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Abstract: Research on emotion recognition based on electroencephalogram (EEG) signals is important
for human emotion detection and improvements in mental health. However, the importance of EEG
signals from different brain regions and frequency bands for emotion recognition is different. For this
problem, this paper proposes the Capsule–Transformer method for multi-region and multi-band EEG
emotion recognition. First, the EEG features are extracted from different brain regions and frequency
bands and combined into feature vectors which are input into the fully connected network for feature
dimension alignment. Then, the feature vectors are inputted into the Transformer for calculating
the self-attention of EEG features among different brain regions and frequency bands to obtain
contextual information. Finally, utilizing capsule networks captures the intrinsic relationship between
local and global features. It merges features from different brain regions and frequency bands,
adaptively computing weights for each brain region and frequency band. Based on the DEAP dataset,
experiments show that the Capsule–Transformer method achieves average classification accuracies
of 96.75%, 96.88%, and 96.25% on the valence, arousal, and dominance dimensions, respectively.
Furthermore, in emotion recognition experiments conducted on individual brain regions or frequency
bands, it was observed that the frontal lobe exhibits the highest average classification accuracy,
followed by the parietal, temporal, and occipital lobes. Additionally, emotion recognition performance
is superior for high-frequency band EEG signals compared to low-frequency band signals.

Keywords: EEG; emotion recognition; Transformer; capsule network; brain region; frequency band

1. Introduction

Emotion is a psychological state arising in response to internal and external stimuli [1].
It is a complex and subjective experience that significantly influences both work and life [2].
Human emotions can be assessed through dimensional affective models, such as the widely
used valence–arousal–dominance model [3]. Valence refers to emotional positivity or
negativity, Arousal indicates the intensity of the emotion, and dominance signifies the
subjective sense of control [4]. Due to its excellent temporal resolution, resistance to
deception, and independence from subjective consciousness [5], EEG signals have found
widespread applications in emotional assessment for depression patients [6] and real-time
emotional monitoring for drivers [7]. Emotion recognition from EEG signals primarily
involves two steps: EEG feature extraction and emotional state classification [8]. EEG
features are primarily extracted from the time domain and the frequency domain [8].
Time domain features typically describe the temporal characteristics of the signal and
have intuitive physical meanings, such as mean, standard deviation, high-order crossover,
kurtosis, etc. [9]. Frequency domain features characterize the frequency distribution
properties of the signal, including power spectral density (PSD), differential entropy (DE),
conditional entropy (CE), and so on [10]. For EEG emotional state classification, traditional
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machine learning methods have been used a lot in this field. Liu et al. [11] constructed a
dynamic functional brain network based on the SEED [12] dataset and used Support Vector
Machines (SVM) to conduct emotion recognition studies. Veeramallu et al. [13] classified
the extracted nonlinear EEG features based on the empirical mode decomposition (EMD)
by feeding them into the Random Forest (RF) to classify the emotional states. However,
machine learning methods are often deficient in acquiring deep features and have difficulty
in capturing complex nonlinear relationships [14]. Deep learning also has more applications
in the field of EEG emotion recognition due to its ability to handle complex tasks and large-
scale data [15]. Gong et al. [16] integrated temporal, spatial, and spectral information of EEG
signals to cascade convolutional neural networks (CNNs) and Transformer in a new way
for emotion recognition tasks. Liu et al. [17] proposed a multilevel feature-guided capsule
network (MLF-CapsNet) with multichannel emotion recognition based on whole-brain
signals, but did not focus on the variability of different brain regions. Khamis et al. [18]
utilized a multilayer perceptron (MLP) to perform emotion recognition experiments on
different EEG bands, but the study did not address the application of combining multi-band
EEG features for emotion recognition. Rupal et al. [19] divided the brain into eight regions
and used a 1D convolutional LSTM network for emotion recognition, but they only spliced
the signals from different brain regions for the experiments, ignoring the different roles
and importance of the different brain regions for emotion recognition.

For the above problems, this paper proposes the Capsule–Transformer method for
EEG signal emotion recognition research. Firstly, the EEG signal channels are categorized
into four brain regions (frontal lobe, temporal lobe, parietal lobe, and occipital lobe). Within
each brain region’s EEG signal channels, emotion features are extracted from different
frequency bands, and these features are combined into a feature sequence, serving as the
input for the Transformer. The Transformer can capture global information from the entire
feature vector. Subsequently, emotional features from different brain regions are combined
into primary capsules. Through a dynamic routing mechanism [17] of the capsule network,
these primary capsules are aggregated into emotion capsules. Dynamic routing mechanism
means that when transferring information between different layers of the network, the
network can dynamically adjust the weights between different primary capsules, so this
process can better capture the potential relationship between local features and global
features. In addition, after the dynamic routing mechanism, the mode lengths of different
emotion capsules represent the probability of different emotion states, respectively, so it is
able to categorize the emotion states through emotion capsules.

The main contributions of this paper can be summarized as follows:
The innovative combination of brain region self-attention, frequency band self-attention

and dynamic routing mechanism enables the proposed model to both simultaneously
capture information about the differences in emotional features across different brain re-
gions and frequency bands, and further extract the intrinsic connections between signals
from different brain regions in emotional activities. This paper proposed a new Capsule–
Transformer method for emotion recognition of EEG signals, and explored the role and
importance of EEG signals from different brain regions and frequency bands in emotion
recognition. Based on this method, we conducted subject-dependent experiments on the
DEAP public dataset.

2. Materials and Methods
2.1. EEG Dataset

DEAP [20] is a multimodal standard emotion dataset that collected physiological
signals from 32 subjects (16 males, and 16 females), each of whom was physically and
psychologically healthy and none of whom had a history of psychiatric disorders, addictive
behaviors, or a history of psychotropic substance use. Subjects were instructed to watch
40 one-minute-long music videos, i.e., 40 trails per subject, while physiological signals were
simultaneously recorded from 40 electrode channels (32 channels for EEG signals, 8 chan-
nels for peripheral physiological signals) following the international 10–20 system [21].
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After watching each music video, subjects were asked to rate the 4 dimensions of valence,
arousal, dominance, and liking ranging from 1 to 10 to assess the current emotional state.
Valence refers to the positive or negative state of the emotion, arousal refers to the high
or low intensity of the emotion, dominance refers to the degree of subjective control, and
liking refers to the degree of preference for the stimulus or experience [20]. In this paper,
5 is taken as the threshold for a high or low emotional state on each dimension. It is worth
noting that the ratings of the 27th subject on the dominance dimension for all experimental
signals were consistently above 5. To avoid ineffective training, samples from this subject
on the dominance dimension are not utilized. The data format for each subject is illustrated
in Table 1. This paper utilizes the preprocessed version provided by the DEAP dataset.
In this preprocessed version, the signals are downsampled to 128 Hz, bandpass filtering
is applied with a range of 4.0–45.0 Hz, and independent component analysis (ICA) is
employed to eliminate electrooculography (EOG) artifacts.

Table 1. The data format for each subject in the DEAP dataset.

Array Name Array Shape Array Contents

Data 40 × 40 × 8064 Video/trail × channel × data

Label 40 × 4 Video/trail × label (valence,
arousal, dominance, liking)

2.2. Feature Extraction

Differential entropy (DE) is often used as a measure of the complexity of continuous
random variables and has been demonstrated to be suitable for EEG emotion recognition
studies [22]. The standard definition of DE is as Equation (1):

DE(X) = −
∫

X
f (x) log( f (x))dx (1)

where X represents the EEG sequence and f (x) represents its probability density function.
Given that X follows a Gaussian distribution N(µ, σ2), the DE can be further represented
as Equation (2):

DE(X) = −
∫ ∞

−∞

1√
2πσ2

exp
(x− µ)2

2σ2 log(
1√

2πσ2
exp

(x− µ)2

2σ2 )dx =
1
2

log 2πeσ2 (2)

For EEG samples of T seconds in length, an N × C× T dimensional DE feature matrix can
be extracted using a 1 s non-overlapping time window, where N denotes the number of
EEG channels and C is the number of EEG frequency bands.

Following the international 10–20 system, this paper divides the EEG signal channels
of the DEAP dataset into 4 different brain regions. Specifically, the frontal lobe (Fp1, Fp2, F3,
F4, Fz, AF3, AF4), temporal lobe (F7, T7, P7, FC5, CP5, F8, T8, P8, FC6, CP6), parietal lobe
(P3, P4, Pz, C3, C4, Cz, CP1, CP2, FC1, FC2), and occipital lobe (O1, O2, Oz, PO3, PO4). For
each subject, the EEG signal was initially decomposed into 4 frequency bands (θ: 4–7 Hz, α:
8–13 Hz, β: 14–30 Hz, γ: 31–45 Hz). Subsequently, using 1 s non-overlapping time windows
on signal channels corresponding to each brain region, DE features are extracted for the
four frequency bands. Therefore, after the brain region division and feature extraction,
each subject consists of 4 feature matrices with shapes (40, k, 4, 60). Where 40 denotes the
number of trails, k denotes the number of electrode channels contained in different brain
regions (frontal lobe contains 7 electrodes, parietal lobe contains 10 electrodes, temporal
lobe contains 10 electrodes, and occipital lobe contains 5 electrodes), 4 denotes the number
of frequency bands, and 60 denotes the number of DE features on each frequency band.
After data transformation, the shape of the feature matrix is converted to (2400, 4, k), which
corresponds to 2400 labels in the valence, arousal, dominance, and liking dimensions,
respectively. It is evident that for each specific brain region, there are 2400 samples, each
composed of DE features from 4 frequency bands, and each frequency band contains k
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DE features. Furthermore, if no brain region division is performed, each subject contains
1 feature matrix with a shape of (2400, 4, 32), where k represents the 32 EEG signal channels
covering the entire brain.

2.3. Capsule–Transformer

The structure of the Capsule–Transformer consists of 3 main modules: Linear layer,
Transformer, and Emotion capsules. The Linear layer is used for feature dimension align-
ment. The Transformer module captures contextual information about emotional features
between different brain regions and between different frequency bands within each brain
region through a self-attention mechanism. The Emotion capsules module integrates fea-
tures from different brain regions and frequency bands into a single emotion capsule for
emotional state classification. The details are illustrated in Figure 1.
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Figure 1. The structure of the proposed Capsule–Transformer method for EEG emotion recognition.

2.3.1. Transformer

The DE features x11, x12, x13, x14 ∈ Rd1 for frontal multi-band EEG signals, x21, x22, x23,
x24 ∈ Rd2 for temporal multi-band EEG signals, x31, x32, x33, x34 ∈ Rd3 for parietal multi-
band EEG signals, and x31, x32, x33, x34 ∈ Rd4 for occipital multi-band EEG signals, respec-
tively, are inputted into the fully connected layer to obtain fij ∈ Rd(1 ≤ i ≤ 4, 1 ≤ j ≤ 4),
f = concat( f11, f12, . . . , f44) ∈ RN×d. Where d1, d2, d3, and d4 are the dimensions of the
frequency band features within each brain region, and d is the dimension of the feature
after dimensional alignment, totaling 16 frequency band features, i.e., N = 16. Then, the
intrinsic contextual connections of features in different brain regions and frequency bands
are learned based on the Transformer encoder structure in the following process.

The length of the feature vectors is first compressed to between 0 and 1 by a layer
normalization (LN) structure, and the input feature vectors are mapped to the QKV space:
Q = Wq f , K = Wk f , and V = Wv f , where Q, K, V ∈ RN×d, respectively. Then the
scaled dot product is used to calculate the similarity between the frequency band features
within the current brain region, between the current brain region and the features of
other brain regions, and these similarities are normalized to the attention weights. Finally,
the frequency band features of each brain region are weighted and summed with the
corresponding attentional weights to obtain the output of the self-attention mechanism, as
shown in Equation (3):

Attention(Q, K, V) = so f tmax
(

QKT
√

d

)
V (3)

To obtain richer contextual information in different brain regions and frequency bands,
this paper uses the multi-head self-attention mechanism (MSA) to generate multiple QKV
spaces, and then the attention outputs computed in each QKV space are spliced and linearly
transformed thus obtaining richer feature representations, as shown in Equation (4):

MSA(Q, K, V) = Concat(Attention1, . . . , Attentionh)Wo (4)

where Wo is the learnable parameter matrix and h is the number of self-attention heads, the
detailed structure of MSA is shown in Figure 2.
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Figure 2. The structure of the multi-head self-attention (MSA).

Based on the above steps, a single Transformer encoder is calculated as shown in
Equations (5) and (6):

f ′ = f + MSA(LN( f )) (5)

f ∗ = f ′ + MLP
(

LN
(

f ′
))

(6)

where f , f ∗ denote the input and output of the encoder, respectively.

2.3.2. Emotion Capsules

This module, based on a dynamic routing mechanism, merges features from different
brain regions and frequency bands into a single feature vector for emotion classification.
The computational process of the dynamic routing mechanism is illustrated in Figure 3.
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Figure 3. The architecture of dynamic routing mechanisms.

Firstly, the output of the above Transformer module is taken as the primary capsule
f ∗ i ∈ RDp . Since the primary capsules do not contain information about their relative
positions to each other, the matrix Wij ∈ RDc×Dp is needed to record the mapping re-
lationship from the primary capsules to the emotion capsules, where Dc denotes the
dimension of the emotion capsules, Dp denotes the dimension of the primary capsules, and
f ∗ j|i ∈ RDc(1 ≤ i ≤ m, 1 ≤ j ≤ n, m = 16, n = 2) , as shown in Equation (7):

f ∗j|i = Wij f ∗i (7)
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Then, since each primary capsule contributes differently to the final emotional state
classification, the weight bij assigned to each primary capsule has an initial value of 0. The
sum of the weights of all the primary capsules is made to be 1 by the so f tmax function.
Each primary capsule is represented using feature vectors, and therefore vector addition
operation is used to obtain the emotion capsules, as shown in Equation (8):

sj = ∑
i

so f tmax
(
bij
)

f ∗j|i (8)

The emotion capsules use the mode length to represent the category probability, so
it is necessary to compress the mode length to between 0 and 1, which is realized by
using the activation function “squashing”, and at the same time improves the nonlinear
representation of the model, as shown in Equation (9):

vj =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2

sj∥∥sj
∥∥ (9)

The weights of the primary capsules are updated by calculating the similarity of the
inner product of the primary capsules to the emotion capsules, as shown in Equation (10):

bij = bij + vj · f ∗ji (10)

Finally, the model is converged using an iterative approach, and the overall process is
shown in Algorithm 1:

Algorithm 1 Capsule–Transformer
Input: Routing iterations r

1: f ∗i = Trans f ormer(x11, x12, ..., x14), i = 1, ..., 16
2: f ∗j|i = Wij · f ∗i
3: for all capsule i in layer l and capsule j in layer (l+1): bij = 0
4: for r iteration do
5: for all capsule i in layer l: cj = so f tmax(bi)
6: for all capsule j in layer (l + 1): sj = ∑i cij f ∗j|i
7: for all capsule j in layer (l + 1): vj = squash(sj)
8: for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + f ∗j|i · vj

Output: ||vj|| // L2 norm representing class probability

During the model training phase, margin loss is utilized as the loss function, as shown
in Equation (11), where Tk represents the one-hot encoding of the labels. When the network
predicts correctly, m+ is applied to stretch the output vector. In case of a prediction error,
m− is employed to compress the output vector. λ serves as the balancing coefficient, and
||vk|| denotes the magnitude of the output vector. Additionally, in subsequent relevant
experiments, cross-entropy is employed as the loss function for the Transformer model, as
shown in Equation (12):

Lk = Tk max
(
0, m+ − ‖vk‖

)
+ λ(1− Tk)max

(
0, ‖vk‖ −m−

)
(11)

H(p, q) = −
n

∑
i=1

p(xi) log(q(xi)) (12)

3. Experiments
3.1. Implementation Details

This paper relies on the valence–arousal–dominance dimensional emotion model and
conducts emotion recognition experiments based on a subject-dependent approach. Taking
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80% of the sample size of each subject for training and averaging the results across all
subjects as a measure of the model metrics for the final results. The number of Transformer
encoder layers is set to 6 and the number of self-attention heads h is 12. The dimension of
the primary capsules is set to 768, the dimension of the emotion capsules to 32, and the
number of routing iterations to 3. The deep learning framework used is PyTorch, and the
model is trained in an environment based on CUDA 11.6 and Tesla V100, with a batch size
of 64. During the training process, the Adam optimizer is used to update the trainable
parameters, and the learning rate is set to 0.001. Experiments have found that the model
can be adequately trained when the epoch is set to 50, as shown in Figure 4, which is a
graph of the training loss value of subject 1 in the valence dimension with the number
of iterations.

0 300 600 900 1200 1500
0.0

0.2

0.4

0.6

0.8 Train Loss

Iterations

Lo
ss

Figure 4. The training loss graph.

3.2. Evaluation Criteria

The model evaluation metrics used in this paper contain accuracy, precision, recall,
and F1 score. TP, TN, FP, and FN denote true positive, true negative, false positive, and
false negative, respectively. The details are shown as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 =
2Precision× Recall
Precision + Recall

(16)

3.3. Experimental Results and Analysis
3.3.1. Brain Region Division Strategy

This paper validates the impact of brain region division strategy on EEG signal emotion
recognition using the Capsule–Transformer method. Without brain region division, a single
subject contains only a DE feature matrix of shape (2400, 4, 32), which is used as input
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to the model. The results are shown in Table 2. Compared with no brain division, the
classification accuracy of the Capsule–Transformer in the three dimensions is improved by
7.23%, 8.42%, and 6.61%, respectively, which indicates that the brain partitioning strategy
has a facilitating effect on the EEG emotion recognition.

Table 2. The average recognition results with and without the brain region division strategy.

Label Method Accuracy (%) Precision
(%) Recall (%) F1 (%)

Valence
without
division 89.52 89.44 88.79 89.46

with division 96.75 97.22 96.64 96.59

Arousal
without
division 88.46 88.59 88.25 89.26

with division 96.88 96.75 97.18 96.63

Dominance
without
division 89.64 89.27 88.53 89.29

with division 96.25 95.93 96.36 96.18

3.3.2. Single Brain Region Emotion Recognition

To explore the importance of different brain regions for EEG emotion recognition, this
paper explores and analyzes the effect of emotion recognition using signal features from a
single brain region based on the Capsule–Transformer method. For each subject, the frontal,
temporal, parietal, and occipital lobes were used as inputs to the model using DE feature
matrices of shapes (2400, 4, 7), (2400, 4, 10), (2400, 4, 10), and (2400, 4, 5), respectively. The
results, as shown in Table 3, showed that the frontal region EEG signals were the best for
emotion recognition, followed by the parietal and temporal lobes, and finally the occipital
lobe. The frontal EEG signal features achieved 91.88%, 91.25%, and 90.62% classification
accuracy on the three dimensional classification tasks, respectively.

Table 3. The comparison of emotion recognition in different brain regions.

Label Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Valence

Parietal 88.75 88.62 88.37 88.44
Temporal 86.88 87.06 86.63 86.76
Occipital 84.38 84.87 83.53 83.92
Frontal 91.88 91.76 91.59 91.67

Arousal

Parietal 88.13 87.15 87.83 87.45
Temporal 86.25 86.24 86.08 86.14
Occipital 83.13 83.95 83.08 83.13
Frontal 91.25 91.17 90.52 90.65

Dominance

Parietal 89.38 89.31 89.17 88.97
Temporal 86.87 88.27 87.33 87.31
Occipital 80.63 80.82 80.43 80.51
Frontal 90.62 89.73 90.42 90.23

3.3.3. Single Frequency Band Emotion Recognition

In this paper, we further explore the effect of using single frequency band EEG signal
features for emotion recognition based on the Capsule–Transformer method. For each
subject, the frontal, temporal, parietal, and occipital lobes were used as inputs to the model
using only a single band of DE features with the shapes (2400, 1, 7), (2400, 1, 10), (2400,
1, 10), (2400, 1, 5), respectively. The results, as shown in Figure 5, show that the emotion
recognition effect of high-frequency EEG signal features is better than that of low-frequency
EEG signal features, and the Gamma band reaches 90.59%, 89.79%, and 90.28% on the
dimensions of valence, arousal, and dominance, respectively.
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Figure 5. The comparison of emotion recognition in different frequency bands.

3.4. Ablation Experiment

To verify the effectiveness of the Capsule–Transformer method, based on the DEAP
dataset, this paper compares the performance of this method with the Transformer and the
original CapsNet for emotion recognition. In Transformer, the final emotion classification
is based on class token, and cross-entropy is used as the loss function. In the original
CapsNet, margin loss is used as the loss function, and the EEG signal features are directly
used as the primary capsules after dimensional alignment, and then the emotion capsules
are generated through the dynamic routing mechanism for emotion state classification.
The results are shown in Table 4. The performance of the Capsule–Transformer method
for emotion recognition in all three dimensions is significantly improved compared to the
Transformer and capsule network.

Table 4. The comparison of Capsule–Transformer, Transformer, and CapsNet.

Label Method Accuracy (%) Precision
(%) Recall (%) F1 (%)

Valence
CapsNet 84.25 85.37 86.32 84.81

Transformer 91.36 92.28 91.67 90.89
Ours 96.75 97.22 96.64 96.59

Arousal
CapsNet 85.31 84.27 86.62 85.29

Transformer 91.67 90.83 92.49 91.22
Ours 96.88 96.75 97.18 96.63

Dominance
CapsNet 84.22 85.63 84.81 84.53

Transformer 92.77 92.43 92.57 91.59
Ours 96.25 95.93 96.36 96.18

3.5. Comparison with Existing Methods

In this paper, we compare the classification accuracy of the Capsule–Transformer
method with seven representative EEG signal emotion recognition methods, including
three traditional and four deep learning methods, and all of them are manually reproduced.
The three traditional methods are KNN [23], SVM [24], and MLP [25]. The SVM is nonlinear
and uses a Gaussian kernel function. The data inputs for KNN and SVM are DE features



Appl. Sci. 2024, 14, 702 10 of 14

extracted from four frequency bands (θ, α, β, γ), and the data inputs for MLP are the raw
EEG signals after preprocessing. The four deep learning methods are parallel convolutional
recurrent neural network (CNN-RNN) [26], continuous convolutional neural network
(Conti-CNN) [27], depthwise convolutional Transformer encoder (DCoT) [28], and the
spatial-frequency convolutional self-attention network (SFCSAN) [29]. The CNN-RNN
combines the advantages of convolutional neural networks and recurrent neural networks
to effectively extract spatial and temporal features of EEG signals. The Conti-CNN combines
features of different frequency band signals to construct 3D EEG signal cubes as input and
perform emotion recognition. The DCoT combines depthwise convolution and Transformer
encoders to capture the dependence of emotion recognition on each EEG channel. The
SFCSAN combines spatial and frequency band information to fully use the spatial and
frequency domain information of EEG signals for emotion recognition. CNN-RNN takes
the preprocessed raw EEG signals as the data input to the model, and the data inputs
for Conti-CNN, DCoT, and SFCSAN are DE features extracted from the four frequency
bands (θ, α, β, γ), respectively. In addition, all methods used the same data preprocessing
method, training parameters, and sliding window length, which facilitated the fairness
of the comparison experiments. As shown in Table 5, compared to the traditional KNN,
SVM, and MLP methods, the Capsule–Transformer method has a large advantage, with a
large increase in the average classification accuracy in all three dimensions. In addition,
compared to the other four deep learning methods, the Capsule–Transformer method
still shows some advantages. First, compared with the two CNN-based methods (CNN-
RNN, Conti-CNN), the Capsule–Transformer method improves the average classification
accuracy in each of the three dimensions by about 10%. Second, compared to DCoT
using the channel attention mechanism, SFCSAN using convolutional self-attention, the
Capsule–Transformer model still achieves better classification performance on the three
classification tasks.

Table 5. Average accuracy (%) of different methods on the valence, arousal, and dominance dimen-
sions of the DEAP dataset (mean ± std. dev.).

Method Inputs Valence Arousal Dominance

KNN DE features 73.21 ± 4.88 73.28 ± 5.13 74.40 ± 5.29

SVM DE features 81.66 ± 4.82 81.13 ± 4.18 81.98 ± 4.05

MLP Raw EEG 83.75 ± 4.75 84.52 ± 5.09 84.49 ± 5.05

CNN-RNN Raw EEG 84.66 ± 4.20 85.06 ± 4.11 85.03 ± 3.32

Conti-CNN DE features 86.63 ± 3.20 87.22 ± 3.37 86.61 ± 3.16

DCoT DE features 90.77 ± 3.09 90.19 ± 3.12 90.62 ± 3.12

SFCSAN DE features 92.85 ± 2.23 92.68 ± 2.54 92.43 ± 2.15

Ours DE features 96.75 ± 1.32 96.88 ± 1.46 96.25 ± 1.23

Figures 6–8 give the line graphs of the results of 32 subjects’ emotion recognition
based on the different methods mentioned above in the three classification tasks of valence,
arousal, and dominance, where the horizontal axis is the number of subjects, and the
vertical axis is the accuracy rate of emotion classification under each dimension. It is easy
to see that Capsule–Transformer is characterized by better classification performance and
high robustness compared to other methods.
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Figure 6. Comparison of the recognition accuracy of each subject using different methods on the
valence dimension of the DEAP dataset.
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Figure 7. Comparison of the recognition accuracy of each subject using different methods on the
arousal dimension of the DEAP dataset.
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Figure 8. Comparison of the recognition accuracy of each subject using different methods on the
dominance dimension of the DEAP dataset.

4. Discussion

Due to the complexity of human emotions, when expressing an emotion, EEG signals
from different brain regions respond differently, and there are differences in EEG signals



Appl. Sci. 2024, 14, 702 12 of 14

from different frequency bands [30–32]. Most of the previous emotion recognition studies
are based on EEG signals from whole regions [15,27,33]. In this paper, emotional EEG
features are extracted from different brain regions and frequency bands, and a more
advanced emotion classification performance is realized based on the Capsule–Transformer
method. Then, emotion recognition experiments were conducted on each brain region
separately, and the results showed that the accuracy of emotion classification of EEG signals
in the frontal lobe region was higher than that of other brain regions. Zhong et al. [34] found
that the frontal and parietal lobes were significantly more strongly activated compared to
other brain regions in all frequency bands, suggesting that emotional processing is more
closely correlated with these regions. Rupal et al. [19] similarly concluded that emotional
activity varies in different regions of the brain, and conducted a more detailed regional
division of EEG signals, which showed large differences in emotion recognition results in
different brain regions. To explore the correlation between frequency band features and
emotion recognition, this paper conducted emotion recognition experiments on four EEG
signal bands, respectively, and the results showed that Gamma band EEG features have the
best emotion classification effect; the higher the frequency band, the stronger the correlation
of the EEG signals with human emotions. Gao et al. [35] concluded that high-frequency
oscillations of EEG signals have a stronger ability to predict emotions compared to low-
frequency oscillations. Zheng et al. [36] proposed a deep belief network-based method for
detecting key frequency bands in EEG emotion recognition, and concluded that Beta and
Gamma band EEG features contain more discriminative information conducive to emotion
recognition. This is consistent with the viewpoint of this paper. Accurate and efficient
EEG emotion recognition can help diagnose and assess patients with mood disorders such
as depression and anxiety. By analyzing EEG signals in key brain regions and frequency
bands, physicians can obtain objective information about patients’ emotional states more
quickly, which can help diagnose and differentiate different emotional disorders more
accurately. The findings of this paper can provide information for clinical practice of
emotion recognition.

The generation of human emotions is a complex physiological activity, and the re-
sponses of emotions to EEG signals often vary greatly from person to person [37]. Currently,
the stability of the Capsule–Transformer method in cross-subject EEG emotion recognition
studies needs to be improved. In addition, the method relies on EEG signal preprocessing
and feature extraction work. Manual feature extraction for EEG signals from different brain
regions and frequency bands and inputting them into the network can effectively improve
the accuracy of emotion recognition, but this increases the workload and complexity of
the experiment.

In the future, we will collect more emotional EEG data and, based on the method,
explore the performance of emotion recognition in more complex scenarios, and explore
the kinds of EEG features other than DE that are suitable for emotion recognition. In
addition, we will also conduct end-to-end EEG emotion recognition research based on the
method, which is conducive to reducing the workload and complexity of EEG emotion
recognition experiments.

5. Conclusions

In this paper, a novel Capsule–Transformer method is proposed for multi-region, multi-
band EEG signal emotion recognition research. The method utilizes the Transformer’s
ability to focus on the contextual information of EEG signal features in different brain
regions and frequency bands, as well as the capsule network’s ability to capture the
intrinsic relationship between local and global features, to achieve a more advanced emotion
recognition performance compared to most methods. Based on the DEAP dataset, we
divided the EEG signal channels according to four different brain regions (frontal lobe,
temporal lobe, parietal lobe, and occipital lobe) and extracted the EEG features from
different signal bands for the experiments, and the results proved the effectiveness of the
combination of brain region self-attention, frequency band self-attention, and the dynamic
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routing mechanism for the recognition of emotions in EEG. In addition, the experimental
results on single brain regions and single frequency bands show that the frontal lobe region
has the highest accuracy in emotion recognition, followed by the parietal lobe, temporal
lobe, and occipital lobe, and the Gamma frequency band has higher accuracy than Beta,
Alpha, and Theta. it is clear that the research of EEG emotion recognition should pay more
attention to the frontal lobe, parietal lobe region, and the high-frequency band EEG signals.
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