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Abstract: This study introduces a spatial-modulated approach designed to recover missing data in
in-depth images. Typically, commercial-grade RGB-D cameras utilize structured light or time-of-flight
techniques for capturing scene depth. However, these conventional methods encounter difficulties
in acquiring depth data from glossy, transparent, or low-reflective surfaces. Additionally, they are
prone to interference from broad-spectrum light sources, resulting in defective areas in the captured
data. The generation of dense data is further compromised by the influence of noise. In response to
these challenges, we implemented an iterative low-pass filter in the frequency domain, effectively
mitigating noise and restoring high-quality depth data across all surfaces. To assess the efficacy of
our method, deliberate introduction of significant noise and induced defects in the generated depth
images was performed. The experimental results unequivocally demonstrate the promising accuracy,
precision, and noise-resilient capabilities of our approach. Our implementation is publicly available
on the project’s webpage.
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1. Introduction

Depth image completion has been a prominent focus in computer vision projects over
the past few years, with significant advancements arising from both hardware improve-
ments and developments in image processing. Hardware enhancements aim to achieve
precise data detection, real-time data processing, and high filling rates for single frames.
Consequently, technologies such as CMOS, compact laser diodes, projection units, and
Diffractive Optical Elements (DOEs) have been developed and applied to depth sensors.
Commercial-grade RGB-D cameras, including the Microsoft Kinect series, Intel RealSense,
LUCID Helios, and Matterport 3D cameras, have found wide-ranging applications in scene
reconstruction [1,2], robotic vision [3–5], and automotive systems [6,7].

These devices incorporate advanced optical technologies such as backside-illuminated
CMOS [8] and current-assisted photonic demodulators [9], representing a significant leap
in light sensitivity, gate-level signal processing, and overall performance. However, despite
these technological strides, challenges persist, particularly in dealing with reflective targets,
absorbing surfaces, and distant objects [10,11].

These issues stem from various factors affecting the light conditions, such as strong
interference from infrared sources, reflective or transparent surfaces, and highly absorb-
ing materials causing low contrast in infrared images or low Signal-to-noise ratio (SNR).
Imaging geometry is an additional factor, causing shadows to be projected due to occlusion
objects or the light source’s position, resulting in blank areas or shadows in depth images.
The pursuit of generating dense and accurate depth information faces many hurdles, with
noise emerging as a formidable issue. Interference from broad-spectrum light sources intro-
duces defects and noise, compromising the integrity of captured data. These disruptions
can directly impede the structured light patterns and Time-of-Flight (ToF) signals to some
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extent, resulting in inevitable defects in depth images and the generation of noisy scanning
results [12].

This study aims to restore depth images derived from various 3D sensing techniques
and accurately locate points in space, especially in areas affected by defects. Several
methods have been explored for depth image completion, including extrapolation [13],
LiDAR data inpainting with depth gradients [14,15], and surface reconstruction based
on 3D structures [16–18]. In recent years, depth image completion using deep neural
networks has received considerable attention, with representative research in monocular
depth estimation [19–23], RGB-guided methods [24], learning-based surface normal-guided
completion [25], and global and local depth prediction with RGB guidance [26]. While
these neural network-based methods have achieved significant success in full-depth image
processing with large dataset training, profound network structures, and fine-tuned pa-
rameters, they often suffer from the loss of fine details and malfunctions in the presence of
noisy data [19,27].

In the realm of advanced depth completion techniques, RGB-guided methods such as
Spatial Propagation Networks (SPN) have shown promise in capturing local affinities, re-
sulting in improved depth completion scores. The Non-Local Spatial Propagation Network
for Depth Completion (NLSPN) has emerged as a top performer in this regard [24,28–30].
Nevertheless, these approaches yield inaccurate results when confronted with glossy sur-
faces, absorbent surfaces, and noisy depth data. Depth errors occur when RGB data is
incoherent with respect to depth data; for example, when the RGB reflects only part of the
scene, overexposed areas, or dark scenes. Current advanced methods in depth estimation
and completion achieve high scores primarily based on large dataset training, fine-tuning
parameters, and the synthetic architecture of networks. However, dedicated-design net-
works still require further studies to tackle unknown scenes and complex distributed
surfaces that do not exist in the dataset.

In light of these challenges, we introduce a novel depth completion methodology
centered on frequency-domain manipulation. Spatial characteristics inherently encompass
both the surface structure and noise, posing a formidable task in addressing both aspects
effectively. To surmount this challenge, we have devised a method that robustly restores
depth information within the frequency domain through an Iterative Low-Pass Filter (ILF).
The ILF is designed to handle scenarios of single-shot chances and complex surfaces. We
also provide an optimization characteristic of ILF using L1 norm analysis. As we process
sparse and noisy depth data using our approach, noise is systematically eliminated, yielding
a rich and accurate depth profile in each iteration. The resulting depth image encompasses
the correct depth data, thereby resolving the longstanding issue of missing and noisy data.

2. Approach

This section provides insight into the functionality of the Iterative Low-Pass Filter
(ILF) on a complement of depth images. The design concept aims to integrate features
acquired from RGB-D scenes, mitigate noise interference, and generate accurate depth data.
To achieve this, we employ an iteratively updated process combined with a dynamically
adjustable low-pass filter. The RGB information collaboratively contributes to normalizing
spatial frequencies, offering insights into the structure and 3D shape of the surface. Initially,
we delineate the recovery surface and extract the spatial frequency of the surface structure
from RGB images, utilizing watertight boundaries for precise definition. Following this, we
extract the spatial features of the target surfaces from RGB images, expediting the overall
process by highlighting surface trends. Figure 1 illustrates the Depth Image Completion
Process (DICP), which comprises two integral components: (1) the Extraction of Boundaries
and Surfaces (EBS) and (2) the ILF Process.
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Figure 1. The flowchart of DICP.

2.1. Extraction of Boundaries and Surfaces

The primary objective of the Extraction of Boundaries and Surfaces (EBS) is to identify
appropriate surfaces with watertight boundaries. The EBS process takes the RGB image
and the depth image as inputs. The RGB image contributes edge information, which is
processed through a combination of Canny edge detection [31] and other edge detection
methods [32–35] to achieve a clear and watertight boundary. Among the edge detection
methods, we opted for the deep network architecture introduced in holistic edge detec-
tion [32], known for its enhanced speed in edge detection and a reliable network structure.
The network is a fully convolutional neural network (FCN) adopting VGGNet [36]. We
utilized the BSD500 dataset [37] for training, as it demonstrated a high F-score and superior
edge detection results [32] for our implementation.

To enhance surface extraction, we dilated the results of the edge detection with Canny
Edge detection as a guide to contract the rough boundary, facilitating larger operation
blocks. The contracted result represents the extracted surface, referred to as the operation
block. The binarized shrunken results were then segmented to obtain operation blocks.
Through this process, we obtained a reliable result for each surface. Finally, we multiplied
the depth image by the operation block to generate the raw depth matrix. At this stage, the
raw depth matrix included a defective area, and the subsequent step was to address and
recover this defective area.
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2.2. Iterative Low-Pass Filter (ILF)

After the extraction of boundaries and surfaces, the Iterative Low-Pass Filter (ILF) was
applied to complete the depth matrices. In an ILF, depth matrices undergo the following
process until the expanded depth matrix reaches the stopping criteria:

(1) Multiplication with a low-pass filter in the Fourier domain, where the cut-off frequency
changes from low to high in different iterations.

(2) Updating of the expanded depth matrix with a raw depth matrix.

After several iterations, the low-frequency term reaches a steady state, and the incom-
ing high frequency modifies the fine shape and detail of the surfaces. The expanded depth
matrix is then cropped in the shape of the operation block, and the input depth image is
updated in the same position. Consequently, the output depth image contains the updated
depth matrix.

The initial spatial frequency of the low-pass filter starts from the baseband of the image,
corresponding to the reciprocal of the most extended length of the target surface. Since
the operation block can be seen as a 2D point distribution, we used Principal Component
Analysis (PCA) to analyze the shortest length of the operation block. The shortest length
was applied for the initial radius of the low-pass filter for the raw depth matrix. For
instance, if the random shape of the operation block represents 10 pixels in the shortest
length from the PCA, the starting spatial frequency will be 10 pixel units. Frequencies lower
than the initial frequency contribute less to the shape of the surfaces. Thus, the information
within these frequencies reaches a steady state in several epochs of the first low-pass filter.
By applying the initial spatial frequency and dynamically adjusting the starting spatial
frequency from zero to the initial frequency, we ensure a gradual restoration of information
and accelerate the ILF process.

Following this, we iteratively expanded the low-pass filter’s radius to obtain the
surface’s depth information in the shape of the operation block, moving from a low spatial
frequency to a high spatial frequency. This step strengthens the included information
from the previous iteration and minimizes interference from upcoming spatial frequencies.
The depth information is updated iteratively to recover the defective area. As the depth
information expands after each process with a low-pass filter, it becomes uniform due to the
filter’s smoothing effect. This uniformity makes the depth information inside the defective
area similar to the depth information outside it. To address the compromise introduced by
the low-pass filter, we reintegrated it with the raw depth matrix in each iteration.

After several iterations, the depth information reaches a steady state, resulting in the
recovery of depth information. For noise reduction, the ILF process starts from a low spatial
frequency to a high spatial frequency, which contains most of the noise. The ILF effectively
reduces the high spatial frequency component of noise while preserving most of the main
signal, as the high-frequency noise does not contribute to the update of the initial expanded
depth matrix.

Here, we established a stop criterion to enhance the optimized performance and
quality of the recovered depths. As each epoch of the Iterative Low-Pass Filter (ILF)
yields an expanded depth matrix, it becomes essential to evaluate the termination point
of the ILF process. To determine the optimal iteration steps, we analyzed the alternation
between standard deviations in each epoch and the number of iterations. The stop criterion
was designed to satisfy two conditions: the deviation between the results of consecutive
iterations was sufficiently small, and it reached the maximum iteration limit.

σi < Scriteria ∥ i < 1500, Scriteria = 0.005, (1)

σi =

√
∑(Pi − Pi−1)

2

N
, (2)
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where Pi is the expanded depth matrix after the i-th iteration, σi is the deviation between Pi
and P(i−1), and Scriteria is the stop criterion for the minimum deviation, set to 0.005 m. This
deviation is aligned with the precision of the depth camera. The results are presented below.

Figure 2 illustrates the depth differences between each iteration, highlighting the nu-
anced evolution during the Iterative Low-Pass Filter (ILF) process. Notably, we employed
a weighted spectrum derived from a single RGB image to stabilize the ILF process. The
spatial frequency of the RGB image was extracted and utilized as a weight in the initial
iterations. This strategic approach stems from the observation that, under certain illumina-
tion conditions, the spatial frequency of the depth image can be discerned in RGB images.
The spatial frequency of the surface at low and mid frequencies serves as an insightful
initial approximation.
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Figure 2. Standard deviation (log Y-axis)-iteration plot.

To account for noise in the high spatial frequencies present in RGB images, the
weighted spectrum was incorporated for a maximum of 150 iterations in the initial stage
of the ILF. This precaution was taken to prevent errors from emerging in the subsequent
high spatial frequency information. During the initial process stage, the low-pass filter
was multiplied by the Fourier spectrum of the depth matrix, steering the process towards
generating depth data that aligned with the structural features of the RGB images. Af-
ter a maximum of 150 iterations, the depth data accurately reflected the surface’s trend.
The weight of the RGB spatial frequency was then removed from the iterative process to
mitigate potential side effects, such as overfitting and spatial noise from the RGB images.

We further delved into the convergence processes of the ILF by calculating the L1
norm value within operation blocks. To establish a reference to the ground truth data,
RGB-D data extracted from the NYU Depth V2 dataset [38] was employed. In compressed
sensing, the L1 norm is widely utilized for its capacity to encourage sparse representations
of signals. The optimization objective is to ascertain a sparse representation by minimizing
the L1 norm of the signal while adhering to the measurement constraints. The results
demonstrated a decreasing trend in the L1 norm value throughout the iteration process,
indicating the convergence of the expanded depth matrix during the ILF process. The L1
norm values of the depth matrices at each epoch are presented in the results.

Figure 3a illustrates a notable decrease in the L1 norm during the iteration steps,
showcasing the convergence of depth matrices throughout the Iterative Low-Pass Filter
(ILF) process. Meanwhile, Figure 3b presents the error between the depth matrix and the
ground truth. The results indicate that, during the ILF process, depth matrices converge
and are consistently updated with reference to residual data. It is worth noting the presence
of several glitches in Figure 3a, which were attributed to the updated low-pass filters.
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When the ILF transitions to an updated low-pass filter, the L1 norm value experiences
a temporary rise. This increase is a consequence of the updated low-pass filter providing
additional frequency information due to its larger radius. As the new data, influenced by the
updated low-pass filter, is incorporated, the L1 norm value initially rises and subsequently
declines to a lower value in the subsequent epochs. This dynamic can be explained by the
fact that the updated low-pass filter redirected the ILF towards the next optimization goal,
thereby preventing local extrema that might lead to the ILF process being prematurely
halted due to satisfaction of the stop criteria. Consequently, the ILF was adept at updating
the depth matrix with appropriate values.

In Figure 3b, the error consistently decreased with each iteration. Consequently, when
the input raw depth matrix underwent processing with the ILF, the depth matrix converged,
and was updated with data that closely aligned with the ground truth.

3. Experimental Results

In this section, we present a comprehensive overview of the experiments conducted
to validate the proposed depth-completion methodology. Employing Kinect cameras,
specifically Kinect for Xbox 360 and Kinect for Xbox One, RGB and depth images were
captured to assess the approach’s performance under diverse conditions. Notably, Kinect
for Xbox 360 utilizes the structured light technique, while Kinect for Xbox One utilizes the
time-of-flight technique.

This study investigated the maximum defective area rate, estimated the continuous
defective area, and evaluated the denoising capability of the Depth Image Completion
Process (DICP) for a real-scene depth camera. Through a series of tests with a real-scene
captured using Kinect for Xbox One, the achieved precision is discussed concerning the
extent of the defective area. Additionally, we ascertain the maximum denoising ability
and evaluate the overall performance of our method. The denoising ability test simulates
common noise encountered in RGB-D cameras, creating rigorous noise conditions by
manually removing continuous depth data and introducing normally distributed noise.

For a comprehensive assessment of the results, this study calculated the accuracy
and precision of each depth matrix. Accuracy error (ACC) and precision error (PRS) were
defined and employed for quantitative evaluation, with the definitions as follows [39]:

ACC =
1
N ∑ Pf iti −

1
N

Prawi, (3)

PRS =

√
1
N
[∑ (Pf iti − Prawi)− (

1
N ∑ Pf iti −

1
N

Prawi)]
2
, (4)

where Pf iti
is the depth matrix generated from the DICP; Prawi is the raw depth matrix; and

N is the total number of pixels inside the operation block.
We also present benchmark results, comparing our method with advanced approaches [24,28],

utilizing the NYU Depth V2 dataset [39]. The evaluation metrics included the Root Mean
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Square Error (RMSE), Mean Absolute Error (MAE), and Absolute Relative Error (Rel), fol-
lowing established methodologies [28,39,40]. The definitions for these evaluation metrics
are provided below:

RMSE =

√
1
N ∑ (Pf iti − Prawi)

2, (5)

MAE =
1
N ∑

∣∣∣Pf iti − Prawi

∣∣∣, (6)

Rel =
1
N ∑

∣∣∣∣Pf iti − Prawi

Prawi

∣∣∣∣ (7)

3.1. Rate of the Maximum Defected Area

In this section, we assess the maximum continuous defected area and denoising
capability of the Depth Image Completion Process (DICP) for a real-scene depth camera.
Figure 4 illustrates a real-scene cylinder captured as a raw depth matrix using the Kinect
for Xbox One at an observation distance of 1.5 m. The detected depth data inherently
carry noise, distributed normally with a standard deviation of 1.5 mm. Subsequently, we
systematically removed depth data and applied the DICP. By progressively increasing
the continuous defected area along the vertical direction, we created different scenarios.
Figure 4c presents the accuracy error and precision error corresponding to various defected
areas. Notably, when the defected area constituted 80.22% of the cylinder’s detection area,
the precision was 10.28 mm.
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3.2. Denoising Ability

Figure 5c depicts the creation of a spherical depth image designed to assess the denois-
ing capability of the Depth Image Completion Process (DICP). The dimensions of the depth
image were 2.6 × 1.2 m at a distance of 2 m, with a matrix size of 540 × 960 pixels. Deliber-
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ately introducing high noise, distributed within the range of a 65 mm standard deviation,
we systematically increased the continuous defected area along the x-axis. Subsequently,
the DICP was executed to evaluate its performance.
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with and without noise. (c) Point cloud of a spherical depth image with a 51% defected area and a
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We also conducted a comparative analysis between the Depth Image Completion
Process (DICP) and polynomial surface fitting methods [41,42]. The polynomial surface
fitting method considers available inlier data, iteratively seeking the best-fitting surface
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to fill the defected area. Figure 5a,b presents the accuracy error and precision error of the
DICP in the presence of added high-interruption noise.

The results indicate that the introduced noise did not significantly impact the comple-
tion result, as evidenced by the calculated accuracy error. Furthermore, the precision error
remained relatively stable even when the defected area exceeded 30%. Notably, the DICP
outperformed polynomial surface fitting in the 0–42.77% defected area range, suggesting
that noise had a more pronounced effect on the polynomial surface fitting recovery process.

Figure 6 illustrates the accuracy error and precision error resulting from noise simu-
lation. The added noise was sourced from a Kinect for Xbox One (Kinect 2.0), measured
with a standard deviation of 6.5 mm at a distance of 5 m. The precision results demonstrate
that our method surpassed polynomial surface fitting in the 0–46.88% defected area range.
These simulations affirm that the Iterative Low-Pass Filter (ILF) can effectively recover
spherical surfaces within a standard deviation of 6.5 mm and a 65 mm range of noise. This
capability positions ILF as a versatile solution for addressing noisy depth images captured
by commercial-grade RGB-D cameras.
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3.3. Real-Scene Results

In this section, we showcase completion depth images obtained from a Kinect for Xbox
360 (Kinect 1.0) and a Kinect 2.0. Kinect 1.0 employs IR structured light to acquire depth
images [11].

Figure 7a–c showcases the completion results obtained from the Kinect 1.0. In Figure 7a,
captured in an indoor setting, we deliberately introduced disruption by placing a halogen
lamp to interfere with the infrared structured light. The halogen lamp, visible as overex-
posed in the infrared image, caused signal loss, creating a hole with a diameter of 15 cm in
the depth image. This resulted in a 9.46% loss in the operation block. Figure 7b presents
the completion result, and Figure 7c displays the point cloud of the completion result, with
yellow points representing accurate completion alignment.

Moving on to Figure 7d–f, we present the completion results from the Kinect 2.0,
which utilizes the Infrared Time-of-Flight (IR ToF) technique for depth image acquisition.
Capturing both RGB and depth images under sunlight illumination and on a glossy granite
floor tile, which disrupts the Kinect 2.0 IR signal, presents challenges. However, with
proper segmentation of the operation blocks, our method proved effective in recovering
highly sparse data. It is important to note that the experiments considered a defect rate
below 42.77%. The point cloud results affirm the correct positioning of the recovered point
cloud, demonstrating our method’s capability to recover depth information accurately from
both shiny surfaces and non-reflective materials in Figure 7d.
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Figure 8, captured by the Kinect 1.0, illustrates the depth image completion of a ran-
dom surface converted into a point cloud. The random surface, obtained from curved
wallpaper illuminated by a halogen lamp, showcases the correct alignment of the comple-
tion result on the surface.
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Figure 8. Curved wallpaper completion results. (a) Rendered point cloud of raw depth matrix.
(b) Rendered point cloud of completion result.

3.4. Benchmark Results

In this section, we present a benchmark analysis comparing an Iterative Low-Pass
Filter (ILF) with a Non-Local Spatial Propagation Network (NLSPN) [24], utilizing the
NYU Depth V2 dataset [39]. The dataset comprises video sequences capturing various
indoor scenes recorded by both the RGB and Depth cameras from the Microsoft Kinect. It
includes labeled pairs of aligned RGB and depth images, along with ground-truth depth
images. The input depth images for the benchmark were sampled at a 42.77% filling rate.

For our analysis, we selected 9409 raw depth matrices with clearly defined boundaries
using the Extraction of Boundaries and Surfaces (EBS) method. These matrices include
defect areas affected by infrared sources, reflecting surfaces, absorbing materials, overex-
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posed scenes, and dusky scenes. To ensure robustness, each depth matrix was confined
by the operation block, and the boundaries of operation blocks were carefully adjusted to
avoid segmentation errors. In this comparison, ILF emerges as superior in recovering data
characterized by these challenging conditions.

Figure 9 showcases three examples: a plush floor, a glossy floor, and a black reflective
table. The Iterative Low-Pass Filter (ILF) excels in performance, offering superior details
in these challenging areas. The highlighted scenes include reflective surfaces, absorbent
furnishings, dim illumination, and overexposed RGB signals. Notably, the Non-Local
Spatial Propagation Network (NLSPN) is susceptible to lighting conditions and surface
properties, as it extracts features from both RGB and depth signals.
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Figure 9. NYU Depth V2 dataset [39] DICP results.

In dim lighting conditions, NLSPN yields inaccurate results compared to the ground
truth, as evident in the color maps. The glossy floor, reflecting the scene’s RGB signal, leads
to the mirroring or creation of the scene’s depth in the reflective surface, resulting in higher
values in quantitative evaluation. In the case of the absorbent black carpet, the system
erroneously derived depth from the coffee table. In contrast, ILF demonstrated minimal
effects from these specialized surfaces, as evidenced by the color maps, where ILF’s results
closely aligned with the ground truth.

The depth-image completion results of the 9409 raw depth matrices were evaluated
using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Absolute
Relative Error (Rel), presented in Table 1. In direct comparisons, ILF consistently achieved
smaller values in RMSE, MAE, and Rel, underscoring its superior performance.

Table 1. Quantitative evaluation on the NYU Depth V2 dataset [39].

Methods RMSE (mm) MAE (mm) Rel

NLSPN [24] 1962.779 1935.296 0.701
ILF 300.224 173.014 0.008

4. Conclusions

This study introduced a Depth Image Completion Process method employing an
Iterative Low-Pass Filter (ILF). Grounded in spatial frequency modulation and guided
by RGB information, our approach leverages RGB images to predict depth data. RGB
images play a crucial role in providing an initial estimate of the target surface structure.
These initial estimations, coupled with frequency domain weights, significantly expedite
the iterative process. The depth images underwent multiple low-pass filter iterations,
gradually shifting the cut-off frequency from low to high. Filtered depth images outside
the defected area were updated with a raw depth matrix in each iteration. The low-pass
filter imparted a smoothing effect on the boundaries of the defected area. After a series of
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iterations, the frequency domain variation converged, resulting in the recovery of depth
data within the defected area. L1 norm analysis indicated the optimization characteristics
of the ILF, making it applicable in depth completion.

Additionally, a benchmarking analysis comparing the ILF method with the Non-Local
Spatial Propagation Network (NLSPN) using the NYU Depth V2 dataset was conducted.
Depth errors arise when inconsistency occurs between RGB data and depth information,
often stemming from issues such as reflections in the RGB representation, overexposed
regions, or scenes with low illumination. Our evaluation consistently revealed that the ILF
method outperforms the NLSPN in key metrics such as the Root Mean Square Error, Mean
Absolute Error, and Relative Error. This underscores the superior performance of the ILF
approach in-depth image completion.
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