

  applsci-14-00687




applsci-14-00687







Appl. Sci. 2024, 14(2), 687; doi:10.3390/app14020687




Article



Natural Frequency Response of FG-CNT Coupled Curved Beams in Thermal Conditions



Amir R. Masoodi 1,*, Moein Alreza Ghandehari 1, Francesco Tornabene 2,* and Rossana Dimitri 2





1



Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran






2



Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy









*



Correspondence: ar.masoodi@um.ac.ir (A.R.M.); francesco.tornabene@unisalento.it (F.T.)







Citation: Masoodi, A.R.; Ghandehari, M.A.; Tornabene, F.; Dimitri, R. Natural Frequency Response of FG-CNT Coupled Curved Beams in Thermal Conditions. Appl. Sci. 2024, 14, 687. https://doi.org/10.3390/app14020687



Academic Editor: Philippe Lambin



Received: 18 December 2023 / Revised: 8 January 2024 / Accepted: 11 January 2024 / Published: 13 January 2024



Abstract

:

This study investigates the sensitivity of dynamic properties in coupled curved beams reinforced with carbon nanotubes (CNTs) to thermal variations. Temperature-dependent (TD) mechanical properties are considered for poly methyl methacrylate (PMMA) to be strengthened with single-walled CNTs (SWCNTs), employing the basic rule of mixture to define the equivalent mechanical properties of nanocomposites. The governing equations of motion are derived using a first-order shear deformation theory (FSDT) and Hamilton’s principle, accounting for elastic interfaces modeled using elastic springs. A meshfree solution method based on a generalized differential quadrature (GDQ) approach is employed to discretize the eigenvalue problem and to obtain the frequency response of the structure. The proposed numerical procedure’s accuracy is verified against predictions in the literature for homogeneous structural cases under a fixed environmental temperature. The systematic investigation assesses the impact of various geometric and material properties, including curvature, boundary conditions, interfacial stiffness, and CNT distribution patterns, on the vibrational behavior.
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1. Introduction


Among novel structural systems in civil engineering, coupled beams have increasingly been used in the last decades for highways, subgrades, and other facilities. This kind of system consists of beams with a straight or curved geometry, connected by an elastic layer, with a linear, non-linear, and plastic behavior. Despite the large amount of studies from the literature focusing on the structural behavior of single beams [1,2,3,4], some static and dynamic aspects for coupled beam systems have already been explored in the pioneering works by Seelig and Hoppmann [5] and Dublin and Friedrich [6], drawing increased attention from researchers in the recent years. These studies focused on static and dynamic behavior [7,8,9], transverse vibration [10], and forced vibration [11], using viscously damped interlayer [8,12] among others. Among the most recent works, we can find studies focusing on the dynamic response of coupled curved beams, including both singly curved [13,14,15,16] and doubly curved systems [17,18,19].



The earliest research on the vibrational behavior of beams resting on an elastic foundation was performed by Mathews [20,21] and Eisenberger [22], involving one or two foundation parameters. Several researchers have recently been concerned with obtaining the natural frequencies of a curved beam with different geometries, loading, boundary conditions, and elastic foundations [23,24,25,26,27,28,29,30]. Although few studies have assessed the vibration of homogeneous coupled beams [31,32,33,34,35,36], research has focused on the effect of nanomaterials on the frequency behavior of these systems. Recently, Han et al. [37] have presented an exact solution to define the dynamic characteristics of double-beam systems using an improved Wittrick–Williams algorithm. The vibrational behavior of a double-beam system connected to a viscoelastic layer was also studied [38]. Additionally, numerical studies have been performed to determine the damping properties of a system using two beams [39].



Advanced nanomaterials and their application have also motivated many studies to investigate their possible application in civil (structural and geotechnical) engineering, to create more efficient and sustainable materials [40,41]. Among them, single-layered hollow tubes are largely used as single-walled carbon nanotubes with diameter 0.4 to 2 mm [42]. Functionally graded materials (FGMs) have been also proposed for their high performance, capacity, and low weight with an overall improvement of the mechanical behavior of the structure due to a non-uniform distribution of the material along different directions. Among them, functionally graded carbon nanotubes (FG-CNTs) represent the most common type of nanocomposite used in many structural members, such as beams, plates, and shells [43,44,45,46,47,48,49,50,51]. Ong et al. [52] investigated the dynamic response of double-beam systems in which CNTs were used as the reinforcing phase in the structure with different distribution patterns. In the further work [53], the authors focused on the natural frequency of FG-CNT reinforced double beam systems in a thermal environment, where FG-CNTs stand for the reinforcing phase. The dynamic behavior of nanocomposite coupled beam systems is still being considered by different researchers. In such a context, many scientists have continued to investigate the dynamic responses of structures over the past few decades, accounting for different analytical solutions such as GDQ and DSC [54,55,56,57,58]. The GDQ approach is a semi-analytical solution method with a fast convergence rate, as largely demonstrated in many applications of beams, plates, and shells [59,60,61,62,63,64,65,66,67,68,69,70,71,72] for different curved geometries, both in a static and dynamic sense. It is crucial to satisfy the boundary conditions accurately in order to obtain reliable and accurate solutions. It is worth mentioning that there is only one boundary condition that must be satisfied at each boundary point of a second-order differential equation describing a Timoshenko beam. For this reason, in a GDQ method, the discrete boundary conditions can be placed at the boundary points.



Starting with the literature overview, the vibrational behavior of curve coupled beams seems to be an interesting and relevant topic of structural engineering, possibly introducing a beneficial and efficient procedure for investigating their dynamic behavior, especially for nanomaterial reinforcements. This corresponds to the main purpose of the present work, which considers the effect of temperature on the frequency response of the selected systems, involving thermal-dependent mechanical properties for each phase. Notably, our novelty lies in the exploration of temperature-dependent (TD) mechanical properties, specifically focusing on poly methyl methacrylate (PMMA) strengthened with single-walled CNTs (SWCNTs). The unique aspect is the application of the basic rule of mixture to define equivalent mechanical properties for nanocomposites with TD characteristics. The equivalent mechanical properties of the composite material reinforced with CNTs are determined using a simple rule of mixture, where the governing equation of the beam is obtained by means of the Hamiltonian principle, which is then solved in discrete form based on the GDQ method. A validation study is performed against the reference literature to show the correctness and accuracy of the proposed procedure, where a systematic investigation examines the sensitivity of the frequency response to different input parameters, for both thermal-dependent and independent mechanical parameters of the composite material. Our analysis extends beyond the existing literature by comprehensively assessing the vibrational behavior of the structure under these varied conditions.




2. CNT Beams Material Properties


Let us consider a coupled curved CNT beam, with two curved beams connected with a layer of linear springs. The geometry of beams is described by a radius R, length L, central angle θ, and transverse width and height, b and h, respectively, of the beam section. Different combinations of boundary conditions can be considered per beam, namely, clamped–clamped (C-C), clamped–simply supported (C-S), clamped–free (C-F) or simply–simply supported (S-S). Figure 1 shows a simply supported (S-S/S-S) curved system with   θ = 45 °   made of a composite material reinforced with CNTs.



More specifically, the selected example considers a PMMA matrix and SWCNTs (10,10) as the reinforcement phase. Five types of reinforcement patterns are used here, including a uniform distribution of CNTs (UD-CNTs), as well as FG distributions of CNTs of type V, Λ, O, and X, as depicted in Figure 2.



From an analytical standpoint, for example, a Λ−type variation of a function in the z direction can be defined as [29]


   F ( z ) =    (   1 2  −  z h   )   n                −  h 2  ≤ z ≤  h 2    



(1)







In the particular case of CNTs volume fraction varying with a Λ distribution, it is


   V  C N T   ( z ) =  (  n + 1  )       (   1 2  −  z h   )   n     V  C N T  ∗   



(2)




which reverts to a linear distribution throughout the thickness for n = 1, namely


   V  C N T   ( z ) =      (  1 − 2  z h   )        V  C N T  ∗   



(3)







Based on the assumption of linear distribution, the mathematical definitions of all the selected CNT patterns along the z direction are summarized in Table 1.



Based on the role of mixture, we determine the equivalent mechanical properties of the reinforced beam as follows [29]:


   V  C N T   +  V  M a t r i x   = 1  



(4)






   E  11   =  η 1     V  C N T      E  11   C N T   +  V  M a t r i x      E  M a t r i x    



(5)






   E  22   =    η 2       V  C N T      E  22   C N T     +    V  M a t r i x      E  M a t r i x        



(6)






   G  12   =    η 3       V  C N T      G  12   C N T     +    V  M a t r i x      G  M a t r i x        



(7)






   υ  C N T   =  υ  C N T      V  C N T   +  υ  M a t r i x      V  M a t r i x    



(8)






   ρ  C N T   =  ρ  C N T      V  C N T   +  ρ  M a t r i x      V  M a t r i x    



(9)




where    V  C N T     and    V  M a t r i x     refer to the CNTs and matrix volume fraction, respectively;    E  11   C N T    ,    E  22   C N T     and    G  12   C N T     indicate the normal and shear elasticity moduli of SWCNTs;    E  M a t r i x     and    G  M a t r i x     stand for the elasticity moduli of the matrix, respectively;    η i    ( i = 1 ,   2 ,   3 )   is a factor that considers the size-dependent material properties.




3. Theory and Formulation


The theoretical background of the selected in-plane vibration problem stems from the FSDT curved beam assumptions, while neglecting the deflections and rotations, and assuming a distribution of linear elastic normal springs at the interfaces. Thus, the kinematic field of the reference layer for each curved beam is defined as


     D 1 i    (  x i  , z , t )   =    d 1 i    (  x i  , t ) + z    Φ i    (  x i  , t )      D 2 i    (  x i  , z , t )   =    d 2 i    (  x i  , t )    



(10)




where    D 1 i    and    D 2 i    define the displacement components of an arbitrary point in the longitudinal    (   x i   )    and thickness    ( z )    directions, respectively, whereas    d 1 i    and    d 2 i    refer to the displacement field of the neutral axis in the longitudinal    (   x i   )    and thickness (z) directions, respectively. For details about the geometrical definition of this system in its bottom and upper parts can be found in [1]. The relation between the strain components of an arbitrary point and the reference neutral strain field is defined as


   {       ε x i         γ  x z  i       }  =  [       ϕ 1 i       ϕ 2 i     0     0   0     ϕ 3 i       ]     {       ε x  i 0          η x i         γ  x z   i 0        }   



(11)




with


    ϕ 1 i  =  1  1 +  Υ i      ,    ϕ 2 i  =  z  1 +  Υ i      



(12)




where    ε x i    and    γ  x z  i    are normal and shear strain components,    ε x  i 0     and    γ  x z   i 0     are the normal and shear neutral strain components, and    η x i    represent the curvature of beams on the reference surface, with    Υ i  =  z   R i     . Based on the FDST assumptions for cylindrical panels, the kinematic relations are defined for each  i th beam as


   {       ε x  i 0          η x i         γ  x z   i 0        }  =  {       ∂  ∂  x i         1   R i       0      −  1   R i         ∂  ∂  x i       1     0   0     ∂  ∂  x i         }     {       d 1 i         Φ i         d 2 i       }   



(13)







For an FG material, we consider the following constitutive relations:


   {       σ x i         τ  x z  i       }  =  [      E  ( z )     0     0      E  ( z )    2    (  1 + ν  ( z )   )         ]     {       ε x i         γ  x z  i       }   



(14)




where    σ x i    is the normal stress,    τ  x z  i    is the shear stress, and  E  and  ν  are elastic modulus and Poisson’s ratio of the beam, respectively. Therefore, forces and moments can be calculated by employing the integration of stresses in the z-direction.


   [       N x i         Q x i         M x i       ]  =  b i     ∫  −    h i   2       h i   2      {       σ x i         τ  x z  i        z    σ x i       }       d z  



(15)







Forces and moments can be, thus, defined as


     N x i  =  ε x  i 0      A  11  i  +    η x i     B  11  i       Q x i  =    γ  x z   i 0      A  55  i       M x i  =    ε x  i 0      B  11  i  +    η x i     D  11  i     



(16)




in which


    A  11  i  =    b i     ∫  −    h i   2       h i   2      ϕ 1 i  E  ( z )  d z      ,    B  11  i  =    b i     ∫  −    h i   2       h i   2      ϕ 2 i  E  ( z )  d z        D  11  i  =    b i     ∫  −    h i   2       h i   2      ϕ 3 i    E  ( z )  d z      ,    A  55  i  =   κ    b i     ∫  −    h i   2       h i   2      ϕ 1 i      E  ( z )    2   ( 1 + ν )     d z      



(17)







In these equations,    N x i   ,    Q x i    and    M x i    are normal and shear force and moments and  κ  is the shear factor which is equal to    5 6   . By using the Hamilton’s law and Gauss-Green theory, we obtain the following governing equations for the arched system (see more details in [16]):


     A  11   t o p    (     d 2   F 1    d  x 2    +  1   R 1        d  F 3    d x    )  +  B  11   t o p      d 2   F 2    d  x 2    +  A  55   t o p    (   1   R 1        d  F 3    d x   −    F 1     R 1 2    +  F 2   )      =     I ′  0     ω 2       ∂ 2   F 1    ∂  t 2    +   I ′  1     ω 2       ∂ 2   F 2    ∂  t 2       



(18)






     A  55   t o p    (     d 2   F 3    d  x 2    −  1   R 1        d  F 1    d x   +     d  F 2    d x    )  +  A  11   t o p    (   1   R 1        d  F 1    d x   +  1   R 1 2        d  F 3    d x    )  +      B  11   t o p      1   R 1        d  F 2    d x   +  K s   (   F 3  −  F 6   )  =   I ′  0     ω 2       ∂ 2   F 3    ∂  t 2       



(19)






     B  11   t o p      (     d 2   F 1    d  x 2    +  1   R 1        d  F 3    d x    )  +  D  11   t o p        d 2   F 2    d  x 2    −  A  55   t o p    (    d  F 3    d x   −    F 1     R 1    +  F 2   )      =   I ′  1     ω 2       ∂ 2   F 1    ∂  t 2    +   I ′  2     ω 2       ∂ 2   F 2    ∂  t 2       



(20)






     A  11   b o t t o m    (     d 2   F 4    d  x 2    +  1   R 2        d  F 6    d x    )  +  B  11   b o t t o m        d 2   F 5    d  x 2    +  A  55   b o t t o m      (   1   R 2        d  F 6    d x   −    F 4     R 2 2    +  F 5   )      =   I ′  0     ω 2       ∂ 2   F 4    ∂  t 2    +   I ′  1     ω 2       ∂ 2   F 5    ∂  t 2       



(21)






     A  55   b o t t o m    (     d 2   F 6    d  x 2    −  1   R 2        d  F 4    d x   +     d  F 5    d x    )  +  A  11   b o t t o m    (   1   R 2        d  F 4    d x   +  1   R 2 2        d  F 6    d x    )  +      B  11   b o t t o m      1   R 2        d  F 5    d x   +  K s   (   F 6  −  F 3   )  =   I ′  0     ω 2       ∂ 2   F 6    ∂  t 2       



(22)






     B  11   b o t t o m      (     d 2   F 4    d  x 2    +  1   R 2        d  F 6    d x    )  +  D  11   b o t t o m        d 2   F 4    d  x 2    −  A  55   b o t t o m      (    d  F 6    d x   −  1   R 2       F 4  +  F 5   )      =   I ′  1     ω 2       ∂ 2   F 4    ∂  t 2    +   I ′  2     ω 2       ∂ 2   F 5    ∂  t 2       



(23)







In these equations,    F i    ( i = 1 ⋯ 6 )   is used as a symbol to indicate the reference layer displacements for each beam, whereas the inertial terms    I j    and     I ′  j    are obtained as follows:


  {  I 0  ,    I 1  ,    I 2  ,    I 3  }   =    α i       ∫  −    h i   2       h i   2     ρ   { 1 ,   z ,       z 2  ,    z 3  }   d z  



(24)






     I ′  0  =  I 0  +    I 1     R i      ,     I ′  1  =  I 1  +    I 2     R i      ,     I ′  2  =  I 2  +    I 3     R i      



(25)








4. Solution Approach


It is well known from the literature that the GDQ method was introduced by Shu [73] to solve the partial equation in fluid mechanics, but is was then developed for many engineering practices [74,75,76,77,78]. To obtain a simple expression for weighting coefficients, Shu used the Lagrange interpolated polynomials. These coefficients can be calculated from the following expression:


   W j  ( x )   =     w ( x )   ( x −  x i  )    w  ( 1 )   ( x )   ,   j = 1 ,   2 ,   … ,   N  



(26)




in which


   w   ( x ) =   ∏  i = 1  N   ( x −  x i  )     ,    w  ( 1 )   ( x ) =   ∏  i = 1 ,   i ≠ j  N   (  x j  −  x i  )     



(27)







To determine the weighting coefficients together with their first and higher order of derivatives, the following expressions can be used:


   c  j i   ( 1 )   =  {           w  ( 1 )   (  x j  )   (  x j  −  x i  )    w  ( 1 )   (  x j  )   ,   w h e n     i ≠ j         ∑  k = 1 ,   j ≠ k  N    c  j k   ( 1 )   ,       w h e n     i ≠ j          



(28)




for the first order derivative, where


    w  ( 1 )   (  x j  )   =     ∏  i = 1 ,   j ≠ i  N   (  x j  −  x i  )     ,   i = j = 1 ,   2 ,   … ,   N   



(29)







For higher order derivatives, instead, it is


   c  j i   ( n )   =  {        n  (   c  j j   ( n − 1 )      c  j i   ( 1 )   −    c  j i   ( n − 1 )      x j  −  x i     )  ,   w h e n     i ≠ j         ∑  k = 1 ,   j ≠ k  N    c  j k   ( n )   ,               w h e n     i ≠ j          



(30)







In this study, we use a direct way to import boundary conditions. The grid points related to the boundary conditions are removed and their effect on the other grid points (internal points) is ignored. Such boundary conditions are defined mathematically as


   For   C - C :    d 1 i  =  d 2 i  =  Φ i  = 0    For   S - S :    d 1 i  =  d 2 i  =  M x i  = 0    For   F - F :    N x i  =  Q  x z  i  =  M x i  = 0   



(31)







The natural frequencies of the system can be calculated by using the following equation:


   |  S  M  e f f   −  ω 2     M  e f f    |  = 0  



(32)







Here,   S  M  e f f     and    M  e f f     refer to the effective stiffness and mass matrices related to the internal points. These matrices can be obtained as


   [  S  M  e f f    ]  =  [  S  M I   ]  −  [  S  M  I B    ]       [  S  M B   ]    − 1    [  S  M  B I    ]     



(33)






   [   M  e f f    ]  =  [   M I   ]   



(34)




where   S  M I    is the stiffness matrix related to the internal points,   S  M  I B     is the internal stiffness matrix associated with boundary conditions, and   S  M B    is the boundary condition stiffness matrix.




5. Validation and Convergence Study


A numerical algorithm has been developed to compute the natural frequencies of coupled curved CNT beams, where the accuracy of results has been checked against frequency predictions in the literature [13], based on a finite element method (FEM) for different boundary conditions. The geometry of the S-S curved beam is defined as R = 0.75 m, A = 4 m2, I = 0.01 m4, and R/h = 4, whereas the C-C example features the geometrical properties R = 0.6366 m, A = 1 m2, I = 0.0016 m4, and R/h = 6. The mechanical properties of the structure are set as E = 70 GPa, υ = 0.4166, ρ = 2777 kg/m3, and κ = 0.85, in line with Ref. [13]. Table 2 summarizes the dimensionless frequency for the curved beam obtained in this research compared to results from Ref. [13]. Based on the results, the frequencies computed with our approach are very close to predictions from Ref. [13], thus confirming the accuracy of the proposed formulation.



At the same time, Sobhani and Masoodi [16] applied the finite element approach to the vibration of coupled arched beams, connected elastically by a layer of springs at the interface, for different boundary conditions. Table 3 validates our method for coupled arched beams with the results from Ref. [16]. In this example, the geometry of the beams is defined as Li = 10, R1 = R2 = 7.5, and h1 = h2 = b1 = b2 = 0.1. Material properties are E = 200 GPa, υ = 0.34, ρ = 7850 kg/m3, and κ = 0.87, and mid-layer stiffness is 16,000. Based on Table 3, it is worth observing the very good correspondence among our results and the literature [16] for all boundary conditions.



In accordance to Babaei [30], we studied the free vibration of FG-CNTRC curved beams on nonlinear elastic foundations, and a convergence study was done to obtain the optimum value of grid points (N) in GDQM. Based on results, it was found that nine grid points is sufficient to ensure the accuracy of the frequency results for CNT beams. Table 4 also indicates the first three dimensionless frequency    (  ω    L 2   h         ρ 0     E 0       )    for the CNT curved beam, while comparing successfully them with our results, under the following assumptions for the properties of CNTs and size-dependent coefficient


       V  C N T  ∗  = 0.12 →  η 1  = 0.137 ,    η 2  = 1.022 ,   and    η 3  = 0.715        V  C N T  ∗  = 0.17 →  η 1  = 0.142 ,    η 2  = 1.626 ,   and    η 3  = 1.138        V  C N T  ∗  = 0.28 →  η 1  = 0.141 ,    η 2  = 1.585 ,     and    η 3  = 1.109    



(35)






     E  11   C N T   = 5646.6     GPa ,      E  22   C N T   = 7080     GPa ,   and    G  12   C N T   = 1944.5     GPa      ρ  C N T   = 1400     kg     cm  2    ,   and    υ  C N T   = 0.175      E  M a t r i x   = 2.5   GPa ,    ρ  M a t r i x   = 1150     kg     cm  2    ,   and    υ  M a t r i x   = 0.34    



(36)







Table 5 also shows the results in terms of first two dimensionless frequency of curved beams resting on the elastic foundation. The stiffness of the springs is equal to   100    E  M a t r i x    h 3  /  L 4   . The geometry of the curved beam is defined as   L / R = 0.1   and   L / h = 20  .




6. Parametric Investigation


In this section, several examples have been solved to investigate the vibration properties of the system. For all examples, PMMA and SWCNTs (10,10) are used as matrix and reinforcement phase, respectively. More specifically, for CNTs we assume the following properties:


     E  11   C N T   = 600     GPa ,      E  22   C N T   = 10     GPa ,   and    G  12   C N T   = 17.2     GPa      ρ  C N T   = 1400     kg     cm  2    ,   and    υ  C N T   = 0.19      V  C N T  ∗  = 0.12 ,   0.17 ,   0.28    



(37)







The PMMA instead features the following Young’s modulus, density and Poisson’s ratio:


   E  M a t r i x   = 2.5   GPa ,    ρ  M a t r i x   = 1190     kg     cm  2    ,   and    υ  M a t r i x   = 0.30  



(38)







The following efficiency parameters are set as


       V  C N T  ∗  = 0.12 →  η 1  = 1.2833 ,    η 2  =  η 3  = 1.0556        V  C N T  ∗  = 0.17 →  η 1  = 1.3414 ,    η 2  =    η 3  = 1.7101        V  C N T  ∗  = 0.28 →  η 1  = 1.3238 ,    η 2  =    η 3  = 1.7380    



(39)







The stiffness of the interfacial springs is related to the mechanical and geometrical properties of the beams, as follows:


  K =  k s  ×    A  B M      L 2     



(40)




where  K  is the interfacial stiffness,    k s    refers to the stiffness factor, and    A  B M     can be determined as


   A  B M   =   ∫   E  2   ( 1 − ν )     d z     



(41)




where  E  and v stand for the Young’s modulus and Poisson’s ratio of the pure PMMA matrix beam which was made by matrix, respectively. For such a case, the dimensionless frequency of the structure is determined as


   ω ¯  = ω   R        I  B M      A  B M        



(42)




where the inertial quantity IBM of the beam is obtained as     ∫  ρ   d z     . Figure 3 shows the effect of the rational radius-to-height quantity of the beam on the first dimensionless frequency of the coupled curved beams. To this end, four values of 10, 15, 20, and 30 are considered for   R / h  , while setting the stiffness factor equal to 100. The geometrical properties of the beams are   θ = 45 °  , R1 = R2 = 10, and    L 1  =  L 1  = 2 R sin (  θ 2  )  . To investigate the effect of the CNT content, three different values of volume fraction are employed for CNTs, namely,    V  C N T  ∗  =   0.12, 0.17, and 0.28. A uniform distribution of CNTs is employed throughout the beam for comparative purposes, under the same assumption of CNT volume fraction for each arm of the specimen. The frequency response is obtained for a system with S-S/S-S, C-C/C-C, C-S/C-S, and C-F/C-F boundary conditions. The results show that the frequency of the system decreases for an increased value of   R / h  . This is true for all boundary conditions and all CNT volume fractions. Also, for this example, we investigate the effect of the CNT volume on the frequency response of the system. Based on the results in Figure 3, a higher value of CNT volume fraction yields higher frequencies. For example, for a system with S-S/S-S boundary conditions and a fixed value of   R / h = 10  , the first dimensionless frequency of the system increases from about six to nine by increasing    V  C N T  ∗    from 0.12 to 0.28.



By comparing the rate of reduction of frequencies for an increased R/h, we can deduce that the CNTs volume fraction does not affect the reduction rate. In addition, the reduction rate for S-S/S-S, C-C/C-C, and C-S/C-S boundary conditions is nonlinear, whereas it becomes approximately linear for a C-F/C-F example. Such effect of BCs can be observed from a comparative evaluation of the plots in Figure 3. It can be also noticed that the frequency results associated with clamped boundary conditions are higher compared to other boundary conditions, in the following decreasing order: C-C/C-C > C-S/C-S > S-S/S-S > C-F/C-F.



Figure 4 shows the effect of the interfacial stiffness on the first six frequencies of the system, here defined by means of the coefficient ABM which is obtained from the matrix properties. Nine different values are here considered as the stiffness factor, from 0.01 up to 106, whereas the CNTs volume fraction is assumed equal to 0.17 for a uniform distribution of CNTs. The geometry of beams is kept the same as in previous example, while assuming R/h is equal to 10. As already commented in the previous example, the higher values of frequencies are related to the system with C-C/C-C boundary conditions. For all boundary conditions, except C-F/C-F, the stiffness of the interfacial springs does not affect the first dimensionless frequency of system. Such sensitivity becomes more evident for higher modes of frequencies. The frequencies of the system increased for an increased interfacial stiffness up to a certain value of    k s   , above which frequencies remain constant. From this figure, it seems that the effect of the interfacial stiffness on the frequency response has a direct relationship with boundary conditions and mode frequency.



Figure 5 shows the effect of the CNTs pattern on the first mode frequency of the system, with the same geometry discussed before, and for an interfacial stiffness equal to 100. The volume of CNTs is 0.17 and CNTs are assumed to be distributed linearly in the same pattern in both beams (UD). Based on this figure, the effect of the distribution pattern is related to the boundary condition of the system. In all BCs, except for S-S/S-S, the highest value of the first dimensionless frequency is associated with the FG-X pattern. The lowest values of frequencies are associated with the Λ distribution (for S-S/S-S and C-S/C-S boundary conditions), and to circular CNTs distribution (for C-C/C-C or C-F/C-F boundary conditions). Based on a comparative evaluation of the frequencies, we get the following sequencies of frequency for each selected boundary condition and different distribution patterns of the reinforcement phase:



For a C-C/C-C system: FG-X > UD > FG-Λ > FG-V > FG-O,



For a C-S/C-S system: FG-X > UD ≈ FG-V > FG-O > FG-Λ,



For a S-S/S-S system: FG-V > UD > FG-X > FG-O > FG-Λ,



For a C-F/C-F system: FG-X > UD > FG-Λ > FG-V> FG-O.



Furthermore, for V and O distribution patterns of CNTs, the boundary conditions do not affect the first frequency of the system. This statement is true for C-C/C-C, S-S/S-S, and C-S/C-S boundary conditions.



Table 6 represent the frequency values for different CNTs volume fractions in the system. In this example, the CNT volume fraction at the top beam remains constant at 0.12, whereas      V  C N T  ∗    at the bottom beam increases from 0.12 to 0.28. CNTs are uniformly distributed along the beams and the stiffness factor is equal to 100. The geometry of the beams is the same as in the previous example. Based on Table 6, the frequencies of the system slightly increase by increasing the CNT volume in the bottom beam. It also seems that there are no differences in the system frequencies for an increased number of CNTs at the top beam and bottom beam. In other words, it is not important which beam contains a higher volume of CNTs to increase the frequency response of the system.



Table 7 shows the frequency response of the system when only the bottom beam is reinforced by CNTs, and the top beam is made totally by PMMA. The volume fraction in the bottom beam varies from zero to 0.28 with an X-type functional graduation, where the condition      V  C N T  ∗    = 0 corresponds to a pure matrix material. The geometrical properties of the beams are   θ = 45 °  , R1 = R2 = 10, R/h = 10, and    L 1  =  L 2  = 2   R   sin  (   θ 2   )   , with a stiffness factor equal to 100. For an increased volume fraction of CNTs from zero to 0.12 in the bottom beam, the frequencies of the system increase for all boundary conditions, while keeping constant for volume fractions from 0.12 to 0.28. This means that the volume of CNTs as reinforcement at the bottom beams can affect the frequencies of the system when the top beam remains unreinforced. Based on the same table, there is no difference in the frequency system when the top or bottom beam is reinforced with CNTs.



Figure 6 shows the effect of curvature on the first dimensionless frequencies of the system. The CNTs volume fraction is 0.17 and distributed uniformly along the beams, under the same geometrical assumptions R1 = R2 = 10, R/h = 10,    L 1  =  L 2  = 2   R   sin  (   θ 2   )   , and    k s    equal to 100. In this example, six values of  θ  are employed, where the frequencies of the system are computed for three different types of boundary condition. Note that by increasing  θ , the first frequency of the system decreases. For example, for C-C/C-C systems with a curvature factor of 15°, the frequency value is about thirty-nine and it tends to the unit value for  θ  = 180°.



In this section, we investigate the thermal-dependent vibration of the system. There are several studies in which the effect of temperature variation on the structural behavior has been investigated [79,80]. Thus far, the mechanical properties of SWCNTs (10,10) and PMMA have been represented at room temperature (300 °K). For other environmental temperatures, we consider the following expressions to define the thermal-dependent mechanical properties for SWCNTs:


       E  C N T   11   = 6.565376 − 1.76156      (   T   T 0     )  + 1.13347      (   T   T 0     )   2  − 0.32260      (   T   T 0     )   3  + 0.03193      (   T   T 0     )   4    TPa        E  C N T   22   = 8.22710 − 2.19725      (   T   T 0     )  + 1.41176      (   T   T 0     )   2  − 0.40125      (   T   T 0     )   3  + 0.03964      (   T   T 0     )   4    TPa        G  C N T   12   = 1.10442 + 1.88427      (   T   T 0     )  − 1.47623      (   T   T 0     )   2  + 0.49029      (   T   T 0     )   3  − 0.05829      (   T   T 0     )   4    TPa        ρ  C N T   = 1400     k g   c  m 2        and    ν  C N T   = 0.175      



(43)




where T and T0 represent the environment and room temperatures, respectively. The thermal-dependent Young’s modulus for PMMA can be obtained at any temperature by employing the following equation:


   E  M a t r i x   ( T ) = { 3.52 − 0.0034   ( 300 + Δ T ) }   GPa  



(44)







The density and Poisson’s ratio in PMMA are also 1150 kg/m3 and 0.34, respectively, in thermal environment. Table 8 summarizes the variation of the mechanical properties for a SWCNT (10,10) and PMMA, with an overall monotonic decrease of all properties for an increased temperature.



It is worth observing that the mechanical properties of a pure PMMA matrix are more affected by temperature than the corresponding composite SWCNT (10,10). It is observed that the mechanical properties of PMMA and SWCNT decreases as the temperature increases. The following size-dependent parameters are here used in the rule of mixture to obtain the equivalent properties of beams in a thermal environment:


       V  C N T  ∗  = 0.12 →  η 1  = 0.137 ,    η 2  = 1.022 ,   a n d    η 3  = 0.715        V  C N T  ∗  = 0.17 →  η 1  = 0.142 ,    η 2  = 1.626 ,   a n d    η 3  = 1.138        V  C N T  ∗  = 0.28 →  η 1  = 0.141 ,    η 2  = 1.585 ,   a n d    η 3  = 1.109    



(45)







In this section, we ignore the possible effect of αΔT in the theoretical formulation, where we compute the dimensionless frequencies as


   ω ¯  = ω   R        I  B M      A  B M        



(46)




where IBM and ABM are computed at a room temperature (T = 300 °K). Table 9 presents the first ten dimensionless frequencies of the system made of a pure PMMA matrix. Results show that an increased environmental temperature does not affect the frequency response of S-S/S-S and C-C/C-C structures.



Table 10 summarizes the first six frequencies of the system at different temperatures. Five values of temperature (300°, 400°, 600°, 800°, and 1000 °K) are assumed to evaluate the thermal sensitivity of the vibration response. The fraction volume of CNTs in both beams kept equal to 0.12 under the assumption of uniform distribution for the reinforcement phase. The geometry properties of the beam are still assumed as R1 = R2 = 10, R/h = 10, and    L 1  =  L 2  = 2   R   sin  (  θ / 2  )   . The stiffness factor and the curvature angle are assumed equal to 100 and 45°, respectively. Despite the expected decrease in frequency for an increased environment temperature, we do not observe any meaningful variation in the vibration response of the selected system, since both curved beams are subjected to the similar temperature simultaneously, therefore, the frequency of the total system does not change.



In the last example, we study the vibration response of the structural system in thermal conditions, such that the temperature of one beam maintains constant to 300° and the temperature on the other beam varies from 300° to 1000°. In both beams, the CNT volume fraction is equal to 0.12 and a uniform distribution is assumed for the reinforcement phase. All geometrical properties of the beam, together with ks and θ, are assumed the same as in the previous example. In Table 11, we summarize the frequency response of the system. Results show that by increasing the bottom beam temperature from 300 to 1000, the frequencies of the system slightly decrease. For example, for a S-S/S-S system, when Tbottom = 400°, the first frequency is equal to 5.6356 and reduces to 5.5142 when Tbottom = 1000°. An increased temperature at the top beam induces a variation in the structural behavior, when the temperature of the bottom beam is kept constant to 300 °K. Based on Table 11, an increased temperature at the top beam yields an increased frequency response of the system, whereas the contrary occurs for an increased temperature at the bottom beam, which decreases the frequency response.




7. Conclusions


This paper has studied the vibrational behavior of nanocomposite coupled curved beams under a temperature variation, with an elastic interface modeled as an elastic distribution of elastic springs both in the normal and tangential direction. Each arm of the coupled specimen is made of a PMMA matrix reinforced with SWCNTs with a considerable and effective improvement in the vibrational response of the system. The equivalent temperature-dependent mechanical properties of the nanocomposite material have been obtained based on the well-known rule of mixture and approximate temperature-dependent formulation. Various distribution patterns of the reinforcement phase have been considered throughout the specimen, whose natural frequencies are determined by applying the GDQ technique as useful tool to discretize the governing differential equations of the problem, here determined according to a FSDT. A comparative analysis of the results against further theoretical predictions in the literature has confirmed the correctness and accuracy of the proposed procedure, where a large parametric investigation has evaluated the sensitivity of the vibrational response to different key input parameters, both in a geometric and mechanical sense—primarily, the curvature and the boundary conditions, along with the CNT distribution patterns, the interfacial stiffness, and the thermal dependence of the mechanical properties. It was observed that there is strong agreement between the obtained results and the responses from previous research (less than 5%). Some specific results can be pointed out:




	
The system frequency declines with an increased value of R/h. This holds true for all boundary conditions and various volume fractions of CNTs.



	
In all boundary conditions, except C-F/C-F, variations in the stiffness of the interfacial springs do not considerably influence the first dimensionless frequency of the system.



	
As the volume fraction of CNTs in the bottom beam rises from zero to 0.12, the system frequencies increase across all boundary conditions. However, they remain constant for volume fractions ranging from 0.12 to 0.28.



	
Elevating the temperature at the upper beam leads to an augmented frequency response of the system. Conversely, raising the temperature at the lower beam diminishes its frequency response.








These theoretical studies on the natural frequency response of FG-CNT coupled curved beams in thermal conditions have practical implications for optimizing structural design, material selection, and performance in aerospace, automotive, and related applications. The insights gained also contribute to vibration control, energy harvesting, and structural health monitoring.
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Figure 1. A scheme of the coupled system, (a) general scheme, (b) simply supported (S-S/S-S) configuration of the coupled curved beam. 
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Figure 2. Different types of CNTs patterns in the beam section. 
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Figure 3. Effect of R/h on first dimensionless frequency of system in varied volume of CNTs and different boundary conditions: (a) S-S/S-S, (b) C-C/C-C, (c) C-F/C-F, (d) C-S/C-S. 
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Figure 4. Effect of the interfacial stiffness on the first six dimensionless frequencies of the system with different boundary conditions: (a) S-S/S-S, (b) C-C/C-C, (c) C-F/C-F, (d) C-S/C-S. 
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Figure 5. First dimensionless frequency of the system for different patterns and boundary conditions, for a fixed volume fraction of CNTs equal to 0.12. 
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Figure 6. Effect of  θ  on the first dimensionless frequency of system in different boundary conditions. 
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Table 1. Mathematical definition of different CNTs patterns throughout the thickness.






Table 1. Mathematical definition of different CNTs patterns throughout the thickness.





	Pattern Type
	Distribution Factor





	UD
	    V ∗     C N T     



	FG-V
	(  1 + 2  z h   )    V ∗     C N T    



	FG-Λ
	(  1 − 2  z h   )    V ∗     C N T    



	FG-O
	  2   ( 1 − 2    | z |   h  )      V ∗     C N T    



	FG-X
	(  4    | z |   h   )    V ∗     C N T    










 





Table 2. Dimensionless frequency of the homogenous curved beam.
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Mode

	
S-S

	
C-C




	
This Study

	
Ref. [13]

	
This Study

	
Ref. [13]






	
1

	
29.2757

	
29.2850

	
36.7045

	
36.7160




	
2

	
33.2995

	
33.3210

	
42.2656

	
42.2780




	
3

	
67.1136

	
67.2020

	
82.2368

	
82.3610




	
4

	
79.9578

	
80.0490

	
84.4943

	
84.5650




	
5

	
107.835

	
108.169

	
122.311

	
122.722











 





Table 3. Natural frequencies of coupled homogenous curved beams.
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Mode

	
C-C/C-C

	
C-S/C-S

	
S-S/S-S

	
C-F/C-F




	
This Study

	
Ref. [16]

	
This Study

	
Ref. [16]

	
This Study

	
Ref. [16]

	
This Study

	
Ref. [16]






	
1

	
10.931

	
10.932

	
8.6624

	
8.6624

	
6.7019

	
6.7023

	
2.9378

	
2.9378




	
2

	
11.342

	
11.342

	
9.1684

	
9.1684

	
7.3345

	
7.3349

	
3.5271

	
3.5271




	
3

	
20.620

	
20.621

	
18.031

	
18.032

	
15.545

	
15.546

	
4.5757

	
4.5756




	
4

	
20.860

	
20.861

	
18.304

	
18.304

	
15.860

	
15.861

	
11.003

	
11.003




	
5

	
37.380

	
37.382

	
33.306

	
33.306

	
29.528

	
29.530

	
11.423

	
11.424











 





Table 4. Dimensionless frequency of CNT curved beam with S-S boundary condition (L/R = 0.2 and L/h = 25).
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CNTs

Pattern

	
    V  C N T  ∗    

	
This Study

	
Ref. [30]




	
ω1

	
ω2

	
ω3

	
ω4

	
ω5

	
ω1

	
ω2

	
ω3




	
UD

	
0.12

	
33.0910

	
53.0608

	
95.5477

	
137.195

	
178.955

	
31.6373

	
53.6617

	
94.5798




	
0.17

	
39.7517

	
65.6635

	
119.925

	
173.818

	
227.912

	
38.0857

	
66.2890

	
118.645




	
0.28

	
49.3183

	
75.6428

	
133.685

	
189.651

	
245.808

	
47.6137

	
77.3944

	
133.310




	
FG-O

	
0.12

	
31.1475

	
43.3217

	
83.5019

	
124.939

	
167.510

	
29.8088

	
43.4827

	
79.4926




	
0.17

	
37.3037

	
52.9235

	
103.529

	
156.791

	
211.891

	
35.8071

	
53.2657

	
99.2077




	
0.28

	
46.4691

	
63.0713

	
119.963

	
177.582

	
236.519

	
45.0041

	
64.6479

	
117.180




	
FG-X

	
0.12

	
34.4999

	
58.4039

	
101.363

	
142.768

	
184.100

	
33.1091

	
59.2156

	
101.272




	
0.17

	
41.5231

	
72.9407

	
128.366

	
182.309

	
236.097

	
39.9296

	
73.3581

	
127.006




	
0.28

	
51.2700

	
83.6055

	
143.256

	
200.258

	
257.278

	
49.5523

	
83.0986

	
138.326











 





Table 5. Dimensionless frequency of CNT curved beam with S-S boundary condition on elastic foundation.
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    V  C N T  ∗    

	
CNTs

Pattern

	
This Study

	
Ref. [30]




	
ω1

	
ω2

	
ω1

	
ω2




	
0.17

	
FG-O

	
20.9321

	
47.1825

	
21.4803

	
48.6612




	
FG-X

	
28.2739

	
64.3162

	
27.0170

	
64.3032











 





Table 6. The first six dimensionless frequency of the system when the CNTs volume of one beam of system changed.
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      V  C N T  ∗    

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
     V  C N T  ∗    in both beams is 0.12




	
0.12

	
7.2572

	
13.217

	
23.18

	
23.678

	
23.952

	
35.684

	
46.194

	
46.352

	
48.478

	
61.03




	
     V  C N T  ∗    at the top side of both beams is 0.12 and varies at the bottom beam




	
0.17

	
8.0452

	
14.644

	
23.46

	
26.546

	
28.234

	
39.526

	
46.428

	
53.038

	
56.246

	
67.324




	
0.28

	
9.3562

	
16.973

	
23.574

	
30.798

	
35.456

	
45.702

	
46.478

	
60.972

	
69.564

	
70.608




	
     V  C N T  ∗    at the bottom side of both beams is 0.12 and varies at the top beam




	
0.17

	
8.0452

	
14.644

	
23.46

	
26.546

	
28.234

	
39.526

	
46.428

	
53.038

	
56.246

	
67.324




	
0.28

	
9.3562

	
16.973

	
23.574

	
30.798

	
35.456

	
45.702

	
46.478

	
60.972

	
69.564

	
70.608











 





Table 7. Dimensionless frequency for system which one of beams is made by matrix and another beam reinforced by different volumes of CNTs.
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    V  C N T  ∗    

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
Totally Matrix Beam




	
0

	
1.1917

	
2.168

	
3.8106

	
3.8894

	
3.9268

	
5.848

	
7.5844

	
7.6196

	
7.9462

	
9.996




	
bottom

	
Top Beam Made by pure Matrix




	
0.12

	
3.8044

	
5.2178

	
7.6306

	
9.6256

	
11.439

	
15.219

	
16.913

	
19.022

	
19.156

	
20.510




	
0.17

	
3.8066

	
6.2744

	
7.6400

	
11.311

	
11.675

	
15.224

	
19.022

	
19.173

	
19.501

	
21.104




	
0.28

	
3.8082

	
7.5500

	
7.9988

	
11.418

	
14.532

	
15.225

	
19.022

	
19.201

	
20.186

	
22.138




	
top

	
Bottom Beam Made by pure Matrix




	
0.12

	
3.8044

	
5.2178

	
7.6306

	
9.6256

	
11.439

	
15.219

	
16.913

	
19.022

	
19.156

	
20.510




	
0.17

	
3.8066

	
6.2744

	
7.6400

	
11.311

	
11.675

	
15.224

	
19.022

	
19.173

	
19.501

	
21.104




	
0.28

	
3.8082

	
7.5500

	
7.9988

	
11.418

	
14.532

	
15.225

	
19.022

	
19.201

	
20.186

	
22.138











 





Table 8. Properties of PMMA and SWCNT (10,10) at different temperatures.
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	T
	EMatrix
	E11
	E22
	G12



	°K
	GPa
	TPa
	TPa
	TPa



	300
	2.50
	5.6466
	7.080
	1.9445



	400
	2.16
	5.5679
	6.9816
	1.9704



	600
	1.48
	5.5062
	6.9039
	1.9578



	800
	0.80
	5.4253
	6.8026
	1.9813



	1000
	0.12
	5.2814
	6.6219
	1.9454










 





Table 9. Effect of the environmental temperature on frequencies of S-S/S-S and C-C systems with beams made of pure PMMA matrix.
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Mode

	
S-S/S-S

	
C-C/C-C




	
Temperature (°K)

	
Temperature (°K)




	
300

	
400

	
600

	
800

	
1000

	
300

	
400

	
600

	
800

	
1000




	
1

	
0.9258

	
0.9259

	
0.9258

	
0.9258

	
0.9258

	
1.1733

	
1.1733

	
1.1733

	
1.1733

	
1.1733




	
2

	
1.5133

	
1.5133

	
1.5133

	
1.5133

	
1.5133

	
2.1276

	
2.1276

	
2.1276

	
2.1276

	
2.1276




	
3

	
3.1968

	
3.1968

	
3.1968

	
3.197

	
3.1968

	
3.7566

	
3.7566

	
3.7566

	
3.7566

	
3.7566




	
4

	
3.7566

	
3.7566

	
3.7566

	
3.7566

	
3.7566

	
3.8338

	
3.8338

	
3.8338

	
3.8338

	
3.8338




	
5

	
3.8318

	
3.8318

	
3.8318

	
3.8316

	
3.8318

	
3.8476

	
3.8476

	
3.8476

	
3.8476

	
3.8476




	
6

	
5.1474

	
5.1474

	
5.1472

	
5.1472

	
5.1472

	
5.7232

	
5.7232

	
5.7232

	
5.7232

	
5.7232




	
7

	
7.1842

	
7.1844

	
7.1840

	
7.1840

	
7.1842

	
7.4620

	
7.4620

	
7.4620

	
7.4620

	
7.4620




	
8

	
7.5116

	
7.5116

	
7.5116

	
7.5114

	
7.5114

	
7.5116

	
7.5116

	
7.5116

	
7.5116

	
7.5116




	
9

	
7.5964

	
7.5966

	
7.5962

	
7.5962

	
7.5964

	
7.7844

	
7.7844

	
7.7844

	
7.7844

	
7.7844




	
10

	
9.4024

	
9.4028

	
9.4024

	
9.4024

	
9.4026

	
9.7662

	
9.7662

	
9.7662

	
9.7662

	
9.7662











 





Table 10. Effect of the environment temperature on the frequency response of the S-S and C-C system.
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Mode

	
S-S/S-S

	
C-C/C-C




	
Temperature (°K)

	
Temperature (°K)




	
300

	
400

	
600

	
800

	
1000

	
300

	
400

	
600

	
800

	
1000




	
1

	
5.6356

	
6.0120

	
7.1998

	
9.6892

	
24.602

	
7.1458

	
7.6232

	
9.1294

	
12.286

	
31.196




	
2

	
9.2200

	
9.8358

	
11.779

	
15.852

	
40.250

	
12.978

	
13.845

	
16.581

	
22.314

	
56.656




	
3

	
19.493

	
20.794

	
24.904

	
33.514

	
85.094

	
22.850

	
24.372

	
29.178

	
39.230

	
98.294




	
4

	
22.848

	
24.372

	
29.176

	
39.226

	
97.840

	
23.336

	
24.896

	
29.812

	
40.124

	
101.87




	
5

	
23.324

	
24.882

	
29.798

	
40.100

	
101.82

	
23.490

	
25.058

	
30.008

	
40.384

	
102.54




	
6

	
31.408

	
33.508

	
40.126

	
54.000

	
137.11

	
34.960

	
37.294

	
44.664

	
60.108

	
141.58




	
7

	
43.854

	
46.782

	
56.026

	
75.398

	
140.49

	
45.466

	
48.504

	
58.086

	
78.170

	
150.78




	
8

	
45.688

	
48.736

	
58.340

	
78.414

	
145.38

	
45.690

	
48.738

	
58.346

	
78.428

	
152.62




	
9

	
46.250

	
49.340

	
59.090

	
79.520

	
158.29

	
47.524

	
50.698

	
60.714

	
81.708

	
169.18




	
10

	
57.446

	
61.284

	
73.392

	
98.768

	
191.23

	
59.706

	
63.694

	
76.278

	
102.65

	
198.48











 





Table 11. Dimensionless frequency of the system in the condition that the bottom beam temperature increased.
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BCs

	
mode

	
Ttop beam= 300 °K

	
Tbottom beam= 300 °K




	
Tbottom beam (°K)

	
Ttop beam (°K)




	
300

	
400

	
600

	
800

	
1000

	
300

	
400

	
600

	
800

	
1000




	
S-S/S-S

	
1

	
5.6356

	
5.6120

	
5.5878

	
5.5590

	
5.5142

	
5.6356

	
6.0376

	
7.2624

	
9.8268

	
25.168




	
2

	
9.2200

	
9.1812

	
9.1418

	
9.0944

	
9.0212

	
9.2200

	
9.8776

	
11.881

	
16.077

	
41.172




	
3

	
19.493

	
19.411

	
19.327

	
19.228

	
19.072

	
19.493

	
20.884

	
25.120

	
33.990

	
87.022




	
4

	
22.848

	
22.734

	
22.584

	
22.380

	
22.036

	
22.848

	
24.454

	
29.340

	
39.512

	
99.016




	
5

	
23.324

	
23.244

	
23.194

	
23.160

	
23.132

	
23.324

	
25.006

	
30.144

	
40.928

	
105.02




	
6

	
31.408

	
31.276

	
31.142

	
30.982

	
30.732

	
31.408

	
33.648

	
40.474

	
54.764

	
140.12




	
7

	
43.854

	
43.666

	
43.472

	
43.228

	
42.830

	
43.854

	
46.978

	
56.498

	
76.408

	
140.61




	
8

	
45.688

	
45.444

	
45.128

	
44.710

	
44.052

	
45.688

	
48.886

	
58.626

	
78.936

	
145.90




	
9

	
46.250

	
46.110

	
46.040

	
45.998

	
45.96

	
46.25

	
49.606

	
59.832

	
81.262

	
159.43




	
10

	
57.446

	
57.204

	
56.958

	
56.66

	
56.198

	
57.446

	
61.544

	
74.024

	
100.15

	
193.62




	
C-C/C-C

	
1

	
7.1458

	
7.116

	
7.0854

	
7.0486

	
6.992

	
7.1458

	
7.6556

	
9.2088

	
12.46

	
31.912




	
2

	
12.978

	
12.924

	
12.869

	
12.801

	
12.698

	
12.978

	
13.904

	
16.725

	
22.628

	
57.948




	
3

	
22.850

	
22.734

	
22.588

	
22.384

	
22.042

	
22.850

	
24.456

	
29.344

	
39.524

	
99.452




	
4

	
23.336

	
23.256

	
23.206

	
23.168

	
22.982

	
23.336

	
25.02

	
30.158

	
40.944

	
104.84




	
5

	
23.490

	
23.39

	
23.29

	
23.170

	
23.138

	
23.490

	
25.164

	
30.270

	
40.958

	
105.16




	
6

	
34.960

	
34.814

	
34.664

	
34.484

	
34.206

	
34.960

	
37.454

	
45.052

	
60.954

	
141.76




	
7

	
45.466

	
45.184

	
44.83

	
44.384

	
43.676

	
45.466

	
48.610

	
58.252

	
78.400

	
151.48




	
8

	
45.690

	
45.584

	
45.532

	
45.470

	
45.348

	
45.690

	
49.038

	
59.158

	
80.308

	
155.92




	
9

	
47.524

	
47.328

	
47.142

	
46.930

	
46.644

	
47.524

	
50.918

	
61.266

	
82.946

	
170.71




	
10

	
59.706

	
59.456

	
59.198

	
58.888

	
58.408

	
59.706

	
63.964

	
76.938

	
104.08

	
200.04
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