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1. Introduction

The development of high-performance computing hardware and image processing
algorithms has led to the widespread application of image analysis in various fields [1,2]. In
particular, image analysis is frequently applied in the fields of biotechnology and bioprocess
engineering, where various imaging devices are used for research and development [3].
Compared to manual methods performed by humans, automated image analysis allows for
fast, accurate, and reliable quantitative analysis. The classical approach to image analysis
involves the sequential application of multiple image processing algorithms at the pixel
level. The color value of a specific part of the final image is then analyzed, or an object is
detected, and morphology such as coordinates, area, shape, and number is analyzed [4,5].
One of the important applications of image analysis in the field of biotechnology is probably
high-throughput research that requires analyzing large amounts of images and videos,
which is difficult for humans to perform [6]. For example, while exposing zebrafish
to a large number of different chemicals, videos are recorded and analyzed to quantify
the animal’s growth, movement, organ morphology, social behavior, or feeding habits.
Interpreting these results can reveal the function of the compound molecule and the efficacy
and toxicity of the chemical or drug [7–9].

Recent advancements in machine learning techniques have made it possible to better
utilize existing image analysis results. Rather than just using the area or color values of
objects as endpoints, these image analysis results can now be used to classify objects accord-
ing to their characteristics and predict important phenomena. For example, when obtaining
multiple image analysis endpoints through image analysis, interpretation can become
challenging. In such cases, applying dimensionality reduction techniques such as PCA
(Principal Component Analysis), LDA (Linear Discriminant Analysis), T-SNE (t-distributed
Stochastic Neighbor Embedding), and UMAP (Uniform Manifold Approximation and
Projection) can significantly reduce the number of variables to be analyzed. This makes
classification or prediction more feasible and enables visualization on a two-dimensional
chart for easier human comprehension [10,11]. Moreover, tools like artificial neural net-
works (ANN), decision trees, and SVM (Support Vector Machine) have been employed for
classification using multiple image analysis parameters [12–14].

Above all, the development of various deep learning architectures and training tech-
niques suitable for image processing, along with the emergence of high-performance GPUs
(Graphics Processing Units) capable of handling them, has led to the application of more
sophisticated image processing technologies. Convolutional Neural Networks (CNN) and
Transformers have shown excellent performance in object detection and classification. For
instance, using CNN, it was revealed that female flies (Drosophila) were more attracted to
sucrose during egg-laying [15], and CNN was employed for the detection, segmentation,
and analysis of plants or plant stress [16]. This analysis could not be carried out with
pixel-based classical image processing.

Meanwhile, ordinary biologists familiar with wet lab experiments often lack computer
knowledge for conducting image analysis. Therefore, there is a need for the development
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of user-friendly image analysis software. Numerous GUI (Graphical User Interface) appli-
cations utilizing image processing tools such as ImageJ [17], MATLAB (The MathWorks,
Inc., Natick, MA, USA), openCV [18], PlantCV [19], and scikit-image [20] have been devel-
oped to cater to their needs. As documented in review papers, various software has been
developed and used to analyze the locomotion of animals like zebrafish (Danio rerio) and
C. elegans, as well as mice [21,22]. In addition, there is a variety of software that can detect
plants, classify phenotypes [23,24], and classify cell types [25].

In this Special Issue, we introduce recent research articles using image analysis in
biotechnology. It provides an overview not only of the applications of image analysis but
also covers imaging devices, image processing algorithms, software development, and
problem-solving processes.

2. An Overview of Published Articles

The article by Boruczkowski et al. (Contribution 1) analyzed the starch content of six
potato cultivars through image analysis, presenting a case study where image analysis
could be employed in food processing. For analysis, the authors sliced the potatoes to a
thickness of 3 mm and stained them by soaking them in a potassium iodide (KI) solution.
Higher starch content resulted in dark staining with iodine, while lower starch content
exhibited a lighter color. Instead of using a digital camera, the authors utilized a scanner
equipped with LED lights on top. The obtained images were then converted into brightness-
corrected gray images. Although the average gray value of the potato cross-section could
be used for starch content analysis, the authors uniquely positioned four cross-section
lines at 45◦ intervals on the potato. The brightness distribution of pixels along these lines
was then analyzed. In addition to the mean value, the median, range, skewness, and
coefficient of variation (CV) of the gray pixels located on these measurement lines were
computed. For that purpose, ImageJ software was employed for this image processing.
The analysis revealed a good negative linear correlation between the mean gray value of
cultivars and their actual starch content. Furthermore, while the actual starch content of
the six cultivars was somewhat similar, making cultivar differentiation challenging, the
image analysis statistical values mentioned above allowed for better discrimination. This
image analysis method also proved useful in distinguishing potatoes stored at different
temperatures (4 ◦C vs. −15 ◦C), demonstrating its potential as a practical on-site technology
in potato-processing plants.

The study by Cha et al. (Contribution 2) utilized image analysis techniques to eluci-
date the correlation between genetic variants (SNPs: Single-Nucleotide Polymorphisms)
and facial skin phenotypes. In this study, five facial skin phenotypes, such as wrinkles,
pigmentation, moisture content, oil content, and sensitivity, were analyzed. Among these,
wrinkles and pigmentation require analysis using special imaging equipment. First, the
wrinkle phenotype was measured by calculating the average roughness (Ra) and maximum
depth (Rmax) of the uneven skin surface. For this purpose, optical three-dimensional (3D)
imaging was performed using the PRIMOS (Phaseshift Rapid In-vivo Measurement Of
Skin) CR device (Canfield Scientific, Parsippany, NJ, USA). This equipment projects fringes
made of parallel lines onto the skin surface and then photographs them with a digital
camera pointed at an angle. When photographed at an angle, the fringe lines are observed
to be curved depending on the depth of the surface. By interpreting this, a 3D-depth image
can be obtained [26,27]. The pigmentation phenotype was analyzed for skin brightness and
melanin content. For melanin measurement, the Mexameter MX 18 (Courage and Khazaka
Electronic GmbH, Köln, Germany) was used. This equipment uses spectrophotometer
technology to measure light in three wavelength bands (green at 568 nm, red at 660 nm,
and infrared at 870 nm). Melanin content was quantified by measuring reflection and ab-
sorption in the skin, and skin brightness was assessed using a portable spectrophotometer,
the CM-700d (Konica Minolta Inc., Tokyo, Japan), capable of full spectrum scanning from
400 nm to 700 nm. The L* value in the CIE L*a*b* color space was measured to serve as an
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indicator of skin brightness. Finally, the measured skin phenotype values were divided into
tertile groups and successfully used to discover their relationship with genetic variation.

The article by Hwang and Shin (Contribution 3) studied the fluorescence decay char-
acteristics of photosynthetic phycobiliprotein complexes extracted from Spirulina maxima.
Phycobiliproteins, including C-phycocyanin (C-PC), have a variety of applications, in-
cluding the food industry, cosmetics, medical products, sensors, and photo harvesting.
Understanding their optical properties is crucial for the successful utilization of these
substances. In nature, C-PC exists in complex formations with various substances, and
the aggregation of these complexes can impact their optical properties. Therefore, the
authors explored the optical properties of C-PC aggregates. While most previous studies
focused on the absorbance spectrum, the authors aimed to interpret fluorescence decay us-
ing mathematical models. For this purpose, C-PC aggregate was separated from S. maxima
by precipitation and ion exchange, and then was followed by gel chromatography. The gel
electrophoresis image confirmed the molecular weight of C-PC aggregates to be between
approximately 17 and 20 kDa. The authors employed the Varioskan LUX multimode
microplate reader (Thermo Scientific, Waltham, MA, USA) to study fluorescence decay and
continuously imaged the fluorescence intensity emitted during excitation at 609 nm for
100 s. According to the analysis results, the C-PC aggregates exhibited a non-linear decay in
fluorescence intensity over time. To mathematically simulate this decay trend, the authors
devised two differential equation models based on mass balance. These mathematical
models successfully regressed the experimental results of fluorescence intensity decay over
time for standard C-PC and three C-PC aggregates.

The article by Wüstefeld et al. (Contribution 4) presents the development of deep
neural network (DNN)-based segmentation algorithms for the automatic annotation of blob
objects in images. Modern machine learning-based object detection and image classification
usually require the preparation of training data and manual work by humans to label (or
annotate) objects present in the image. When there are a large number of images or objects
to be annotated, performing this task manually can be time-consuming, prone to inconsis-
tencies, and susceptible to human errors. Especially in images where there is little difference
in brightness and contrast between objects and the background, applying classical image
processing algorithms based on pixel-by-pixel processing, such as adaptive thresholding
or watershed, can be challenging. The images considered in this paper were captured
using plasmon-assisted microscopy, utilizing the surface plasmon resonance effect (SPR),
to image viruses and virus-like particles. These images fall into a category where accurate
segmentation is difficult using classical segmentation algorithms. The authors of this article
developed a technology using DNN for the automatic segmentation of such images. An
interesting aspect is that, during training, instead of relying on individual annotation infor-
mation for valid objects present in the images, they depended on the count of objects within
the images. To achieve this, they connected a counting head, specialized in object counting,
to the existing DNN, making the counting head responsible for object counting during
training. In other words, the counting head was integrated into the network, and training
was conducted using counting loss to ensure that the number of objects in the segmented
result matches the manually provided count. However, relying solely on counting losses
for training does not guarantee that the segmented images will necessarily exhibit a valid
blob-like object. To address this, two approaches were devised. The first method involves
utilizing class activation mapping (CAM) along with counting losses. The second method,
instead of using CAM, adds contrast loss and morphological loss to counting loss, defining
a total loss for training and segmentation. The authors conducted segmentation training
using these two methods, using synthetically generated SPR images along with real SPR
images. Both methods exhibited high segmentation accuracy, as measured by precision,
recall, and F1-score, demonstrating the effective functioning of these weakly supervised
automatic segmentation techniques. This paper serves as an example of how deep learning
can be effectively applied in situations where classical segmentation techniques struggle to
handle complex image processing tasks.
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The article authored by Jung (Contribution 5) focuses on the development of software
for analyzing the movement of small animals in a multi-well plate. Small animals ranging
from a few millimeters to centimeters in size are widely utilized for studying the effects
of genes or the environment on animals, as well as testing the toxicity of chemical sub-
stances and the efficacy of potential drugs. Although the movement of animals is a critical
phenotype in such research, analyzing the rapid movements of animals through human
observation is not feasible. The AniWellTracker software, introduced in this paper, is opti-
mized for analyzing the movement of small animals in multi-well plates, which is essential
for high-throughput research. It comes with a GUI designed for ease of use by researchers
in the field of bioengineering. To briefly explain the image processing, the image captured
in time-lapse is converted to a binary image through adaptive thresholding, which can be
applied even in the case of nonuniform brightness, and then blob detection is performed.
If the area and bounding box size of the detected object are appropriate, it is determined
to be a valid animal. It then constructs locomotion paths by connecting the centroids of
valid animals in each well of time-lapse images. AniWellTracker not only computes speed,
travel distance, and location angle from the well center but also visualizes these results
through colorful histograms. Particularly noteworthy is its capability to represent the
distribution of animal positions through contoured heatmaps. The analyzed data can be
conveniently stored in CSV (Comma Separated Values) file format, facilitating processing
with spreadsheet programs like Microsoft Excel. The software is developed with native
code, allowing it to be executed as a standalone application without relying on commercial
software such as MATLAB or LabView (National Instruments, Austin, TX, USA) or external
libraries such as ImageJ or OpenCV. Moreover, its open-source code enables advanced users
to modify and adapt it to their needs, making it not only versatile but also cost-effective.
It is anticipated that AniWellTracker will prove to be a valuable tool for future biological
researchers because of its user-friendly and freely accessible nature.

3. Conclusions

This compilation of articles is dedicated to image analysis applications in the field of
biotechnology. In terms of imaging hardware, various imaging devices are increasingly
being utilized, as evidenced by Boruczkowski et al.’s scanner imaging (Contribution 1),
Cha et al.’s PRIMOS 3D imaging and spectrophotometer imaging (Contribution 2), Hwang
and Shin’s fluorescence imaging (Contribution 3), and Wüstefeld et al.’s SPR imaging (Con-
tribution 4), in addition to conventional digital cameras. Computing color intensity and
distribution from acquired images has enabled the prediction of potato starch content and
the differentiation of various cultivars (Contribution 1). Analyzing the average roughness,
maximum depth, brightness, and melanin content of human skin has revealed SNPs influ-
encing skin phenotypes (Contribution 2). Moreover, the fluorescence decay characteristics
of photosynthetic phycobiliprotein complexes could be quantified (Contribution 3). For SPR
images where accurate segmentation is challenging using traditional pixel-to-pixel-based
image processing, DNN-based image segmentation algorithms were developed by incor-
porating CAM and counting, contrast, and morphological loss, achieving high-precision
segmentation (Contribution 4). No matter how advanced image processing algorithms are,
their utility is limited, if not easily accessible, to researchers. Therefore, the development
of user-friendly and affordable image analysis software is crucial. Jung developed image
analysis software using multi-well plates for high-throughput study of the locomotion of
small animals (Contribution 5). The software was developed based on a GUI and is not
only easy to use but can also calculate various image analysis features and has built-in
visualization functions.

With recent remarkable developments in machine learning technology, it is anticipated
that the current level of image analysis technology in the field of biotechnology will
further elevate. In addition, hybrid image analysis techniques that combine machine
learning algorithms with classic image processing algorithms are expected to be applied
more widely.
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