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Abstract: Laryngeal squamous cell carcinoma (LSCC) constitutes a noteworthy subset of head and
neck cancers, contributing to about 4.5% of all malignancies. Its clinical behavior and characteristics
exhibit variations contingent upon the specific anatomical site affected, with the glottis, supraglottis,
and subglottis emerging as the most prevalent locations. Notably, squamous cell carcinoma represents
a predominant histological type, accounting for 85% to 95% of all laryngeal cancers. The gender
disparity is evident, with a higher incidence among males, exhibiting a ratio of 3.9:1. Moreover,
disparities among racial groups are observed, as African American patients tend to manifest the
condition at a younger age, coupled with lower overall survival rates compared to their Caucasian,
Hispanic, and Asian counterparts. The primary etiological factors implicated in the onset of laryngeal
cancer are tobacco and alcohol consumption, with a direct correlation to the intensity and duration
of usage. Importantly, the risk diminishes gradually following cessation, necessitating a substantial
period of at least 15 years for a return to baseline rates. Given the diverse nature of laryngeal SCC,
treatment modalities are tailored based on the specific site and stage of the disease. Therapeutic inter-
ventions, such as radiotherapy, transoral laser microsurgery, open horizontal partial laryngectomy,
or total laryngectomy, are employed with the overarching goal of preserving organ function. This
study delves into the intricate realm of laryngeal SCC, specifically exploring the involvement of heat
shock proteins (HSPs) in disease progression. This research meticulously examines the expression
levels of Hsp10, Hsp27, Hsp60, and Hsp90 in dysplastic and benign tissue samples extracted from
the right vocal cord, utilizing immunohistochemistry analysis. The focal point of the investigation
revolves around unraveling the intricate role of these molecular chaperones in tissue differentiation
mechanisms and cellular homeostasis, particularly within the inflammatory milieu characteristic of
the tumor phenotype. The findings from this study serve as a robust histopathological foundation,
paving the way for more in-depth analyses of the underlying mechanisms governing the contribution
of the four chaperones to the development of squamous cell carcinoma in the larynx. Additionally, the
data gleaned from this research hint at the potential of these four chaperones as valuable biomarkers,
not only for diagnostic purposes but also for prognostication and ongoing patient monitoring. As our
understanding of the molecular intricacies deepens, the prospect of targeted therapeutic interventions
and personalized treatment strategies for laryngeal SCC becomes increasingly promising.

Appl. Sci. 2024, 14, 722. https://doi.org/10.3390/app14020722 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020722
https://doi.org/10.3390/app14020722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4618-4963
https://orcid.org/0000-0001-8958-525X
https://orcid.org/0000-0003-2016-4101
https://orcid.org/0000-0002-3679-3968
https://orcid.org/0000-0002-9497-5612
https://orcid.org/0000-0001-6610-5268
https://doi.org/10.3390/app14020722
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020722?type=check_update&version=1


Appl. Sci. 2024, 14, 722 2 of 13

Keywords: chaperone system; molecular chaperones; Hsp10; Hsp27; Hsp60; Hsp90; vocal cords;
squamous cell carcinoma; immunohistochemistry; HSPs in carcinogenesis; HSP biomarkers

1. Introduction

Laryngeal squamous cell carcinoma (LSCC) represents a significant portion, approxi-
mately 4.5%, of all malignancies, making it the most prevalent form of head and neck cancer
in males [1,2]. The variability in tumor characteristics, clinical behavior, and prognosis is
closely tied to the anatomical site affected, including the glottis, supraglottis, or subglottis
regions [3]. Squamous cell carcinoma constitutes a substantial majority, accounting for 85%
to 95% of all laryngeal cancers. Alarming statistics from 2018 in the United States alone
reported around 13,150 newly diagnosed cases of laryngeal cancer, leading to approxi-
mately 3710 deaths [4]. The incidence ratio between males and females is notably high at
3.9:1 [5]. While racial predilection is not overtly evident, race emerges as an independent
prognostic factor. African American patients present at a younger age and exhibit lower
overall survival rates compared to their Caucasian, Hispanic, and Asian counterparts [6].
This disparity underscores the intricate interplay of genetic and environmental factors in
the development and progression of LSCC. Tobacco and alcohol use stand out as primary
causative factors for laryngeal cancer, with risk escalating in proportion to the intensity and
duration of consumption. Interestingly, after cessation of tobacco or alcohol use, it takes
approximately 15 years for the risk levels to normalize, emphasizing the long-term impact
of these habits [1].

The management of LSCC involves a nuanced approach, with treatment options
contingent on the location and stage of the disease [7]. Organ preservation strategies,
including radiotherapy [8,9] and transoral laser microsurgery (TLM) [10,11], as well as
open horizontal partial laryngectomy or definitive surgery (total laryngectomy) [12], are
employed. Surgical interventions, whether diagnostic or therapeutic, play a pivotal role
in providing critical insights into tumor biology and guiding the subsequent course of
treatment.

Despite advances in understanding various human tumor types, the precise role and
contribution of members of the chaperone system (CS), such as heat shock proteins (HSPs),
in the carcinogenic process of the larynx, especially the vocal cords, remain to be firmly
established [13–18]. Researchers studying various types of carcinomas have discovered
that heat shock proteins can have an additional role. When released outside of cells, these
proteins can cause chronic inflammation. They promote cytokines and interact with other
proteins, which are crucial in regulating the immune response, inflammation, and tumor
microenvironment in cancer. Pro-inflammatory cytokines, including TNF-α, IL-1β, and
IL-6, can exacerbate cancer invasiveness and malignancy. These cytokines facilitate cancer
progression by inducing persistent inflammation and continuously activating signaling
pathways like NF-κB. Furthermore, cytokines can affect the activity of tumor-associated
macrophages (TAMs), which secrete factors that contribute to tumor growth and metastasis
while maintaining an immunosuppressive environment [19–22]. Another possibility that
the study and analysis of various HSPs may provide is to use this class of proteins for
prognostic purposes. High expression levels of heat shock proteins may be associated with
worse prognostic pictures. Thus, having these data available could be crucial for optimizing
the individual therapy of individuals with carcinoma [23–26]. Recent studies have revealed
the crucial role of HSPs in maintaining cellular stability and averting programmed cell
death (apoptosis). This, in turn, poses a considerable risk factor for cancer treatments,
potentially causing resistance. Therefore, when devising an effective cancer therapy for
a patient, it is imperative to take this factor into consideration [27–29]. This pilot study
embarks on an immunomorphological evaluation of the tissue levels and topography of
specific HSPs (Hsp10, Hsp27, Hsp60, and Hsp90) utilizing immunohistochemistry. This
study meticulously quantifies the presence of these molecules in vocal cord tissue during
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stages of dysplasia and malignancy. The primary objective is to establish a robust platform
for further investigations into the mechanisms underlying the participation of HSPs in
laryngeal carcinogenesis. The study aims to ascertain whether and how the quantitative
levels of these CS components influence the progression of tissue lesions.

Anticipating that the results will shed light on the potential role of HSPs as biomarkers,
this study seeks to provide valuable insights for diagnosis, prognostication, and patient
monitoring. The implications of this research extend beyond the laboratory, holding the
promise of more personalized and effective approaches to managing laryngeal squamous
cell carcinoma. The quest for biomarkers and a deeper understanding of the molecular
intricacies involved paves the way for advancements in the field of head and neck oncology,
offering hope for improved outcomes and enhanced patient care.

2. Materials and Methods
2.1. Sample Collection

The vocal cord tissue samples utilized in this study were sourced from the archives
of the “Ospedali Riuniti VILLA SOFIA-CERVELLO” hospital in Palermo. These biopsy
samples from Italian patients who had been cigarette smokers for at least five years,
collected over two years from 2020 to 2022, were meticulously categorized into three
distinct groups to facilitate a comprehensive morphological analysis. The stratification
of these tissue specimens aimed at capturing the spectrum of conditions within the vocal
cords, providing valuable insights into the molecular and cellular changes associated with
health, dysplasia, and squamous cell carcinoma (SCC) (Table 1).

Table 1. Description of demographic information, such as gender and age, and clinical characteristics
of individual patients in each group (healthy, dysplasia, and squamous cell carcinoma), including
TNM staging.

Group Gender Age (y.o.) T N M

Healthy Female 48 - - -

Healthy Female 50 - - -

Healthy Male 53 - - -

Healthy Male 57 - - -

Healthy Male 60 - - -

Healthy Male 62 - - -

Healthy Female 65 - - -

Healthy Male 68 - - -

Healthy Female 69 - - -

Healthy Male 70 - - -

Dysplasia Female 45 - - -

Dysplasia Female 49 - - -

Dysplasia Male 53 - - -

Dysplasia Female 55 - - -

Dysplasia Male 59 - - -

Dysplasia Male 62 - - -

Dysplasia Male 65 - - -

Dysplasia Female 71 - - -

Dysplasia Male 76 - - -

Dysplasia Male 78 - - -
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Table 1. Cont.

Group Gender Age (y.o.) T N M

Squamous Cell Carcinoma Male 68 2 0 0

Squamous Cell Carcinoma Male 69 3 0 0

Squamous Cell Carcinoma Female 70 3 0 0

Squamous Cell Carcinoma Male 73 2 0 0

Squamous Cell Carcinoma Female 74 2 0 0

Squamous Cell Carcinoma Male 77 2 0 0

Squamous Cell Carcinoma Female 78 2 0 0

Squamous Cell Carcinoma Female 80 2 0 0

Squamous Cell Carcinoma Female 81 2 0 0

Squamous Cell Carcinoma Female 82 3 0 0

The first group, denoted as the Healthy group, comprised ten tissue specimens sourced
from both male and female individuals with ages ranging from 48 to 70 years. These
specimens were characterized by their normal physiological status, serving as a baseline for
comparison against the other groups. The inclusion of both genders and a varied age range
within this group ensured a representative sample reflecting the diversity of the general
population.

The second group, labeled Dysplasia, encompassed ten tissue samples collected from
individuals exhibiting dysplastic changes in their vocal cord tissue. Within this group,
six males and four females, aged between 45 and 78 years, were represented. Dysplasia,
a condition marked by abnormal cellular growth and differentiation, provides a critical
intermediary stage in the progression toward more severe pathologies such as cancer.
Analyzing this group allowed for a nuanced understanding of the morphological alterations
associated with the precancerous state.

The third group, Squamous Cell Carcinoma (SCC), comprised ten tissue specimens
from individuals diagnosed with squamous cell carcinoma of the vocal cords. This group
featured an equal distribution of five males and five females, aged between 68 and 82 years,
and exhibited a state of moderate differentiation.

The comprehensive collection of vocal cord tissue samples over the specified time
frame and their meticulous categorization into Healthy, Dysplasia, and SCC groups pro-
vided a robust foundation for the morphological study. This stratified approach ensured
that the analysis could capture the dynamic changes occurring at different stages of vocal
cord pathology. The utilization of archived samples from a reputable hospital further
adds credibility to the study, as the samples are likely to be well preserved and accurately
documented.

In summary, the vocal cord tissue samples collected from the archives of “Ospedali
Riuniti VILLA SOFIA-CERVELLO” hospital in Palermo form a diverse and representative
dataset, allowing for a comprehensive investigation into the morphological variations
associated with health, dysplasia, and squamous cell carcinoma. The categorization into
distinct groups based on health status and the inclusion of age and gender diversity within
each group (Table 1) enhances the capacity of the study to uncover meaningful insights
into the intricate processes underlying vocal cord pathologies.

2.2. Immunohistochemical Analysis

The immunohistochemical investigations (IHC) were performed on 5-micron thick
tissue sections, obtained with a microtome from paraffin blocks. The resulting sections
were subjected to deparaffinization, which consisted in immersing the sections in xylene for
30 min at 60 ◦C. Subsequently, the sections were rehydrated in a descending scale of alcohol
at 23 ◦C (steps: in alcohol 100% for 10 min, alcohol 95% for 5 min, alcohol 80% for 5 min,
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alcohol 50% for 5 min), and lastly rinsed with distilled water for 5 min. Then, the sections
were incubated for 8 min in 350 mL of saline solution, Sodium Citrate (Sodium Citrate
Buffer pH 6), at 80 ◦C to allow for the unmasking of antigens that may have been masked
by fixation and paraffin embedding. Subsequently, to avoid the detachment of the sections
from the slide, the sections were immersed in acetone at −20 ◦C for 5 min. All subsequent
reactions were conducted at room temperature (23 ◦C), using the Immunoperoxidase
Secondary Detection System (Millipore, Burlington, MA, USA & Canada, cat. N DAB-500.).
In the next step, the sections were rinsed with PBS (Phosphate Buffered Saline pH 7.4)
for 5 min, followed by the incubation of the sections with 3% hydrogen peroxide for the
inhibition of endogenous peroxidase for 5 min. After rinsing with PBS for 5 min, the non-
specific sites were blocked by using a protein-blocker reagent (blue-colored reagent) for
5 min. Subsequently, the sections were incubated with the primary antibodies anti-Hsp10
(rabbit anti-Hsp10 polyclonal antibody, D-8, Santa Cruz Biotechnology, Dallas, TX, USA, cat.
N: sc-20958, dilution 1:200), anti-Hsp27 (mouse anti-Hsp27 monoclonal antibody, F-4; Santa
Cruz Biotechnology, cat N: sc-13132, dilution 1:200), anti-Hsp60 (rabbit polyclonal anti-
Hsp60 antibody, Abcam, Cambridge, CB2 0AX, UK, Cat. No. ab46798, dilution 1:400), and
anti-Hsp90 (mouse anti-Hsp90 monoclonal antibody, clone F-8, Santa Cruz Biotechnology,
Cat. No. sc-13119, dilution 1:200), overnight at 4 ◦C. For all reactions, the appropriate
negative controls were also carried out by adding only PBS to the sections instead of the
primary antibody. After the incubation with the primary antibody, the samples were rinsed
with PBS for 30 s with Rinse Buffer 1× and incubated with secondary antibody (biotinylated
goat anti-mouse IgG, Cat. No. 20775, Millipore Burlington, MA, USA & Canada, cat. N
DAB-500) drops for 10 min at room temperature. After subsequent rinsing with PBS
for 5 min, the reaction continued with incubation with Streptavidin HRP (Streptavidin
HRP: Diluted in Tris Buffered Saline, Cat. No. 2774, Millipore Burlington, MA, USA &
Canada, cat. N DAB-500) drops for 10 min and, after further washing in PBS for 5 min,
the samples were incubated with an adequate volume of Chromogen Reagent, and for
the nuclear blue counterstaining, after another buffer rinse, stained with the Hematoxylin
Counter Stain solution for 1 min at room temperature. Finally, the slides were mounted
with coverslips using the permanent mount (Vecta Mount, H-5000, Vector Laboratories, Inc.,
Burlingame, CA, USA). Sections were observed with an optical microscope (Microscope
Axioscope 5/7 KMAT, Carl Zeiss, Oberkochen, Germany) connected to a digital camera
(Microscopy Camera Axiocam 208 color, Carl Zeiss). All evaluations were performed at
400× magnification and repeated for 10 High-Power Fields (HPF).

2.3. Statistical Analysis

The statistical analysis was performed using GraphPad Prism 4.0 software (GraphPad
Inc., San Diego, CA, USA) employing one-way ANOVA analysis to determine the presence
of statistically significant differences. All data were reported as mean ± standard deviation,
and the threshold for statistical significance was set at p ≤ 0.05.

3. Results
3.1. Hsp10

The results of our immunohistochemical assessment of Hsp10 experiments have shown
that healthy tissue has an average tissue level of (26.5 ± 6.5)%, with a cytoplasmic granular
immunolocalization. However, the dysplastic tissue group exhibited higher tissue levels, with
a percentage of (69.5 ± 7)% and a cytoplasmic and sometimes nuclear localization (Figure 1A).
The tumor tissue group showed even higher tissue levels, consisting of (93.5 ± 3)%, with
cytoplasmic and nuclear localization (also seen in Figure 1A). From our data, we can conclude
that there is a gradual increase in Hsp10 tissue expression levels, progressing from healthy
tissue to dysplastic tissue and tumor tissue (Figure 1B). Through statistical analysis, we have
discovered a significant difference (p < 0.01) between the healthy tissue group (Healthy) and
the dysplastic (Dysplasia) and squamous cell carcinoma group (SCC), as well as between the
dysplastic group and squamous carcinoma group (Figure 1B).
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Figure 1. (A) Hsp10 immunohistochemistry. Representative images of immunohistochemical results
for Healthy (a,b), Dysplasia (c,d), and SCC (squamous cell carcinoma); (e,f)). (a,c,e): magnification
200×, scale bar 50 µm; (b,d,f): magnification 400×; scale bar 20 µm. (B) Statistical analysis of Hsp10
results. The histogram revealed a significant difference between the Healthy group and the Dysplasia
and SCC groups (# p ≤ 0.01), as well as between the Dysplasia group and the SCC group (* p ≤ 0.01).

3.2. Hsp27

The immunopositivity of Hsp27 appeared granular in the cytoplasm in all samples of
the healthy tissue group with an average percentage of (30.5 ± 4)%, whereas in the dysplas-
tic tissue group, it was observed in the cytoplasm diffusely with an average percentage of
(66 ± 5.5)%. Finally, in the squamous carcinoma tissue group, the Hsp27 immunopositivity
exhibited a significantly higher value of (92.5 ± 4)% and was localized in the cytoplasm and
occasionally in the nucleus (Figure 2A). The statistical analysis conducted on the normal
tissue, dysplastic tissue, and squamous carcinoma tissue (Figure 2B) revealed a progressive
elevation in the tissue levels of Hsp27 with a significant difference (p < 0.01) between the
healthy tissue group and the dysplastic and squamous carcinoma group, and between the
dysplastic group and squamous carcinoma group (Figure 2B).
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Figure 2. (A) Hsp27 immunohistochemistry. Representative images of immunohistochemical results
for Healthy (a,b), Dysplasia (c,d), and squamous cell carcinoma (SCC; (e,f)). (a,c,e): magnification
200×, scale bar 50 µm; (b,d,f): magnification 400×; scale bar 20 µm. (B) Statistical analysis of Hsp27
results. The histogram revealed a significant difference between the Healthy group and the Dysplasia
and SCC groups (# p ≤ 0.01), as well as between the Dysplasia group and the SCC group (* p ≤ 0.01).
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3.3. Hsp60

In the healthy tissue group, Hsp60 immunopositivity was observed to be cytoplasmic
and granular, with an average percentage of (22 ± 4.5)%. However, in the dysplastic tissue
group, the Hsp60 percentage immunopositivity was (78 ± 2.5)%, while in the squamous
carcinoma group, it was (92 ± 3)%. The immunolocalization was predominantly diffuse and
cytoplasmic (Figure 3A). The statistical analysis revealed a significant increase in the tissue
expression levels of Hsp60 observed during the transition from normal to dysplastic tissue
and neoplastic tissue groups. A statistically significant difference (p < 0.01) was detected
between the healthy tissue group and the dysplasia and carcinoma groups (Figure 3B).
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3.4. Hsp90

The evaluation of tissue expression levels of Hsp90 in the examined samples exhibited
an average percentage of (22 ± 5)% in the healthy tissue group, (60 ± 7)% in the dysplastic
tissue group, and (90 ± 4)% in the squamous carcinoma tissue group. Immunopositivity
was predominantly localized within the cytoplasm across all samples, except for healthy
tissues, where it was primarily observed in the basal layers of the epithelium (Figure 4A).
Through a comprehensive statistical analysis encompassing healthy tissues, dysplastic
tissues, and squamous carcinoma tissues (Figure 4B), a progressive increase in Hsp90
expression values was observed. Notably, a statistically significant difference (p < 0.01) was
discerned between the healthy group and the dysplasia and squamous carcinoma groups.
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Figure 4. (A) Hsp90 immunohistochemistry. Representative images of immunohistochemical results
for Healthy (a,b), Dysplasia (c,d), and SCC (squamous cell carcinoma; (e,f)). (a,c,e): magnification
200×, scale bar 50 µm; (b,d,f): magnification 400×; scale bar 20 µm. (B) Statistical analysis of Hsp90
results. The histogram revealed a significant difference between the Healthy group and the Dysplasia
and SCC groups (# p ≤ 0.01), as well as between the Dysplasia group and the SCC group (* p ≤ 0.01).

4. Discussion

In our morphological study, we sought to substantiate or refute the hypotheses we
had posited by assessing the tissue levels of four heat shock proteins, namely, Hsp10,
Hsp27, Hsp60, and Hsp90, as well as scrutinizing the immunopositivity localization for
each protein across various stages of differentiation within the carcinogenic vocal cord
mucosa, juxtaposed with healthy tissue samples.

Cells heavily rely on heat shock proteins for critical tasks essential to maintaining
cellular homeostasis. Consequently, these proteins are ubiquitously present and fulfill
indispensable roles, encompassing the facilitation of proper protein folding and the translo-
cation, degradation, and elimination of aberrant protein aggregates [30]. These multifaceted
functions render them chaperonins. Notably, their involvement transcends these primary
duties and extends into other domains, including DNA replication [31], gene expression
regulation [30,31], the modulation of apoptotic and autophagic processes, participation in
cellular senescence [32], and the induction of an inflammatory state. Remarkably, our study
unveiled an unexpected association between these proteins and the intricate processes
underpinning vocal cord carcinogenesis [33]. The findings of this analyzed protein pool
align with existing scientific evidence that supports HSPs playing a role in the oncogenic
process and its progression [34].

In several recent studies, the implication of heat shock proteins in various mechanisms
underlying the onset of different types of tumors has been hypothesized and, at times,
confirmed [35–37]. Gastric, hepatic, breast, ovarian, lung, pancreatic, colorectal, squamous
cell of tongue, glioma, and osteosarcoma cancers are among the many tumor variants in
which the involvement of heat shock proteins has been highlighted. This implication of
heat shock proteins has also been found in laryngeal squamous cell carcinoma [38–40].

Heat shock proteins seem to be involved in the carcinogenesis process either directly
or indirectly. Due to the hostile tumor microenvironment, cells overexpress hsp genes in
response to altered oxygen levels, nutrient and metabolite deficiencies, and significant
pH shifts [31]. One of the indirect mechanisms that are commonly recognized involves
cancer cells releasing extracellular vesicles that contain Hsp27 and Hsp90 into the tumor
environment. These heat shock proteins interact with plasma receptors on cancer cells,
triggering internal signaling pathways that promote the epithelial–mesenchymal transi-
tion (EMT) process. EMT is a significant characteristic of cancer [41]. In addition, HSPs
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play a pivotal role in the regulation of extracellular matrix (ECM) remodeling and the
modulation of its stiffness through their interactions with and control over a multitude
of extracellular client proteins. Notably, Hsp90a, and in certain instances, Hsp60, have
been identified as indispensable factors in driving the invasiveness and fostering the de-
velopment of metastases in conditions such as fibrosarcoma, esophageal squamous cell
carcinoma, and breast cancer cells [32]. As mentioned before, molecular chaperones can
also act on a tumor level by being released into the extracellular tumor environment. This
is essential to play their pro-inflammatory role, which contributes to the modulation of
the tumor microenvironment. Extracellular HSPs can act as danger signals, triggering
immune responses and activating various inflammatory pathways. The extracellular HSPs
can activate inflammatory pathways, fostering a microenvironment conducive to tumor
progression [42].

Additionally, HSPs can indirectly contribute to carcinogenesis through epigenetic
interactions involving HSP receptors and translation factors such as hsf-1. Moreover, a
noteworthy category of cellular pathways in which these molecules participate in the
carcinogenesis process involves a set of post-translational modifications, including sumoy-
lation, methylation, and phosphorylation, which their domains, such as the AKT domain or
C-terminal domain, and their receptors undergo [33]. Moreover, another avenue through
which HSPs promote tumor growth and impede therapeutic intervention lies in their role
in fostering resistance to chemotherapy and radiation. Indeed, empirical observations have
indicated that when tumor cells are subjected to treatments such as ionizing radiation or
alkylating agents, the HSP family actively undermines the efficacy of these therapies by
deploying defense mechanisms designed to safeguard the structural integrity of the cell
and the integrity of its DNA [39,43].

The Hsp10–Hsp60 complex is crucial in regulating intracellular pathways related to
cellular proliferation and apoptosis, and it is known that the malfunctioning of this complex
can result in malignant cell transformation [38,44,45]. Furthermore, Hsp60 has been found
to exhibit pro-angiogenic and pro-metastatic properties [37,46]. Hsp27 also seems to be
implicated in cellular apoptosis, and its involvement in this process plays a pivotal role in
cancer regulation development, progression, and metastasis [47]. Additionally, Hsp27 has
been identified as a contributor to the suppression of cellular senescence, enabling tumor
cells to acquire an immortal phenotype [48]. Therefore, the dysregulation of Hsp90 can
have significant oncogenic implications, as it is involved in numerous processes that drive
cell proliferation. It is crucial to recognize that Hsp90 has a fundamental function in tumor
transformation. It regulates cell adhesion processes that are critical for the development of
metastatic capabilities. Additionally, it promotes neo-angiogenesis, which is the foundation
of tumor growth and increases the potential for metastasis [49–51].

The examined molecules in this study are all involved in metabolic processes that
enable atypical cells to deviate from normal physiological processes. The findings of
this study, combined with previous research, confirm a connection between heightened
levels of heat shock proteins and disorders marked by cellular imbalance and a loss of
differentiation. The immunohistochemical analysis of the study detected HSPs in the vocal
cord epithelium across all three morphological states (healthy, dysplastic, and squamous
carcinoma tissue), with a gradual rise in tissue levels from healthy to dysplastic and
cancerous forms. The gradual and consistent increase in HSP levels is most likely a result
of changes in both intra- and extracellular conditions. In healthy tissues, HSPs are found at
normal levels. However, in dysplasia, there is an increase in HSPs, which suggests changes
in the structure of the cell and a greater need for protein expression. Cancerous tissues
exhibit even higher levels of HSPs, indicating a complete disruption of cellular homeostasis
and altered cellular differentiation. Our analysis also revealed a shift in the distribution
of HSPs within cells, which is consistent with previous research showing elevated levels
of HSPs in many cancer pathologies. Furthermore, research has demonstrated that HSPs
change their localization, moving from mitochondria to the cytoplasm and sometimes even
the cellular membrane [34,35,52]. Our study revealed that Hsp10 and Hsp27 were localized
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in the cytoplasm, whereas Hsp60 and Hsp90 were present in both the cytoplasm and
nucleus, with Hsp10 showing nuclear localization. There exists a difference in the age range
between the dysplasia and carcinoma study groups which is also normal as the onset of the
cancerous state develops later than the dysplastic state. To ensure statistical significance,
each group, including the control group, had ten patients to form homogeneous groups.

These findings, in line with the literature, support the role of HSPs in the development
of vocal cord tissue cancer. Thus, their involvement in the processes of tissue remodeling,
altered cell differentiation, angiogenesis, and apoptosis was confirmed.

5. Conclusions

The pilot study expounded upon in this report lays the groundwork by furnishing
essential histopathological data, serving as a pivotal springboard for an exhaustive explo-
ration into the intricate mechanisms governing the involvement of heat shock proteins
(HSPs), specifically Hsp10, Hsp27, Hsp60, and Hsp90, in the progression of squamous cell
carcinoma affecting the vocal cords. A discernible correlation has been identified between
the levels of these four chaperones and the sequential advancement of malignancy, tracing
its trajectory from dysplasia to fully fledged cancer.

The potential significance of these biomolecular assessments goes beyond mere obser-
vation, presenting a promising avenue for their expeditious application as indispensable
biomarkers in the realms of diagnostic procedures, prognostic evaluations, and continuous
patient monitoring. This reservoir of scientific evidence concurrently establishes a robust
foundation, paving the way for subsequent analyses poised to validate the earlier reported
outcomes. The envisaged substantiation not only augurs well for the credibility of the
initial findings but also instills confidence in the prospective classification of the heat shock
protein family as pivotal biomarkers, significantly contributing to the nuanced landscape
of pathological evaluations and clinical diagnoses.

The data gleaned from this study propel our understanding of the dynamic interplay
between heat shock proteins and the progression of vocal cord squamous cell carcinoma.
The observed correlation provides a tangible link between the levels of these proteins and
the evolving stages of malignancy. This nuanced insight positions heat shock proteins as
potential indicators of disease severity and progression.

Furthermore, the implications extend to the clinical arena, where the identified
biomarkers hold promise for refining diagnostic accuracy, prognostic assessments, and
the development of targeted therapeutic strategies. As these findings are integrated into
the broader scope of cancer research, the scientific community is poised to unlock new di-
mensions in the comprehension and management of squamous cell carcinoma, potentially
paving the way for more personalized and effective treatment modalities.

In conclusion, this pilot study serves as a crucial cornerstone in unraveling the intrica-
cies of heat shock protein involvement in vocal cord squamous cell carcinoma. The correla-
tion established here sets the stage for a more comprehensive exploration and application
of these biomarkers in clinical settings, fostering advancements that may revolutionize the
landscape of cancer diagnostics and treatment.
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