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Abstract: In the work, nanostructured Fe3O4/C composites based on natural raw materials (beet
pulp and corn stalks) are synthesised in various ways. Iron chloride FeCl3 is used as an activator. The
synthesised composites are investigated using the following methods, scanning electron microscopy,
X-ray diffractometry, nitrogen adsorption/desorption porometry, magnetometry, impedance and
galvanostatic measurements. The presence of nanosized Fe3O4 magnetite in the synthesised carbon
structures is disclosed. Based on the magnetic measurements, the particle size of Fe3O4 is on average
50 nm for the sample of the composite synthesised from beet pulp in one step, 30 nm for the sample
of the composite synthesised from beet pulp in two steps, 33 nm for the composite synthesised from
corn stalks in one step, and 29 nm for the composite synthesised from corn stalks in two steps. It is
shown that the two-step synthesis using pre-carbonised raw materials gives the specific capacitance
of the composite made with beet pulp at 96 F/g, and for the composite made with corn stalks at
95 F/g. The high coulombic efficiency (>95%) and the stability of the electrical capacitance during
long-term cycling make it possible to use Fe3O4/C composites for the manufacture of supercapacitor
electrodes with aqueous electrolytes.

Keywords: nanocomposite; porous structure; iron chloride; supercapacitor; specific capacitance

1. Introduction

The generation and storage of clean and renewable energy has recently been one
of the key, yet rather complicated, research topics [1–3]. High demand for green energy
generation and its efficient storage is driven by the scarcity of conventional energy sources
and the ongoing environmental degradation. While numerous types of renewable energy
such as solar, wind and hydropower, are perceived as the new generation of energy sources,
electrochemical energy storage, i.e., batteries and supercapacitors are predominant in the
energy transmission and storage solutions segments [4–7]. Currently, such devices are
being implemented and used in a wide range of industries, from small portable electronics
to military and aerospace applications. However, the development of new types and
improvement of existing energy storage devices has not passed unnoticed in the scientific
circles in various countries.

Among numerous scientific studies, attention should be paid to the key significance
of electrochemical devices, which are either called supercapacitors or electrochemical
capacitors with a double electrical layer, or ultracapacitors. These are energy storage
systems that can be used on their own or in conjunction with modern electrochemical
batteries to improve the overall efficiency of the power system, to minimize disturbances
to the power grid, as electricity buffers in electric vehicles (efficient collection and return of
braking energy and fast charging energy buffering), energy buffers for renewable energy
sources, etc. [8–12]. It should be added that the combination of batteries and supercapacitors
makes it possible to release a large volume of electric energy rapidly, leading to very high
specific power values [13,14]. The supercapacitors have specific power almost five times
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higher than the corresponding value for conventional lead–acid batteries [10]. Therefore, if
high power consumption is required by any system, supercapacitors are superior to the
batteries. In addition, supercapacitors can be incorporated into a hybrid energy storage
system along with a battery, which will lead to a reduction in the size of such a system
while meeting energy and power requirements, as well as to an enhancement of the
battery life of such a power system [15]. In systems that include some portable electronic
devices, supercapacitors can be used as the primary power source, as they can be recharged
quickly. It is also important that many supercapacitors can operate over a wide temperature
range (−40 to +85 ◦C), while conventional batteries are typically used over a narrower
temperature range [16]. Since the electrode materials used in supercapacitors are subject to
marginally small phase and/or chemical changes during charge-discharge processes, it is
believed that supercapacitors can exhibit very high cycling (lifetime) [13].

The activated carbon (AC) materials are the most widely used materials for making the
electrodes of supercapacitors with both aqueous and non-aqueous electrolytes [1,17]. This is
due to their well-developed porous structure, good electrical conductivity, low production
costs and, above all, they are environmentally friendly. The operational principle of
supercapacitors made of AC materials is based on the principle of movement of ions
under the influence of an applied electric field (Figure 1). At first, the ions are chaotically
scattered in the electrolyte. Under the influence of a potential difference applied to the
supercapacitor plates, the ions begin to move towards the electrodes—the cations move
towards the cathode and the anions towards the anode. The ions enter the porous AC
structure and reach the carbon surface. At this time instant, the surface of the carbon
becomes charged with the opposite sign. In this manner, a double electrical layer is formed
on the AC material surface of each electrode.
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Figure 1. Structure of supercapacitor with AC materials [12].

Commonly used raw materials for AC material manufacturing are wood, coal, oil
derivative waste, peat and polymers. However, in recent years, AC material synthesis
has increasingly been carried out using low-cost and available alternative raw materials,
primarily agricultural produce waste (including but not limited to fruit seeds, nut shells,
rice, corn straw, etc.) and solid waste (sludge, food waste, garden waste, etc.) [18–21]. The
production of AC materials from such waste and other by-products is also driven by the
economic feasibility of large-scale production. Therefore, biomass waste is suitable for the
production of biocarbon, which has a well-developed porous structure, a surface containing
various functional groups and mineral components due to the removal of moisture and
volatile substances from biomass by heat treatment [22]. However, the conventional
methods for obtaining AC materials do not allow one to synthesise an electrode material
of the required quality. Therefore, methods for synthesising composites based on carbon
materials have become widely used [23–26].

Chemical activation of raw materials for the synthesis of activated carbon (AC) mate-
rials is an important method to controllable change in the properties of the resulting AC.
One of the methods commonly used for this purpose is the application of metal chlorides,
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most frequently ZnCl2 and FeCl3, as an activating agent. Activated carbon modified with
iron oxides is widely used to solve environmental problems. The main area of application
for such carbon composites is the treatment of wastewater and natural water [27–29]. But
Refs. [30–33] present the electrochemical properties of carbon obtained from biowastes
activated with ferric chloride. Firstly, there is practically no impedance half-circle, which
testifies good conductivity of the material and low internal resistance of the cell, and
secondly, cyclic voltammograms testify to the electrochemical stability of such carbon in
aqueous electrolytes in the cell charging/discharging process. However, the optimal modi-
fication methods have not been fully established, because, for instance, the specific capacity
of the carbon in the article [30] in an acidic electrolyte is only 57 F/g, while the carbon
of [33] already has 252.2 F/g in 0.5 M aqueous Na2SO4 solution, although the synthesis
methods are very similar. The difference between the carbon tested in [30] and in [33] was
solely a difference in raw materials. Thus, in [30], it was the waste from processing coffee
beans, while in [33], it was sunflower. In order to optimize the technology for synthesising
AC from different types of raw materials for supercapacitors, studies were conducted on
carbon materials from beet pulp and corn stalks.

2. Sample Preparation and Testing Techniques

The initial raw materials for the synthesis of carbon composites were selected from
agricultural processing waste–dry corn stalks and sugar beet pulp.

The carbon composite synthesis was carried out according to the diagrams shown in
Figure 2. The raw material was first washed in distilled water at room temperature to a
visually clear efflux and dried in an oven in an air atmosphere of 100–110 ◦C until the mass
of the raw material stopped changing.
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Figure 2. Block diagrams showing one- and two-step organic raw materials-based AC production.

Next, a portion of the raw material was prepared directly for pyrolysis, and another
portion was pre-modified with ferric chloride. Dried and crushed beet pulp and corn stalks
were filled with an aqueous solution of ferric chloride FeCl3 using a salt to raw material
ratio = 1:10. Raw materials prepared in this manner were stored at room temperature
for 48 h, and then dried at 100–110 ◦C to achieve a constant weight. The next step was
pyrolysis, which was carried out in a tubular stainless-steel reactor. The process was carried
out at 700 ◦C for 90 min in an argon atmosphere. The resulting AC was scrubbed three
times with hot distilled water. Such samples will be referred one-step synthesis samples
(Figure 2).

The papers concerning the modification of raw materials with KOH, for Instance [34],
have shown the effectiveness of two-step carbonisation-activation in AC material produc-
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tion. This idea was also used to obtain AC materials with ferric chloride modifier. The raw
materials for modification were corn stalks and beet pulp carbonised in an inert atmosphere
at 400 ◦C for 90 min. The carbonised corn stalks and beet pulp were soaked in an aqueous
ferric chloride solution, held for 24 h, and then dried in an oven at the temperature of
100–110 ◦C. In the next step, we subjected the ferric chloride-modified raw material to
pyrolysis at 700 ◦C in an argon atmosphere for 90 min. The resulting AC material was
scrubbed three times with hot distilled water. The AC material was then dried until the car-
bon mass stopped changing. Such samples will be referred to two-step synthesis samples
(Figure 2).

A scanning electron microscope REMMA-102-02 (SELMI, Sumy, Ukraine) with a
low-vacuum chamber and an energy-dispersive microanalysis system was used to obtain
images of synthesised carbon composites.

Magnetic measurements were carried out using a vibration magnetometer based on
the method described in [35]. The magnetometer was calibrated by the comparison method.
Pure non-porous nickel with a density of ρ = 8.9 g/cm3 was used as a standard. The
magnetisation curves of the samples under study were recorded in magnetic fields from
−300 kA/m to +300 kA/m. The content of the magnetic phase in the synthesised compos-
ites was calculated from the measurement of the specific saturation magnetisation. For the
correct determination of the saturation magnetisation, the study should be performed in
strong magnetic fields sufficient for complete saturation. In our case, a magnetic field of
800 kA/m was used.

The parameters of the porous structure of the studied samples were estimated by the
isothermal processes of nitrogen adsorption/desorption at its boiling point (T = 77 K). The
adsorption/desorption isotherms were obtained using a NOVAtouch LX2 (Anton Paar
QuantaTec, Boynton Beach, FL, USA). All synthesised samples were degassed in a vacuum
at 473 K before measuring the isotherms, and the duration of degassing was 12 h.

X-ray diffractograms of the AC materials were obtained using a DRON-3 diffrac-
tometer (NPO Burevestnik, Saint Petersburg, Russia) in Cu Kα radiation (λ = 0.1542 nm),
monochromatized by reflection from the (002) plane of the pyrographite monocrystal.
Diffractograms were measured in continuous detector scanning mode at a rate of 2 de-
grees/min. Processing of the diffraction spectra (smoothing, background subtraction,
determining the positions and widths of half maxima, breaking the composite maxima into
separate components) was carried out using the DHN_PDS Program Package for Powder
Diffraction Version 2.0 suite.

The obtained carbon types were ground in a ceramic bowl and sieved on screens.
A fraction of 40–63 µm was used to make supercapacitor electrodes. The supercapacitor
electrodes were made from both AC from corn stalks and beet pulp, as well as from AC
material types dried after modification. Polyvinylidene fluoride (PVDF) was used as the
binding agent. The active electrode mass was obtained by mixing carbon material with
PVDF, which was previously dissolved in dimethyl sulfoxide. The mass ratio of AC to
PVDF was 19:1. The active mass was applied to the nickel mesh and pressed using a
hydraulic press with a force of 500 N/cm2. The electrode dimensions were 0.5 × 1.5 cm2.
The finished electrodes were dried in an oven at 100 ◦C. The electrolyte was a 30% aqueous
solution of potassium hydroxide KOH.

Impedance spectra and cyclic voltammograms of the fabricated supercapacitors
were measured using an AUTOLAB PGSTAT-100 (Metrohm AG, Herisau, Switzerland)
impedance spectrometer. Impedance spectra were measured in the frequency range from
10−2 to 105 Hz. Modelling of the obtained Nyquist diagrams was carried out with elec-
trical equivalent circuits using Zview 3.4 software. The parameters of the elements in the
electrical equivalent circuits were determined with an accuracy of not higher than 10%.

3. Results and Discussions

Scanning electron microscope images of the synthesised carbon nanocomposites are
shown in Figure 3a–d.
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Figure 3. SEM images of beet pulp carbon composite using a one-step synthesis (a) and using a
two-step synthesis (b), corn carbon composite using a one-step synthesis (c) and using a two-step
synthesis (d).

From the obtained images it can be seen that all the synthesised composites are quite
homogeneous; moreover, elements showing the macroporous structure of the original
biowastes are also observed.

It should be added that organic raw materials often contain various additional atoms
in addition to carbon, the type and amount of which depends on the type of raw material.
These atoms combine with oxygen or carbon atoms during high-temperature synthesis
and can form water-insoluble particles. Therefore, such particles do not dissolve during
water rinsing and remain in the synthesised carbon material. However, as can be seen
from Figure 3, such additional (non-carbon) particles are practically absent in any of the
synthesised composites.

X-ray diffraction methods were used to analyse the internal structural features of the
synthesised samples. X-ray diffractograms of the obtained samples are shown in Figure 4c–f.
As can be seen, wide scattering maxima are observed in the diffractograms of all materials,
indicating the amorphous structure of the samples [36–38]. For comparative sake, the
positions of polycrystalline graphite reflections corresponding to three-dimensional (002)
and two-dimensional (100), (110) diffraction from graphene layers (Figure 4b) are given, and
red lines (Figure 4a) correspond to Fe3O4 magnetite. In addition, all diffractograms show a
number of small peaks of crystalline phases, which are most likely associated with impurity
elements present in the initial raw material. In the work [39], it was established that the raw
materials (beet pulp and corn stalks) do not contain Fe3O4 magnetite particles. Therefore,
they are introduced into the carbon structure during activation with ferric chloride.
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using a two-step synthesis (d), corn carbon composite using a one-step synthesis (e) and using a
two-step synthesis (f). For comparison, the lines of Fe3O4 magnetite (a) and polycrystalline graphite
(b) are shown.

During the carbonisation of raw materials in the presence of iron salts, processes occur
that lead to the formation of iron oxides and the development of porosity [40,41].

First of all, Fe3+ ions are hydrolysed to Fe(OH)3 at a temperature of 350 ◦C:

Fe3+ + 3H2O → Fe(OH)3 + 3H+ (1)

When further heated in an inert atmosphere, the hydroxide is dehydrated and con-
verted to Fe2O3 hematite at 400 ◦C:

Fe(OH)3 → FeO(OH) → Fe2O3 (2)

At higher temperatures (from 500 ◦C to 700 ◦C), Fe2O3 hematite is reduced to Fe3O4
magnetite by amorphous carbon and CO gas:

3Fe2O3 + C(CO) → 2Fe3O4 + CO(CO2)↑ (3)

A number of studies [42,43] have reported that FeCl3 promotes the development of
pores in carbon-containing materials. Unfortunately, the mechanism of FeCl3 activation is
not well understood. But, for example, the reduction reaction given in Equation (3) can
promote the development of pores in samples of synthesised nanocomposites by converting
C into CO and removing carbon in the form of CO or CO2, resulting in certain cavities
within the material structure.

Nitrogen adsorption/desorption isotherms are shown in Figure 5. All the isotherms
can be classified as type II isotherms [44]. The isotherms of composites synthesised in one
step are characterised by a discrepancy between the adsorption and desorption curves. The
main reason for this behaviour may be the irreversible retention of adsorbate molecules in
pores whose size is close to the size of the adsorbate molecules. The isotherms of composites
synthesised in two steps are characterised by the presence of a hysteresis loop, which can
be classified as type H4. This behaviour of the isotherm is typical for porous solids with
slit-like pores [45].
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Figure 5. Nitrogen adsorption/desorption isotherms of beet pulp carbon composite (a) using a
one-step synthesis (1) and using a two-step synthesis (2), corn carbon composite (b) using a one-step
synthesis (1) and using a two-step synthesis (2). The red curves correspond to adsorption and the
blue curves to desorption of nitrogen.

To calculate the parameters of the porous structure of the synthesised composites,
the obtained isotherms were analysed using the Quantachrome TouchWin version 1.22
software. To do this, we used the multipoint BET method [45], which approximates the
experimental data with a straight line in the range of relative pressures P/P0 = 0.05 ÷ 0.35.
The calculation data are given in Table 1.

Table 1. Parameters of the porous structure of synthesised nanocomposites.

Type of Nanocomposite S, m2/g V, cm3/g <d>, nm

AC from beet pulp,
1-step synthesis 359.6 0.167 1.86

AC from beet pulp,
2-step synthesis 738.2 0.361 1.96

AC from corn, 1-step synthesis 413.1 0.269 2.6

AC from corn, 2-step synthesis 889.8 0.591 2.66

As can be seen from Table 1, the two-step synthesis results in an increase in the specific
surface area and specific volume by about half, regardless of the type of initial raw material.
At the same time, the average pore size remains virtually unchanged.

Magnetic measurements have shown that the synthesised nanocomposite samples
have magnetic hysteresis. The corresponding hysteresis loops are shown in Figure 6.

The coercive force Hc and specific saturation magnetisation σs were calculated from
the hysteresis loops. These data are shown in Table 2.

Table 2. Magnetic characteristics of synthesised nanocomposites.

Type of Nanocomposite σs, A·m2·kg−1 Hc, kA/m Fe3O4 Content, Mass %

AC from beet pulp,
1-step synthesis 3.03 11.3 3.79

AC from beet pulp,
2-step synthesis 2.39 5.5 2.99

AC from corn, 1-step synthesis 1.42 6.6 1.78

AC from corn, 2-step synthesis 0.42 5.3 0.53
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Based on the results of measuring the saturation specific magnetisation of synthe-
sised nanocomposites, the content of magnetic moment carrier particles, magnetite, can
be determined. For the calculation, it is necessary to know the value of the saturation
specific magnetisation of magnetite particles. The saturation specific magnetisation of
massive magnetite is 92 A·m2·kg−1 [46]. The value of the specific saturation magnetisation
of magnetite particles required for the calculation was chosen taking into account the
phenomenon of a decrease in the magnetisation of small particles with a decrease in their
size [47]. According to the data on the dependence of coercive force on particle diameter in
Fe3O4 dispersions [48,49], for the measured values of coercive force, the size of magnetic
moment carriers is on average 50 nm for the sample of the composite synthesised from
beet pulp in one step, 30 nm for a sample of the composite synthesised from beet pulp in
two steps, 33 nm for the composite synthesised from corn stalks in one step, and 29 nm
for the composite synthesised from corn stalks in two steps. Accepting from the above
sources that the indicated particle sizes correspond to an average value of the specific
saturation magnetisation of 80 A·m2·kg−1, the percentage of magnetite in the composites
was determined (Table 2).

Galvanostatic charge/discharge cycles were carried out on the manufactured symmet-
ric supercapacitors. Figure 7 shows a typical charge-discharge curve for supercapacitors.
The specific capacitance of the carbon material was determined from the formula [50]:

C =
2I∆t
m∆U

(4)

where: I is the discharge current, ∆t is the discharge time, m is the active mass of one
electrode, ∆U is the discharge voltage.

As a result of the analysis, it was found that one-step modification yields not very
high capacitance values in alkaline electrolyte—for nanocomposites from beet pulp the
value is 41 F/g, and for nanocomposites from corn stalks it is 72 F/g. In contrast, a two-step
synthesis using pre-carbonised raw materials boosted the specific capacitance of beet pulp
nanocomposites to 96 F/g, and that of corn stalk nanocomposites to 95 F/g. Coulombic
efficiency in both cases was higher than 95 percent. The current density during the study of
charging and discharging processes was 1 A/g.

Since composites made in two-step process show higher capacitance, further studies
were carried out on the properties of supercapacitors made from these materials.
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Figure 7. Typical charge-discharge curve for manufactured supercapacitors.

The working potential or “electrochemical window” of a supercapacitor is determined
by the electrochemical stability of the electrolyte. Among other electrochemical methods,
the cyclic voltammetry method can be considered the most efficient method for determining
the “electrochemical window”. For smooth electrodes, it is believed that the decomposition
processes of electrolyte components start to run intensively when the surface current
density is 0.5 mA/cm2 [51]. In the case of porous electrodes, there is no such criterion,
so it is believed that the electrolyte component decomposition processes begin to occur
when the current in the system goes up rapidly. The presence of Faraday electrochemical
processes in the system is manifested in the form of voltammogram peaks [52].

Figure 8 show cyclic voltammograms of supercapacitors, electrodes of which were
manufactured from carbon nanocomposites synthesised in two steps. The tests were carried
out for different scanning speeds. As can be seen in both figures, the shape of the obtained
curves indicates mainly the capacitance nature of the electrochemical system behaviour
with a good ionic response [53].
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Figure 8. Cyclic voltammograms for supercapacitors made from beet pulp (a) and corn stalks
(b) carbon composites synthesised in two steps.

Increasing the scan rate to 50 mV/s leads to the acceleration of charge-discharge
processes, which reduces the availability and movement of electrolyte ions inside the
electrode material. At the same time, the effective interaction between the electrolyte ions
and the electrode is significantly reduced due to the electrode material resistance, which is
reflected in the deviation of the cyclic voltammogram from a rectangular shape [54,55].

We do not observe clear current peaks in all curves, which indicates the absence of
parasitic capacitances and the absence of undesirable electrochemically active impurities in
the electrochemical systems of manufactured supercapacitors. The obtained shape of the
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curves allows us to conclude that practically only adsorption and desorption of K+ cations
and OH- anions occur on the surface of electrodes in the set potential range.

To confirm the electrochemical stability of the obtained nanocomposites, long-term
tests of the fabricated supercapacitors were carried out. The results of the change in specific
capacitance depending on the number of charge-discharge cycles are shown in Figure 9.
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pacitors made from carbon composites made from beet pulp (1) and from corn stalks (2).

It is known that supercapacitors based on Fe3O4 nanoparticles do not have stable
electrochemical parameters at a large number of charge-discharge cycles [56]. As shown
in Figure 9, the specific capacitance of the corn stalks nanocomposite practically does not
decrease, while for the beet pulp nanocomposite the decrease for 8000 cycles was of the
magnitude of 3%.

The Impedance spectra of the tested supercapacitors are shown as Nyquist diagrams
and Bode diagrams (Figure 10). All curves have a typical appearance for the dominant
process of electric double layer formation at the carbon electrode/electrolyte interface. The
Nyquist diagrams at high frequencies look like straight lines at an angle close to 90◦ to
the axis of the real component of the complex resistance, while the Bode diagrams show a
phase angle of about −80◦ at a frequency of 10−2 Hz. According to [57], such behaviour
of a supercapacitor may be due to the presence of Faraday processes, the contribution
of which may be as high as 5–10%. However, studies by Frackowiak and Beguin in [58]
showed that quasi-reversible Faraday processes of electrochemical reduction of oxygen-
containing surface groups in alkaline electrolytes appear in Nyquist diagrams only at
sufficiently low frequencies of the order of 10−3 Hz. Therefore, for our chosen frequency
range (10−2–105 Hz), the influence of such Faraday processes can be neglected.

This conclusion is confirmed by the calculation of the specific capacitance at 10−2 Hz
using the following formula [50]:

C = − 1
2π f Z′′ (5)

A value of 94.5 F/g in terms of specific value is obtained for the beet pulp nanocom-
posites, and 91.6 F/g for the corn stalks nanocomposites. These values are quite close to
those obtained using Equation (4) for galvanostatic charging/discharging.

Impedance data were modelled with Zview 3.4 software using an electrical equivalent
circuit based on a linear model of de Levy with the addition of an R4C4 coupler, which
corresponds to the resistance and capacitance of the space charge region in the AC [59,60].
The calculated parameters of the elements in the electrical equivalent circuits are shown in
Table 3. The contribution of pores of a certain size to the formation of an electrical double
layer corresponds to a certain RC cell. In the circuit shown in the insert in Figure 10a, the
resistance R1 corresponds to the internal resistance of the supercapacitor, R2 and C2 are the
electrolyte resistance and capacitance in the mesopores, and R3 and C3 are the electrolyte
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resistance and capacitance in the micropores. In modelling the impedance of the studied
carbon nanocomposites in aqueous electrolyte, a capacitive phase constant element (CRE1)
was also used [61]. It simulates the distributed capacitance resulting from the presence
of vacancies or impurity defects that provide conductivity to the carbon material at room
temperature. The C3/C2 ratio for composites from beet pulp is 2.35, and for composites
from corn stalks it is 2.67, indicating the main influence of micropores in shaping the
capacitance of the electrical double layer. Similar conclusions were made in [62], where the
C3/C2 ratio was about 2.75.
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Table 3. Parameters of elements in electrical equivalent circuits.

Type of Nanocomposite R1, Ohm CPE1-T CPE1-P R2, Ohm C2, F R3, Ohm C3, F R4, Ohm C4, F

AC from beet pulp, 2-step synthesis 0.87 0.19 0.71 0.49 0.31 1.38 0.73 0.27 6.48 × 10−5

AC from corn stalks, 2-step synthesis 0.72 0.19 0.67 0.94 0.26 2.26 0.56 0.19 8.78 × 10−5

Another parameter that can be calculated from the model applied is the relaxation
time of the charging/discharging process of a porous structure with different pore sizes, in
which an electrical double layer is formed. The relaxation time can be calculated using the
following formula [50]:

τ = C·R, (6)

where C is the electrical capacitance, R is the resistance.
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The lower the value of τ is, the faster the supercapacitor charges and discharges. For
commercial supercapacitors τ = 0.5 ÷ 3.6 s [50]. If we carry out calculations for our model,
we obtain the values shown in Table 4.

Table 4. Relaxation time of pore charge/discharge in AC materials.

Type of Nanocomposite Relaxation Time for Mesopores,
τ = C2·R2

Relaxation Time for Micropores,
τ = C3·R3

AC from beet pulp, 2-step synthesis 0.15 1.01

AC from corn stalks, 2-step synthesis 0.24 1.27

As shown by data in Table 4, the charging/discharging process of mesopores is very
fast compared to the charging/discharging of micropores. However, even if we consider the
total charging/discharging time of the porous structure of the synthesised nanocomposites,
both nanocomposites are suitable for the manufacture of supercapacitors that can operate
under fast charging/discharging conditions.

4. Conclusions

The proposed two-step modification method showed good prospects for using ferric
chloride as an activator to obtain carbon nanocomposites from natural raw materials that
can be used to produce supercapacitor electrodes.

X-ray diffraction studies showed the presence of Fe3O4 nanoparticles in all synthesised
carbon materials. Magnetic measurements made it possible to estimate the size of these
nanoparticles from 29 nm to 50 nm, depending on the type of initial raw material and the
method of composite synthesis.

The specific electrical capacitances of the nanocomposites synthesised in two steps de-
termined by two different methods were almost identical, indicating that Faraday processes
have little effect on the formation of an electrical double layer on the carbon surface. This
is also confirmed by measurements of cyclic voltammograms. An important advantage
of supercapacitors made from synthesised nanocomposites over supercapacitors made
from pure Fe3O4 nanoparticles is their stability of electrical capacitance during long-term
cycling.

Modelling of impedance data made it possible to estimate the effect of meso- and
micropores on the capacitance of the supercapacitor, as well as to calculate relaxation
times during charging/discharging of these pores. It was found that the synthesised
nanocomposites have a porous enough structure that the supercapacitors made from them
can be used in devices and circuits that require rapid storage and release of electrical energy.
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