyzed the regions with the
highest frequency of traffic incidents, identified potential incident areas in the selected
pilot region, and converted the coordinates of potential incident locations into geohash
fields through ArcGIS. During the second stage, a group of variables were identified as
primary components that can impact traffic accidents and incidents. These variables consist
of time-dependent factors that influence traffic events, variables linked to traffic density,
accidents, road conditions, vehicle-related variables, and meteorological variables. Data on
all variables were then collected for defined incident locations to create a comprehensive
dataset. Finally, traffic incident locations were predicted for certain regions and time periods
with the help of various machine learning algorithms such as DT, k-NN, RF, and SVM.

Including geographical data and geohash coding in machine learning algorithms as
input variables can enhance prediction accuracy and contribute to traffic management
and security. Improving the accuracy of predicting the location of traffic incidents has the
potential to enhance traffic management and flow, decrease travel times, prevent accidents,
ensure traffic safety, provide alternative routes, bolster public transportation, diminish
fuel consumption and air pollution, and improve traffic management and planning. One
of the primary benefits of this approach is its positive impact on both drivers and traf-
fic management teams, as it improves traffic flow and mitigates the adverse effects of
traffic [48,49].
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2. Background Knowledge
2.1. Geohash

The geohash algorithm, proposed by Gustavo Niemever, is a geographic data coding
technique that employs grid partitioning [50]. It converts geographic location data into a
string for expressing latitude and longitude coordinates in an abbreviated format. Geohash
describes a rectangular cell and uses a binary system of 0s and 1s to represent location data.
To convert the latitude and longitude values of a location, a division algorithm truncates
them into a series of binary bits. In Figure 1 [50], 0s represent smaller latitude or longitude
ranges, while 1s represent larger ones. The resulting string forms a geohash string [8,51].
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Figure 1. Geohash grid division diagram.

The geohash string provides a unique identifier for locations. Each character corre-
sponds to one side of the half-field of the location. Longer geohash strings offer more
precise information. For instance, a shorter geohash string like “sxk3k” denotes a larger
area, whereas a longer geohash string such as “sxk3k1” represents a more specific location
within a narrower region. Table 1 [52], contains the geohash parameters.

Table 1. Geohash parameters.

Name Description

Latitude Geospatial coordinate is the latitude value in degrees. The valid
value is a real number and is in the range [−90, +90].

Longitude Geospatial coordinate is the longitude value in degrees. The valid
value is a real number and is in the range [−180, +180].

Accuracy
It defines the requested level of accuracy. The supported values
fall within the range of (1, 18). If a value is not specified, the
default of 5 will be used.

Geohash consists of 18 accuracy levels, ranging in area coverage from the highest
level of 1–0.6 µ2 to the lowest level of 18–25 million km2. Table 2 [52], displays the 12 most
commonly used geohash area levels.

Due to the safety measures taken in the traffic incident, the area affected by the accident
can vary from 50 to 1000 square meters. Therefore, in our study, geohash code 6 was chosen
to represent a rectangular region of 0.74 km2 with a cell width of 1.22 km and a cell height
of 0.61 km.
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Table 2. Geohash lengths/codes.

Geohash Length/Code Cell Width Cell Height

1 5000 km 5000 km
2 1250 km 625 km
3 156.25 km 156.25 km
4 39.06 km 19.53 km
5 4.88 km 4.88 km
6 1.22 km 0.61 km
7 152.59 m 152.59 m
8 38.15 m 19.07 m
9 4.77 m 4.77 m
10 1.19 m 0.59 m
11 149.01 mm 149.01 mm
12 37.25 mm 18.63 mm

2.2. Machine Learning
2.2.1. Decision Trees

DT is a machine learning algorithm developed by Quinlan in 1986. This algorithm
creates a tree of rules to predict target values or labels for classification or regression
problems. A decision tree begins with a root node and builds an inductive tree of rules
by evaluating the relationship between features in a dataset. Each non-terminal node,
which includes the root and other internal nodes in the tree, is associated with a property
value. The dataset starts to be processed at the root node. Nodes create rules by examining
features one at a time. Decision nodes connect via branches to leaf nodes. The decision tree
algorithm generates multiple nodes for every potential outcome until it reaches a leaf node.
The leaf nodes of a decision tree provide the final output of the algorithm and represent
one or multiple classes [53].

In the hierarchical order of the DT, the main root is located at the top node, as shown
in Figure 2. Between the root and the leaves are internal nodes. The main purpose of
constructing a DT is to find an attribute that needs to be retested at one node and then map
it to another node [54]. In the DT model used in this study, the trees were not pruned.
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2.2.2. Random Forest

RF is a supervised learning algorithm and ensemble model consisting of decision
trees. The forest is made up of multiple decision trees created using the bagging technique.
In essence, random forest constructs numerous decision trees and merges their results to
achieve better accuracy and stability in prediction [21]. It can manage nonlinear, high-
dimensional variables and is capable of handling outliers and noise. Furthermore, RF offers
crucial benefits, such as relative variable importance and partial dependency plots, making
the interpretation of RF results effortless. RF is widely employed for classification and
regression tasks, as illustrated by Breiman (1996) [55] and Wan et al. (2023) [56].

Machine learning models have demonstrated superior predictive ability compared to
traditional approaches. However, the black-box nature of many ML algorithms remains a
challenge, as their inner workings are not easily interpreted [57–59]. The performance of
machine learning algorithms can be enhanced by tuning their hyperparameters. Random
forest (RF) has several advantages, including high resistance to overfitting and noise in
the data. Additionally, this algorithm can handle large feature sets and perform well on
datasets with missing data. The learning algorithm can generate a specific number of trees
by using the “n_estimators” parameter or by passing a seed to randomize the trees with
the “random_state” parameter [55]. In this study, we limited the number of trees generated
to 200.

2.2.3. K-Nearest Neighbors

K-NN algorithm is a type of supervised learning method. It proves to be an uncompli-
cated algorithm for classifying or predicting regression values. Furthermore, the algorithm
is considered “lazy” because it does not make generalizations on training data points,
keeping them during the testing phase [60]. The classification or regression value of an
example is computed by analyzing the similarities between each data sample in the dataset.

The k-NN algorithm consists of two steps. Firstly, it identifies the k training samples
that are closest to the unknown sample. Secondly, it selects the class in which k samples
occur most frequently. k-NN classification is typically used when all attributes are continu-
ous [61]. The k-NN algorithm utilizes memorization instead of learning the training data.
When prediction is required, it searches for the closest neighbors to the entire dataset. In
addition to the Euclidean distance function, the Manhattan, Hamming, and Minkowski
functions can also be used [62]. A k value of 1 means that the predictions of the new pat-
terns to be predicted are made using the closest single training sample. The value of k can
vary depending on the size of the dataset. In this study, we used Manhattan distance as the
distance parameter because of the presence of both continuous and categorical variables.

2.2.4. Support Vector Machines

SVM is a commonly utilized machine learning algorithm that was developed in the
1990s. It is a supervised algorithm [63] and is used in both classification and regression
problems. SVM separates data in either a linear or nonlinear manner, making it a versatile
tool [64]. SVM can yield favorable outcomes despite the presence of noisy data. The
benefits of the SVM algorithm consist of high accuracy, strong generalization properties, a
limited number of hyperparameters, and proficiency in processing multidimensional data.
Nevertheless, processing large datasets can be time-intensive, and selecting an appropriate
kernel function is crucial.

The SVM algorithm is used to solve classification problems. It classifies data using a
hyperplane that best separates the dataset into two classes. The chosen hyperplane provides
the best margin to separate the classes of data. Margin refers to the distance between the
data classes and the hyperplane. SVM can be used to classify both linearly separable and
nonlinearly separable data. SVM works by selecting a hyperplane that maximizes the
margin between two classes in linearly separable data. In cases where the data cannot be
linearly separated, SVM transforms the data into a high-dimensional feature space using
the kernel trick [63,64]. SVM uses various parameters, including the complexity parameter
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that controls the flexibility of the line used to separate classes. A value of 0 enforces a
strict margin, while the default value is 1. Another crucial parameter is the kernel type.
The linear kernel is the simplest and separates data with a straight line or hyperplane. A
polynomial kernel separates data into classes using a curve or curved line. The strength
of the separation decreases as the polynomial exponent value increases. The radial basis
function (RBF) kernel, which is the most popular and powerful kernel, uses closed polygons
and complex shapes to separate classes. This study employs linear, polynomial, and radial
basis function kernels with default parameters. The input vectors are mapped nonlinearly
on a high-dimensional plane, and a linear decision surface is formed on this plane to ensure
the generalizability of the learning machine.

2.2.5. GridSearchCV

Grid Search Cross Validation (GridSearchCV) is a method for optimizing hyperparam-
eters in machine learning algorithms. It seeks to improve model performance by selecting
the most suitable dataset features. GridSearchCV tests all potential combinations within a
specified set of hyperparameters to determine the ones that deliver the best results [65,66].

Previous studies have primarily employed grid search to explore the parameter space.
However, this approach can be computationally intensive, particularly when dealing with
high-dimensional parameter spaces. As an alternative, Bayesian optimization is often less
computationally demanding. In our study, we employed grid search to explore values in
the high-dimensional parameter space, which is a powerful technique for selecting high-
quality parameters of machine learning problems [21]. Despite the high dimensionality of
the parameter space, we used grid search to explore the parameter space. This is because
the GridSearchCV method is well-suited to our problem and scales well. Testing each
unique hyperparameter combination in the search space took a reasonable amount of time
to determine the best-performing combination.

3. Experiment
3.1. Study Area

Istanbul was selected as the location for predicting traffic incidents in our study due
to the high frequency of accidents and traffic incidents in the metropolis, which can lead
to significant traffic flow disruptions in an already heavily congested city. During the
data collection phase, the coordinates of the accidents and incidents were recorded and
assigned a 6th geohash code with the use of ArcGIS software. The study’s data entail
records of traffic accidents such as vehicle collisions and barrier collisions, as well as
incidents like vehicle malfunctions, road fires, and traffic-related altercations. The total
number of traffic incidents in Istanbul was recorded within 682 geohash areas, with each
geohash area measuring 1.22 × 0.61 km2. Basic statistics of traffic incidents occurring in
all defined areas were extracted, and the frequencies of traffic incidents occurring in these
areas were obtained. When the 16-month data used in the study were examined, it was
seen that there were no frequent accidents in most of the 682 defined areas. Narrowing the
study area is predicted to improve the accuracy of predicting accident locations in Istanbul,
which is a densely populated metropolis comprising 682 distinct zones that exhibit varying
characteristics and accident rates. Due to the high occurrence of traffic incidents such as
accidents, vehicle breakdowns, and road deformations in Beylikduzu-Bakirkoy, with a
total of 5114 incidents, and the similarity of road conditions across all defined locations,
this region was chosen as the study area. The substantial number of accidents/incidents
in the region presents an opportunity to estimate the risky region with a large dataset.
Furthermore, the adjacent geohash areas within the same region allow for the problem to
be evaluated within a homogeneous region in Istanbul. Figure 3 shows the 10 geohash
areas selected for the analysis and also the region specifically covered by geohash code 0.
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The number of traffic incidents for 10 geohash areas with similar characteristics
selected in this region is shown in Table 3. According to the table, 378 incidents occurred in
the area with the fewest traffic incidents, and 654 accidents/incidents occurred in the area
with the most traffic incidents.

Table 3. Frequency of traffic incidents.

Index Geohash Incident Frequency

0 sxk3k1 654
1 sxk3nt 600
2 sxk3ju 561
3 sxk3k2 542
4 sxk90z 529
5 sxk3n5 510
6 sxk90w 463
7 sxk91p 472
8 sxk3k8 405
9 sxk3pr 378

The study defined a time interval in four periods, as outlined in Table 4, during which
traffic incidents occurred at the identified locations. The highest frequency of incidents
took place between 8 a.m. and 8 p.m., attributed to increased commuting for work, school,
hospital, and other reasons. Few accidents occurred during sleeping hours, given the
reduced traffic on roads.

Table 4. Traffic incident time interval.

Time Intervals Traffic Incident Time Interval Incident Frequency

1 08:00–13:59 1927
2 14:00–19:59 2148
3 20:00–01:59 754
4 02:00–07:59 285

3.2. Data Acquisition

To achieve success in machine learning models, thorough and precise data collection
is crucial for accurate predictions in the targeted area. We obtained data on traffic incidents
from various national institutions and open data portals, including the Istanbul Metropoli-
tan Municipality, the Turkish Statistical Institute, and the Turkish State Meteorological
Service, as well as ArcGIS, IMM Open Data Portal, Development Library, OpenStreetMap,
and Google Maps. The study analyzed various datasets, which were combined after pre-
processing to gather necessary variables for predicting locations of traffic incidents. Data
pre-processing steps are given in Figure 4.
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During merging, ArcGIS and geohash codes were used to separate coordinate infor-
mation for the variables and group them based on location. The research dataset comprises
data on 74 variables in ten categories. A concise description of these categories is pro-
vided below, while complete information and descriptions of all variables are presented in
Appendix A:

• Time-dependent variables include year, month, day, special day, and incident time.
• Location-dependent variables consist of latitude, longitude, geohash (output), and

region, among others.
• Vehicle variables encompass cars, trucks, and motorcycles, among others.
• Variables related to traffic index include minimum, maximum, and average traffic

index as well as traffic density.
• Speed-related variables consist of minimum, maximum, and average speed and the

number of vehicles per day.
• Road structure and condition variables include road type, number of lanes, and

divided road information.
• Meteorological variables include temperature, humidity, wind speed and direction,

road temperature, and rainfall amount.
• Social and demographic variables include the number of schools, hospitals, residences,

cafes/restaurants, and workplaces.
• District-related variables consist of population, number of neighborhoods, agricultural

area, surface area, etc.

3.3. Hyperparameter Tuning

Hyperparameters are configurable settings that need to be established by the user
before training a machine learning model. It is essential to carefully fine-tune hyperpa-
rameters as it is a critical stage in training any machine learning model. Thus, accurate
determination of hyperparameters can have a significant impact on resulting accuracy
levels. Tools like GridSearchCV optimize critical hyperparameters, such as the learning rate
and the batch size of the model, in cases where some hyperparameters have been specified.
Precisely tuning these hyperparameters is crucial to maximize accuracy levels, increase
computational efficiency, and avoid common issues like overfitting [67–69].

The GridSearchCV algorithm can perform cross-validation on models while simultane-
ously searching for their optimal parameters. The performance of each model is impacted
to varying degrees by different parameters. Table 5 provides details on the parameters for
the four machine learning algorithms employed.
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Table 5. Parameters of the GridSearchCV algorithm.

DT k-NN

Hyperparameter Value Hyperparameter Value
max_depth 3, 5, 7, None n_neighbors 3, 5, 7, 9, 11

min_samples_split 2, 5, 10 weights uniform, distance
min_samples_leaf 1, 2, 4 p 1, 2, 3

RF SVM

Hyperparameter Value Hyperparameter Value
n_estimators 50, 100, 200 C 0.1, 1, 10
max_depth None, 5, 10

kernel linear, poly, rbf
min_samples_split 2, 5
min_samples_leaf 1, 2, 4 degree 2, 3

3.4. Performance Matrix

Various measures are used to evaluate the effectiveness of classification-algorithm-
generated models to determine the optimal model. One of these measures is the creation of
a confusion matrix. In the fields of machine learning and statistics, a confusion matrix is a
valuable instrument for assessing the classification models’ efficiency [48]. The 2 × 2 grid
presented in this matrix displays four unique combinations resulting from the comparison
of actual and predicted class values, as depicted in Table 6.

Table 6. Confusion matrix [48].

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Each cell in the matrix depicts a unique classification outcome, facilitating the as-
sessment of the model’s accuracy and efficacy. The investigation employed performance
indicators such as accuracy, precision, recall, and F-measure scores.

Accuracy, the primary metric used for evaluating models, signifies the number of
correct predictions out of all predictions. An algorithm for classification is deemed accurate
when it correctly identifies a certain percentage of the sample. As shown formulaically
below, accuracy is determined by dividing the sum of true positives (TP) and true negatives
(TN) by the total number of samples (TP, TN, false positives (FP), and false negatives (FN).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

The precision measures the proportion of accurately classified samples in a given
category, specifically the percentage that are true positives. The precision is calculated
using the following formula:

Precision =
TP

(TP + FP)
(2)

Recall indicates the accuracy of classifying a specific category. It shows how precisely
a class was categorized. Recall is computed as

Recall =
TP

(TP + FN)
(3)

The F1-Score is a statistical measure that combines precision and recall. It is com-
monly defined as the harmonic mean of the two values. F1-score is calculated with the
following formula:
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F1 − Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(4)

Matthews correlation coefficient (MCC) is a measure used to evaluate the performance
of classification models. MCC is computed as

MCC =
(TP ∗ TN − FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

3.5. Setup for the Experiment

Four distinct machine learning algorithms were implemented in our investigation
utilizing the Scikit-learn library in Python in order to forecast the location of traffic incidents
in Istanbul. The utilized machine learning models, including DT, RF, k-NN, and SVM,
underwent optimization with the hyperparameter optimization technique resulting in a
significant increase in model efficiency. With the aid of ArcGIS, we identified the geohash
areas where most traffic accidents, vehicle breakdowns, and other traffic incidents took
place in Istanbul, and we carefully examined 10 geohash areas accordingly. The study
utilized a total of 5114 traffic incident data, depending on 74 input variables, to generate a
classification problem for geohash fields. During the experiment, we tested different ratios
for test and training data and found that the best outcome was obtained when the test data
were 20% and the training data were 80%, using four distinct machine learning algorithms.
Consequently, we randomly selected 4091 traffic incidents from diverse time periods over
16 months as training data, while the remaining 1023 traffic incidents were employed as
test data.

The experiments were performed in the Anaconda3 2021.05 environment using Python
version 3.8.8 (64-bit) on a computing system equipped with an Asus Intel(R) Core (TM)
i5-8265U CPU running at 2.10 GHz (with a turbo boost frequency of 2.59 GHz), an Intel (R)
graphics processing unit, and 16 GB of RAM. Windows 10 was the operating system used
for these experiments.

4. Results

Performance metrics such as accuracy, precision, recall, and F1-score were computed
to evaluate the effectiveness of the DT, k-NN, RF, and SVM algorithms employed. The
results of the study are presented in Table 7, which highlights the performance of the four
distinct machine learning models.

Table 7. Test results.

Performance Metric DT k-NN RF SVM

accuracy 0.874 0.786 0.908 0.875
balanced accuracy 0.867 0.774 0.905 0.872

precision micro 0.874 0.786 0.908 0.875
precision macro 0.878 0.790 0.915 0.876

recall micro 0.874 0.786 0.908 0.875
recall macro 0.867 0.774 0.905 0.872

f1 micro 0.874 0.786 0.908 0.875
f1 macro 0.870 0.775 0.907 0.873

Table 7 displays that although random forest (RF) offers the highest accuracy rate
of 90,8% for predicting traffic incident locations, other machine learning algorithms also
deliver notable performance. The sequence of algorithm success in classification was
RF, SVM, DT, and k-NN. The close distribution of traffic events within the 10 geohash
clusters prevented over-learning of the training dataset, resulting in similar macro and
micro precision, recall, and F1-scores. In RF, Precision_macro minimizes error costs to 8.5%
and attains a success rate of 91.5%.
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When evaluating the other performance metrics and situations where the correct
and incorrect identifications were reversed, a 9% error was observed. Guessing the truth
accurately and identifying errors in the wrong place showed significant performance in
differentiating the clusters. This finding will be a valuable point of reference for further
studies in the literature.

MCC is an evaluation metric that takes into account the imbalance between classes, es-
pecially in unbalanced classification problems. MCC value takes a value between −1 and 1.
In our study, the MCC value of the RF model was calculated as 0.93. The closer the value
of MCC is to 1, the better the performance of the RF model is. Additionally, the Roc_Auc
graph of the RF model is given in Appendix B.

Figure 5 displays the confusion matrix for the RF model, which produced the most
favorable outcomes. Confusion matrices for the other three models are included in
Appendix B.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 23 
 

 

Figure 5. RF model confusion matrix. 

The confusion matrix depicted in Figure 5 illustrates how clusters representing geo-

hash areas are distributed according to the test results obtained from 1023 traffic data. The 

confusion matrix shows a high number of correctly predicted instances, indicating the 

model’s success in predicting traffic event locations. Each class has a relatively high num-

ber of correctly predicted instances, demonstrating successful identification. From the test 

dataset, it is evident that the first geohash region had the highest number of traffic inci-

dents reported with 140 occurrences, while the eighth geohash region had the lowest 

count of traffic events with only 67 incidents. A prediction accuracy of 99% was achieved 

as 139 out of 140 traffic incident locations in the first cluster were predicted correctly. The 

cluster indices with accuracy rates exceeding 90% for predicting traffic incident locations 

are 1, 2, 4, 0, 8, and 9, from the largest to the smallest. On the other hand, clusters 7, 3, 6, 

and 5 have accuracy rates lower than 90% when arranged numerically from the least to 

the most accurate. It was observed that cluster 7 had an accuracy rate of only 80%, and 

cluster 4 presented significant difficulty in predicting the traffic incident. It is understood 

that these two clusters are neighboring locations bordering each other, which explains the 

mixing situation. The close proximity of the regions allows for a relaxed approach, result-

ing in an 80% accuracy rate. Upon examining cluster 3, 15 traffic incidents that should 

have occurred were found to be in cluster 0 due to the two geohash fields being very close 

to each other. Twelve traffic incident locations that should be in cluster 6 were found to be 

in cluster 4, which are not close to each other. Although the model was unable to fully 

distinguish them, it achieved an acceptable 86% accuracy rate, representing a significant 

outcome for the ten cluster assignments. In clusters 1, 2, and 5, incorrect predictions were 

confused with only one cluster. Cluster 9 was confused with the highest number of differ-

ent clusters, with a total of three. This indicates that the model’s incorrect predictions were 

Figure 5. RF model confusion matrix.

The confusion matrix depicted in Figure 5 illustrates how clusters representing geo-
hash areas are distributed according to the test results obtained from 1023 traffic data.
The confusion matrix shows a high number of correctly predicted instances, indicating
the model’s success in predicting traffic event locations. Each class has a relatively high
number of correctly predicted instances, demonstrating successful identification. From
the test dataset, it is evident that the first geohash region had the highest number of traffic
incidents reported with 140 occurrences, while the eighth geohash region had the lowest
count of traffic events with only 67 incidents. A prediction accuracy of 99% was achieved
as 139 out of 140 traffic incident locations in the first cluster were predicted correctly. The
cluster indices with accuracy rates exceeding 90% for predicting traffic incident locations
are 1, 2, 4, 0, 8, and 9, from the largest to the smallest. On the other hand, clusters 7, 3, 6,
and 5 have accuracy rates lower than 90% when arranged numerically from the least to the
most accurate. It was observed that cluster 7 had an accuracy rate of only 80%, and cluster 4
presented significant difficulty in predicting the traffic incident. It is understood that these
two clusters are neighboring locations bordering each other, which explains the mixing
situation. The close proximity of the regions allows for a relaxed approach, resulting in an
80% accuracy rate. Upon examining cluster 3, 15 traffic incidents that should have occurred
were found to be in cluster 0 due to the two geohash fields being very close to each other.
Twelve traffic incident locations that should be in cluster 6 were found to be in cluster 4,
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which are not close to each other. Although the model was unable to fully distinguish them,
it achieved an acceptable 86% accuracy rate, representing a significant outcome for the ten
cluster assignments. In clusters 1, 2, and 5, incorrect predictions were confused with only
one cluster. Cluster 9 was confused with the highest number of different clusters, with a
total of three. This indicates that the model’s incorrect predictions were primarily due to
confusion between regions that are close to each other. Conversely, predictions for regions
that are relatively distant from each other were more accurate.

A total of 1023 traffic accident-incidents that occurred in four different time intervals,
(8:00 a.m.–1:59 p.m., 2:00 p.m.–7:59 p.m., 8:00 p.m.–1:59 a.m., and 2:00 a.m.–7:59 a.m.) in ten
different geohash areas over a period of 16 months were used as test data. Table 8 displays
the actual and predicted results of the traffic incidents that occurred in these various time
periods and locations.

Table 8. Actual and predicted traffic incidents.

Geohash
Area

Actual/
Predicted

1st
Time
Zone

2nd
Time
Zone

3rd
Time
Zone

4th
Time
Zone

Total

0
Actual 38 68 15 3 124

Predicted 38 62 14 3 117

1
Actual 50 52 32 6 140

Predicted 50 51 32 6 139

2
Actual 36 39 18 8 101

Predicted 33 38 18 8 97

3
Actual 27 54 10 10 101

Predicted 25 43 7 8 83

4
Actual 44 40 9 5 98

Predicted 43 37 9 4 93

5
Actual 33 46 24 2 105

Predicted 29 42 22 1 94

6
Actual 47 33 17 5 102

Predicted 42 28 14 4 88

7
Actual 33 47 14 9 103

Predicted 25 40 11 6 82

8
Actual 21 36 8 2 67

Predicted 19 33 8 2 62

9
Actual 30 32 19 1 82

Predicted 28 29 17 0 74

Total
Incidents 359 447 166 51 1023

Total
Predictions 332 403 152 42 929

Accuracy
Rate 92.48 90.16 91.57 82.35 90.81

Upon examining the table, it becomes clear that 29 out of 33 traffic incidents that took
place between 8:00 a.m. and 1:59 p.m. in geohash field number 5 were accurately forecasted.
Thirty-three traffic events occurred at various times during the test period in the geohash
area 1. During the first time period between 08:00 and 13:59 in the fifth region, our model
successfully predicted 29 of the events. According to the table, the prediction success rate
for 10 traffic incidents in time zone 1 is 92.48%. Out of the 27 incorrect predictions made in
time zones, the largest amount occurred in the geohash field no. 7, with a total of 8 incorrect
predictions. Notably, these incorrect predictions occurred within two adjacent geohash
areas that produced the most errors.

In time zone 2, ten locations where traffic incidents are likely to occur were predicted
with an accuracy rate of 90.16%. Among them, 44 incorrect predictions were made for the
traffic incident location, and the majority of the errors occurred in geohash field number 3,
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with 11 incorrect predictions. These predictions erroneously estimated the incident location
in geohash field 0. Here, as in nearby areas previously observed, the proximity of these
locations contributes to the occurrence of these errors.

Ten traffic incidents were accurately predicted at a rate of 91.57% in time zone 3.
However, the accuracy rate dropped to 82.35% in time zone 4, which corresponds to the
early morning hours with relatively little traffic. This suggests that the prediction success
decreases due to the scarcity of traffic events during this period. Compared to other time
intervals, the success rate of learning from traffic events is relatively low during the fourth
hour.

5. Conclusions

This study demonstrates the effectiveness of a geohash-based prediction model in
estimating the locations of traffic incidents. The algorithms produced accurate and de-
pendable estimations of incident locations. The suggested algorithm for predicting traffic
incidents achieved a substantial accuracy rate of 90.81%. The use of geohash areas, com-
bined with the consideration of all variables affecting traffic events, greatly influenced the
success of the model. Analysis of geohash areas revealed that machine learning algorithms
achieved remarkable success in predicting traffic incident locations through the use of
geohash-area-based geographical data.

RF, SVM, and k-NN are generally more complex and flexible models. RF works
as an ensemble learning method. In this case, it involves creating a strong learner by
using multiple weak learners (DT). Ensemble learning increases overall performance by
combining different learning strategies. A single tree model such as DT may overfit the
training data, leading to overfitting. RF is more resistant to overfitting because it trains
trees with random samples and features. For this reason, it gave the best results. SVM and
k-NN are generally more flexible and powerful in terms of feature selection. This allows
the model to make better use of important features in the dataset.

The prediction model enables dynamic geohash-based predictions. It captures real-
time data, allowing for dynamic prediction of traffic incident scenes. Taking into account
different time zones is also significant for the model’s ability to quickly adapt to traffic
situations. The study’s findings indicate that precise analysis of geographic data, coupled
with efficient utilization of geohash-based machine learning algorithms, can substantially
aid in forming strategies to mitigate adverse consequences of traffic incidents. These results
extend fresh insights to traffic managers and emergency responders on more effective
management of traffic incidents to enhance the safety of drivers.

The model’s ability to successfully forecast can be used for automatic alerts and
emergency management when integrated into traffic management systems. For example,
when high probabilities of traffic incidents are detected in a given area, the system can
automatically send alerts and mobilize emergency teams. Predicted traffic incident locations
give traffic managers the chance to respond to incidents in advance. In this case, it can
help traffic management systems utilize their resources more effectively and better plan
emergency responses.

If real-time data from various variables, which may impact traffic accidents and
incidents involving cities, traffic conditions, vehicles, and people, are incorporated into the
model along with the flow of real-time data collected from various institutions’ databases,
traffic events that are likely to occur within specific time frames can be predicted with
high accuracy rates, apart from the 74 variables already included in the model. This can
significantly improve traffic management and safety by optimizing traffic flow within cities
and reducing adverse effects caused by traffic incidents. The prediction model will assist
traffic supervisors and emergency response teams in precisely intervening at crucial sites
and efficiently managing personnel during traffic incidents.
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5.1. Limitations

This study has some limitations. Firstly, it focuses only on a specific region of Istanbul,
namely Beylikduzu-Bakirkoy, which may limit the generalizability of the results. Secondly,
it uses data from a specific time period covering a period of 16 months. Including a longer
time frame may provide a more comprehensive analysis. Thirdly, the use of geohash fields
is associated with a certain level of geographical precision.

When considering smaller geographical areas, forecasting success may be more chal-
lenging, but it can lead to more precise area estimation. On the other hand, if larger
geographical areas are taken into account using geohash codes, prediction success may
increase, but location accuracy may decrease. Additionally, the study’s model selection
and evaluation metrics are based on a specific preference. These results could have been
different if a specific algorithm or metric had been chosen.

5.2. Future Research

This study focuses on a specific geographical region. Future research could assess
the effectiveness of a similar model in different cities, regions, or countries. Examining
the impact of various geographical conditions, cultural factors, and traffic regulations
can provide a more comprehensive understanding of the model’s general applicability.
Additionally, comparing changes in traffic incident locations over time with ongoing traffic
incidents in that area can be useful. Periodic factors should be analyzed in addition to
feature selection to comprehensively address the factors affecting traffic incidents.

Our study introduced an innovative approach based on geohash, utilizing ArcGIS
and machine learning algorithms. Future research could develop a more comprehensive
approach by integrating different variables and various data sources not included in
the current study into the model. In addition to the research conducted, gathering and
consolidating real-time data from the various analyzed regions could potentially lead
to significant advancements in future studies. This approach provides the advantage of
predicting traffic incidents instantaneously, thus allowing for a swift response by emergency
response teams.
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Appendix A

Variables Data Type Explanation

Year Numeric Year of traffic incident
Month Categorical Month in which the traffic incident occurred (1–12)
Day Categorical Day of the month in which the traffic incident occurred (1–31)

Special day Categorical
Representation of public holidays, religious holidays, and important
days

Incident Day Categorical Day of the week when the traffic incident occurred (1–7)

Time period Categorical
Time range of the day when the traffic incident occurred (1 8–14, 2
14–20, 3 20–2, 4 2–8)
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Variables Data Type Explanation

District Categorical
Districts where traffic incidents occur such as Avcilar, Bakirkoy,
Bahcelievler, etc.

District population Numeric
Population information of the district where the traffic incident
occurred

Number of Neighborhoods Numeric
Number of neighborhoods in the district where the traffic incident
occurred

Area measurement Numeric Area of the district where the traffic incident took place

Minimum speed Numeric
Minimum speed for the relevant geohash area on the given day and
time

Maximum speed Numeric
Maximum speed for the relevant geohash area on the given day and
time

Average speed Numeric
Average speed for the relevant geohash area on the given day and
time

Number of unique vehicles Numeric
Number of different vehicles within the relevant geohash area on the
given day and time

Minimum traffic index Numeric
Field containing minimum traffic index information on the relevant
day and time

Maximum traffic index Numeric
Field containing maximum traffic index information on the relevant
day and time

Average traffic index Numeric
Field containing average traffic index information on the relevant day
and time

Number of vehicles per day Numeric
Total number of vehicles passing within the given day and the
relevant geohash area

Daily average speed Numeric
Average speed of vehicles on the given day and within the relevant
geohash area

Traffic percentage Numeric
Percentage of overall traffic measured at five-minute intervals on a
given day

Temperature Numeric Air temperature of the relevant district on the given day and time

Road temperature Numeric
Road temperature information of the relevant district on the given
day and time

Humidity Numeric Air humidity rate of the relevant district on the given day and time
Rainfall Amount Numeric Rainfall amount of the relevant district on the given day and time
Wind speed Numeric Wind speed of the relevant district on the given day and time

Wind direction Numeric
Direction of the wind speed of the relevant district on the given day
and time

Ground information Categorical
Ground information of the relevant geohash area (dry/wet, etc.) on
the given day and time

Road type-1 Categorical
Road type of the relevant geohash area (access road, side road,
intersection, bridge, etc.)

Road type-2 Categorical Road type in the relevant geohash area (main artery, highways, etc.)
Number of lanes Categorical Number of stripes of the relevant geohash area
Divided road Categorical Divided road information of the relevant geohash area
Speed Numeric Current speed limit
Width Numeric Width of the road in the relevant geohash area
One Way Categorical One-way information of the road in the relevant geohash area
Car Numeric Number of cars registered in the relevant month and district
Minibus Numeric Number of minibuses registered in the relevant month and district
Bus Numeric Number of buses registered in the relevant month and district
Van Numeric Number of vans registered in the relevant month and district
Truck Numeric Number of trucks registered in the relevant month and district
Motorcycle Numeric Number of motorcycles registered in the relevant month and district

Special purpose vehicle Numeric
Number of special purpose vehicles registered in the relevant month
and district

Total number of vehicles Numeric Total number of vehicles in the relevant month
Bachelor’s degree rate Numeric Rate of people with a bachelor’s degree by year in the given district
Illiteracy rate Numeric Year-based illiteracy rate of the given district
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Variables Data Type Explanation

Student rate Numeric Year-based student rate for the given district
Average household size Numeric Year-based average household size for the given district
Number of houses Numeric Monthly number of houses in the given district
Number of private workplaces Numeric Monthly number of private workplaces in the given district
Agricultural field Numeric Year-based agricultural area of the given district
Number of hospitals Numeric Year-based number of hospitals in the given district
Number of schools Numeric Year-based number of schools in the given district
University Numeric Year-based number of universities in the given district
University facility Numeric Number of university facilities in the given district
Police Numeric Year-based number of police officers in the given district
Fire station Numeric Year-based fire department area of the given district

personSOS Numeric
Year-based number of emergency healthcare workers in the given
district

Metrobus station Numeric Year-based number of metrobus stations in the given district
Metro station Numeric Year-based number of metro stations in the given district
Port Numeric Year-based number of ports for the given district
Number of parking lots Numeric Year-based number of parking lots in the given district
Number of banks Numeric Year-based number of banks in the given district
Number of ATMs Numeric Year-based number of ATMs in the given district
Number of shopping malls Numeric Year-based number of shopping malls in the given district
Number of markets Numeric Year-based number of markets in the given district
Number of mini markets Numeric Year-based number of minimarkets in the given district
Number of super markets Numeric Year-based number of supermarkets in the given district
Number of hotels Numeric Year-based number of hotels in the given district
Number of stores Numeric Year-based number of stores in the given district
Industrial area Numeric Year-based industrial area amount for the given district
Number of bars/clubs Numeric Year-based number of bars/clubs in the given district
Number of cafes Numeric Year-based number of cafes in the given district
Number of museum galleries Numeric Year-based number of museums and galleries in the given district
Sports facility Numeric Year-based number of sports facilities in the given district
Number of theaters Numeric Year-based number of theater halls in the given district
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