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Abstract: The incidence of bladder cancer is on the rise, and its molecular heterogeneity presents
significant challenges for personalized cancer therapy. Transcriptome data can characterize the vari-
ability among patients. Traditional machine-learning methods often struggle with high-dimensional
genomic data, falling into the ’curse of dimensionality’. To address this challenge, we have developed
MVMSGAT, an innovative predictive model tailored for forecasting responses to neoadjuvant therapy
in bladder cancer patients. MVMSGAT significantly enhances model performance by incorporating
multi-perspective biological prior knowledge. It initially utilizes the Boruta algorithm to select
key genes from transcriptome data, subsequently constructing a comprehensive graph of gene co-
expression and protein–protein interactions. MVMSGAT further employs a graph convolutional
neural network to integrate this information within a multiview knowledge graph, amalgamating
biological knowledge maps from various scales using an attention mechanism. For validation, MVMS-
GAT was tested using a five-fold cross-validation approach on two specific GEO datasets, GSE169455
and GSE69795, involving a total of 210 bladder cancer samples. MVMSGAT demonstrated superior
performance, with the following metrics (mean ± standard deviation): AUC-ROC of 0.8724 ± 0.0511,
accuracy of 0.7789 ± 0.068, F1 score of 0.8529 ± 0.0338, and recall of 0.9231 ± 0.0719. These results
underscore the potential of MVMSGAT in advancing personalized treatment and precision medicine
in bladder cancer.

Keywords: deep learning; graph neural network; neoadjuvant therapy; genomics

1. Introduction

Bladder cancer, a prevalent malignancy in the urinary system, has an increasing an-
nual incidence rate [1]. This cancer is classified as either non-muscle-invasive (NMIBC)
or muscle-invasive (MIBC) based on the extent of bladder wall invasion. The main treat-
ment for MIBC is radical cystectomy, often combined with neoadjuvant platinum-based
chemotherapy [2]. However, due to bladder cancer’s molecular heterogeneity, responses to
this therapy vary greatly among individuals [3]. Accurate prediction of treatment effec-
tiveness prior to therapy commencement is crucial for personalized treatment strategies,
improving cure rates, and minimizing the impact of ineffective therapies. However, re-
liable biomarkers for predicting MIBC patients’ responses to neoadjuvant therapy are
still unidentified.

Genomic research is vital in advancing personalized cancer diagnosis and treatment [4].
Analyzing patients’ transcriptome data provides insights into the current state of cancer
and its individual variability. Machine-Learning (ML) integration in biomedical research is
creating new paths for cancer diagnostics and treatment [5,6]. ML models have predicted
hepatocellular carcinoma recurrence with 74.19% accuracy using whole-genome data [7].

Appl. Sci. 2024, 14, 669. https://doi.org/10.3390/app14020669 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020669
https://doi.org/10.3390/app14020669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-5874-5478
https://orcid.org/0000-0003-2375-7068
https://doi.org/10.3390/app14020669
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020669?type=check_update&version=1


Appl. Sci. 2024, 14, 669 2 of 19

Other research has employed supervised ML methods for high-precision prediction of non-
small cell lung cancer responses to immunotherapy [8]. Moreover, ML analysis of data from
762 breast cancer patients has led to the early detection of breast cancer and the identification
of key biomarkers [9]. However, traditional pattern recognition methods face challenges in
high-dimensional, low-sample datasets, known as the ’curse of dimensionality’.

Incorporating biological prior knowledge into these models can enhance their general-
ization ability and yield better results [10]. By integrating relevant biological information,
models can more accurately navigate the complex genetic data landscape, leading to clini-
cally relevant predictions [11]. Transforming biological knowledge into graph structures
is advantageous, as graphs effectively represent complex biological system relationships
and interactions [12]. This method allows for a more intuitive and thorough analysis of
genetic data’s intricate connections. For instance, Graph Convolutional Networks (GCN)
have been used to predict circular RNA-disease connections, outperforming traditional
methods [13]. Another study combined GCN with biological knowledge graphs to identify
genes linked to complex diseases [14]. These graph-based approaches have proven effective
in enhancing model performance and stability.

In our study, we sought to predict the effectiveness of neoadjuvant therapy in blad-
der cancer patients using baseline transcriptome data, multiview knowledge graphs, and
graph convolutional neural network techniques. Using the Boruta algorithm, we identified
significant gene sets for constructing graph nodes related to treatment outcomes. Gene
co-expression and protein–protein interaction networks were formed from these nodes,
enriched with extensive biological knowledge. A multi-head graph attention convolutional
neural network refined features, with pooling to extract multi-scale biomarkers. An atten-
tion mechanism combined features from different network layers for outcome prediction.
This method improved our model’s accuracy and contributed to precision medicine. Our
study’s key achievements include:

1. Creating a predictive model for bladder cancer patient responses to neoadjuvant
therapy based on a multiview knowledge graph.

2. Using a multi-head graph attention mechanism to integrate gene co-expression and
protein–protein interaction network features, capturing essential multi-scale features
via pooling.

3. Demonstrating the model’s precision in predicting treatment responses, proving its
competitive advantage over existing methods.

2. Review of Existing Work

In the context of personalized medicine, the unique biological information provided
by a patient’s gene expression patterns is particularly crucial in determining which patients
are likely to benefit from neoadjuvant therapy [4]. This section presents a review of studies
focused on the selection of bladder cancer patients who benefit from neoadjuvant therapy.

Initial research concentrated on analyzing the expression levels of specific individuals’
genes, as these expressions are directly linked to the tumor’s sensitivity or responsiveness
to treatment. For instance, a study of BRCA1 mRNA expression levels in 57 patients with
advanced bladder cancer revealed that those with lower or moderate expression levels were
more likely to benefit from neoadjuvant therapy (p = 0.01) [15]. This finding highlights the
predictive value of BRCA1 expression levels in the efficacy of platinum-based neoadjuvant
chemotherapy and could impact the formulation of personalized treatment strategies. The
role of BRCA1 in DNA repair mechanisms may explain its association with treatment
responsiveness. Additionally, in another study involving 50 patients receiving neoadjuvant
therapy, whole-exome sequencing identified that patients with ERCC2 gene mutations
were more likely to benefit from treatment (p < 0.01). ERCC2’s critical role in the DNA
repair process may be the key link between its mutation and treatment efficacy [16]. An
analysis of 178 cancer-related genes in 71 patients revealed that ERBB2 mutations were
common among those who benefited from neoadjuvant therapy, although this result was
not statistically significant, possibly due to limited sample size or high data variability [17].



Appl. Sci. 2024, 14, 669 3 of 19

Subsequent research shifted towards multi-gene analysis. For example, after conducting
a differential gene expression analysis in 18 patients undergoing neoadjuvant therapy,
researchers identified 14 genes with significant expression differences and developed a
treatment effect prediction scoring system [18]. This system was tested in a validation
cohort of 22 patients and successfully predicted the treatment outcomes in 19 patients,
confirming the feasibility of using gene expression differences to construct a treatment
effect prediction scoring system [19].

Although traditional statistical methods like the t-test and ANOVA have proven
effective in multiple fields, they faced numerous challenges when handling large-scale
biomarker data with numerous features, high dimensionality, and nonlinear relation-
ships [20]. Genomic data, for instance, often do not conform to the assumption of a normal
distribution and may contain outliers and biomarkers beyond detection limits, potentially
skewing data distribution. To address these challenges, new ML techniques have been
developed to handle large datasets, cope with complex data distributions, and address
nonlinear issues.

This research based on models utilizing Support Vector Machine (SVM) algorithms has
demonstrated the ability to accurately predict the response of individual cancer patients
to various standard chemotherapy drugs based on tumor gene expression characteristics
(such as RNA sequencing or microarray data), with an accuracy rate exceeding 80% [21].
This indicates the potential value of machine-learning algorithms in clinical applications,
particularly in identifying effective second-line treatment options for patients who fail
first-line standard treatments. Moreover, machine-learning methods have also been ap-
plied to early identification of patients with metastatic or recurrent colorectal cancer who
are sensitive to FOLFOX therapy (a chemotherapy regimen combining 5-FU, leucovorin,
and oxaliplatin) [22]. Researchers used microarray meta-analysis to identify differentially
expressed genes (DEGs). These genes showed significant expression level differences
between patients who responded to FOLFOX therapy and those who did not. These genes
are closely associated with biological processes such as autophagy, ErbB signaling pathway,
mitochondrial autophagy, endocytosis, FoxO signaling pathway, apoptosis, and resistance
to antifolate drugs. Using these candidate genes, researchers applied various machine-
learning algorithms and assessed the models’ performance through cross-validation meth-
ods. In other studies, machine-learning techniques have been used to predict responses
to immunotherapy and neoadjuvant chemotherapy. For example, machine learning was
utilized to explore the limitations of known drug mechanisms in predicting pathological
complete response (pCR) and the impact of biological characteristics on response predic-
tion in the first 10 treatment regimens of the I-SPY 2 trial [23]. Additionally, research has
proposed a new classification of Hepatocellular Carcinoma (HCC) cancer stem cell-related
using machine-learning algorithms based on RNA sequencing datasets to predict patients’
responses to immunotherapy [24].

Deep-learning technologies have shown significant potential in precision medicine,
particularly in predicting the response of bladder cancer patients to neoadjuvant therapy.
These algorithms, by analyzing patterns in complex biological and chemical data, can
effectively predict how cancer cell lines and patients might respond to new drugs or drug
combinations, therefore aiding in personalized treatment planning [25]. For instance, deep-
learning models integrating gene expression, gene mutations, and compound chemical
structures have significantly improved prediction accuracy in applications on GDSC and
CCLE datasets by analyzing cancer-related gene and chemical information features [26].
The CDRscan model employs a dual-step convolutional architecture to process the gene
mutation fingerprint of cell lines and the molecular fingerprint of drugs, and through “vir-
tual docking”, it successfully identifies potential new cancer indications for existing drugs.
Furthermore, models based on residual neural networks have been applied to NCI-60 drug
pair screening data, focusing on drug combination activity, emphasizing the importance
of drug descriptors in predicting cell line responses to drug pairings, and highlighting
the potential of deep learning in predicting drug combination effects [27]. The DeepDR
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model, combining mutation encoders, expression encoders, and drug response predictors,
has outperformed traditional methods in training on cancer cell lines and demonstrated
potential in predicting tumor responses to drugs, providing insights into known and novel
drug targets and drug resistance mechanisms [28]. These studies collectively illustrate
the growing importance of deep learning in the field of cancer drug response prediction.
By leveraging deep-learning technologies and integrating diverse genomic and chemical
information data, these models are enhancing our understanding of drug responses and
paving the way for more personalized and effective cancer treatments.

However, challenges remain in the current state of research. First, to date, graph
convolutional neural networks have not been extensively applied in predicting the efficacy
of neoadjuvant therapy for bladder cancer, representing an unexplored avenue with poten-
tial for significant impact. Second, the inherent complexity of genes poses a considerable
challenge, with their intricate interactions and variations contributing to the difficulty
in accurately predicting treatment outcomes. This complexity underscores the need for
advanced computational models that can effectively decipher the nuances of genomic data
in the context of bladder cancer therapy.

3. Materials and Methods

The detailed methodology of our approach is illustrated in Figure 1. We commence by
selecting datasets from the Gene Expression Omnibus (GEO) Database that fulfill specific
inclusion criteria, followed by preprocessing to negate batch effects, therefore ensuring data
uniformity (Figure 1a). The Boruta algorithm is employed for feature selection, isolating a
gene set highly correlated with treatment effectiveness for constructing the nodes of a multi-
view biological knowledge graph (Figure 1b). Subsequently, we analyze gene co-expression
correlations and integrate protein–protein interaction networks to establish the edges of
the graph. The MSMVGAT network updates node features, aggregates gene function
clusters, and fuses multiview, multi-scale features for patient prediction (Figure 1c). Lastly,
the model undergoes five-fold cross-validation to assess its generalization capabilities
thoroughly (Figure 1d).

3.1. Boruta Algorithm for Feature Selection

Feature selection is a crucial step in building predictive models, improving both per-
formance and accuracy [29]. Datasets usually contain many features, but not all are equally
important for prediction. Some features can unintentionally add noise or redundancy,
leading to model overfitting and reduced generalization ability. This issue is especially
prominent in transcriptome sequencing data, which is known for its high dimensionality.

Among various feature selection methods, Boruta stands out [30]. Based on the
Random Forest algorithm, Boruta excels in identifying and keeping all relevant features in
a dataset while removing insignificant ones. Its effectiveness is not just theoretical; it has
been proven in numerous medical datasets, as confirmed by several studies [31–33]. This
evidence highlights Boruta’s role in boosting predictive accuracy and strengthening model
robustness, especially in complex, high-dimensional data settings.

The Boruta algorithm has been adopted for feature selection. Rooted in the principles
of the random forest methodology, Boruta assesses the import of original variables in con-
trast to a set of generated shadow features, facilitating the discernment of relevant variables
from those deemed inconsequential. This algorithm exhibits robustness in handling diverse
data typologies, including both categorical and numerical datasets, and is characterized
by a reduced susceptibility to outlier influences. The utilization of Boruta contributes
to the interpretability of the model, enabling a more profound comprehension of gene
expression variables that are pivotal in the prediction of therapeutic efficacy. This approach
is indicative of an in-depth appreciation of the complex and high-dimensional nature of
genetic data, targeted towards the refinement of predictive accuracy in patient treatment
outcomes. The steps of the Boruta algorithm are as follows:
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1. Extend the information system by adding shadow attributes created by shuffling
original ones.

2. Train a random forest classifier on the extended information system and gather the
importance measure (e.g., Mean Decrease Accuracy) for all attributes.

3. Find the maximum Z score among shadow attributes (MZSA) and then assign a
significance level to each attribute where the importance measure for a given attribute
is higher than MZSA.

4. Remove all attributes that are confirmed to be less relevant than shadow attributes,
and iterate the above steps until all attributes are confirmed or rejected.

GEO Dataset

a. Data processing

Removing batch effects

b. Feature screening

• Extend Information System
• Train Random Forest
• Determine Importance Threshold
• Iterative Feature Elimination

c. MVMSGAT model

controlled 

Boruta algorithm

uncontrolled 

Performance metrics

graph attention convolution

…

…

Fusion features

𝐺!!"

𝐺#$%&'!

data
collection

d. Model evaluation
train validation 

…

1!" iteration

2!" iteration

5!" iteration

Figure 1. Overview of the proposed method for bladder cancer treatment response prediction.

The significance of original features is assessed using a Z test. The null hypothesis of
this test is that a feature’s importance is not greater than that of the shadow features. The Z
score, calculated as follows, helps determine this:

Z =
M − µ

σ
(1)



Appl. Sci. 2024, 14, 669 6 of 19

where M is the original attribute’s importance, µ and σ are the mean and standard deviation
of the shadow attributes’ importance. Attributes with a Z score exceeding a predefined
threshold, Zthreshold, are considered relevant.

3.2. Construction of Multiview Graphs

In our study, gene co-expression graphs are essential for elucidating the relational
expression among various genes, thus contributing to an understanding of the molecu-
lar underpinnings of diseases. The construction of these graphs involved two principal
components: gene expression correlations and protein–protein interaction (PPI) data.

3.2.1. Gene Co-Expression Graph

Gene co-expression networks play a key role in revealing complex relationships
between gene expressions, offering valuable insights into disease mechanisms [34]. In our
study, we began with a carefully selected set of genes, treating each gene as a node in a
network graph. We used the Pearson correlation coefficient, which ranges from −1 to 1,
to measure correlations between these genes [35]. A coefficient close to 1 implies a strong
positive correlation, while a value close to −1 indicates a strong negative correlation. Values
around 0 suggest no linear correlation. In constructing the network graph, we connected
gene pairs only if the absolute value of their Pearson correlation coefficient exceeded a
soft threshold of β1 = 0.4, indicating a substantial correlation, regardless of whether it
is positive or negative. This threshold was chosen to ensure that only gene pairs with a
significant level of correlation, either positive or negative, are included, therefore enhancing
the biological relevance of the network. The Pearson correlation coefficient itself, when its
absolute value is greater than 0.4, determines the weight of each edge, representing the
significant strength of gene expression correlation.

3.2.2. Protein–Protein Interaction Graph

In addition to the gene co-expression graph, we integrated a PPI graph to explore
the mechanisms of disease progression and evolution [36]. The PPI graph shows physical
and functional connections between proteins, shedding light on their functionalities and
interactions [37]. We gathered PPI data relevant to our selected genes from the STRING
database [38]. Gene IDs were matched with their corresponding protein IDs. For genes
linked to multiple proteins, we averaged the interaction weights to calculate an overall
interaction weight between genes. By setting a soft threshold of β2 = 0.4, we have
ensured that our analysis focuses on interactions with a substantial likelihood of biological
significance. This threshold was chosen based on the STRING-score, reflecting a balance
between including meaningful connections and excluding low-confidence ones [39]. This
approach aims to provide a more accurate representation of the molecular interactions
relevant to bladder cancer progression and response to neoadjuvant therapy.

3.3. Developing a Graph Attention Network across Multiple Perspectives and Scales

In the current study, we introduce a multi-perspective, multi-scale graph attention
network, as depicted in Figure 2. This network is designed to integrate various biological
datasets for predicting the response of bladder cancer patients to neoadjuvant therapy.
The model inputs two distinct types of biological graphs: the gene co-expression graph
Gco−exp = (Vco−exp, Eco−exp), based on gene expression patterns, and the protein–protein
interaction graph Gppi = (Vppi, Eppi), which delineates the interplay among proteins. In
these representations, Vco−exp and Vppi represent the nodes of the respective graphs, while
Eco−exp and Eppi denote the corresponding edges.

Our approach involves capturing information from adjacent nodes through a Graph
Embedding Module to update the information of the nodes themselves. Subsequently,
we employ a TOP-k pooling operation to obtain a more compact graph representation.
Following this, feature vectors for each graph dimension are extracted using a readout
operation. The feature vectors from the gene co-expression graph and the protein–protein
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interaction graph, corresponding to the same dimension, are then fused through an atten-
tion mechanism. This step ensures the effective integration of information extracted from
both graph types. Finally, the fused vectors across different dimensions are concatenated to
form a comprehensive feature vector, which is then fed into a fully connected layer for the
prediction of patient outcomes post-neoadjuvant therapy. These outcomes are classified
into two categories: tumor controlled—Complete Response [CR], Partial Response [PR],
and Stable Disease [SD]—and tumor uncontrolled—Progressive Disease [PD].

Through this methodology, our model leverages multi-scale graph representations
and attention mechanisms to deeply understand the response of bladder cancer patients to
neoadjuvant therapy, providing robust data support for personalized treatment strategies.
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Figure 2. Visualization of the MVMSGAT Network Architecture, highlighting the integration of
two distinct biological graphs: the gene co-expression graph Gco−exp and the protein–protein in-
teraction graph Gppi. For each graph, G is represented as G(V, E, X) where V denotes the node
set, E denotes the edge set, and X denotes the node feature matrix. This representation captures
the structure and attributes of the graph, with each layer beneath the network diagram indicating
the number of nodes |V|, the number of edges |E|, and the feature-length |X| at that layer. Such
detail illustrates the evolving complexity and informational depth as the data progresses through
the network.

3.3.1. Node Feature Update Mechanism

In graph convolutional neural networks, node feature updates are achieved by aggre-
gating features from neighboring nodes, enabling the network to discern local connectivity
patterns [40]. This neighborhood-focused feature aggregation renders GCNs suitable for
graph data analysis, facilitating direct engagement with graph structures and the acquisi-
tion of complex and advanced node feature representations, which offers deeper insights
into various graph analysis tasks. In our research, we harnessed a multi-head graph convo-
lutional neural network to independently extract features from two distinct graphs, Gco−exp
and Gppi. Employing the graph attention network (GAT) with a multi-head attention
mechanism, we updated the node features [41]. This framework allowed each node’s
feature representation to be influenced not only by its inherent features but also by the
weighted features of its adjacent nodes. This multi-head attention approach enabled each
head to focus independently on varying information facets, allowing for a more compre-
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hensive capture of the intricate inter-node interactions within the graph’s structure. This
method is advantageous for generating distinctive feature representations, providing a
potent means for decoding the complex information embedded within the graph. Attention
coefficients αk

ij for each node pair i and j were individually calculated for each head using
the following formula:

αk
ij = softmax(ek

ij) =
exp(ek

ij)

∑n∈Ni
exp(ek

in)
(2)

where ek
ij denotes the attention score between nodes i and j for the k-th head, computed

as follows:
ek

ij = LeakyReLU(⃗ak[W⃗khi∥W⃗khj]). (3)

Here, W⃗k signifies the linear transformation weight matrix for the k-th head, a⃗k is
the corresponding attention vector, hi and hj are the feature vectors for nodes i and j,
respectively, and ∥ represents vector concatenation. Building upon the multi-head atten-
tion mechanism, we refined the node feature update process by layering multiple graph
attention layers. Each node’s new feature h′ki was updated using the equation:

h′ki = σ

(
∑

j∈Ni

αk
ijW⃗

khj

)
. (4)

In this expression, σ denotes an activation function, and ∑j∈Ni
represents the weighted

summation of the neighbors j of node i, incorporating neighbor information. The weighting
αk

ij, as derived from the described attention mechanism, signifies the degree of contribution

from neighbor node j to node i, with W⃗k representing the linear transformation weights for
the head, and hj as the initial feature vector for node j.

Additionally, our approach integrates a Graph Embedding Module, as depicted in
Figure 3. This module employs a two-layered structure, each layer comprising a GAT
convolutional layer followed by batch normalization and an activation layer (ReLU). In
the GAT layers, we configure the number of channels to 128 and the number of heads to
8, enhancing the model’s ability to focus on different information facets within the graph.
This architecture avoids the issues of over-smoothing and vanishing gradients, which are
common in deeper networks. Batch normalization aids in stabilizing the training process,
while ReLU introduces necessary non-linearity, enabling effective capture of complex
patterns in the graph data.

Figure 3. The figure represents the Graph Embedding Module, showcasing a two-layer structure
with GAT convolutional layers, each with 128 channels and 8 heads, batch normalization, and
ReLU activation. This architecture aims to balance complexity and efficiency, addressing common
challenges in deep networks while processing features from Gco−exp and Gppi graphs.

3.3.2. Aggregation of Functional Group Genes via TOP-K Pooling

Distinct functional gene groups possess unique biological significance, often repre-
senting specific biological processes and cellular functions. Our approach utilized the
TOP-K pooling operation, set at a ratio of 0.8, to coalesce gene clusters exhibiting common
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biological functions [42,43]. This operation selects the top 80% of nodes based on their
importance scores, computed via a learnable transformation followed by an activation
function. Specifically, the importance score si for a node i is determined using:

si = LeakyReLU(⃗aTW⃗hi) (5)

where W⃗ is the weight matrix, a⃗ is the attention vector, and hi is the feature vector of node i.
Selection based on the score si retains the top 80% of nodes deemed most crucial, discarding
the remainder, therefore streamlining the graph’s complexity while capturing extensive
biological information, providing robust feature representations for understanding disease
mechanisms and predicting treatment responses.

3.3.3. Model Prediction via Multi-Scale Feature Fusion

In this study, feature fusion was conducted through an attention layer that integrated
the gene co-expression graph Gco−exp with the protein–protein interaction graph Gppi.
Global average pooling was employed to obtain the final layer of graph node features
for each scale, represented as xco−exp and xppi, which were concatenated to yield xcombined,
defined as xcombined = concat(xco−exp, xppi). Attention weights for the combined feature
xcombined were determined through a linear transformation and a sigmoid function, produc-
ing the fused feature x f usion = aweight · xco−exp + (1 − aweight) · xppi. Subsequent to feature
fusion, a multi-scale concatenation integrated feature information across different layers
and scales, resulting in xmulti-scale. The model then fed xmulti-scale into a multi-layer percep-
tron for final predictions, with the treatment response prediction probability P(y|xmulti-scale)
being the sigmoid output of the fully connected layer. Patient tumor control was designated
as label 1, while tumor uncontrolled was labeled 0.

4. Experiment
4.1. Data Acquisition

Gene expression data and clinical information were obtained from two cohorts of
bladder cancer patients with neoadjuvant treatment retrieved from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/(accessed on 24 September 2023)) with the accession
numbers GSE169455 [44] and GSE69795 [45]. The criteria for study inclusion were as
follows: (1) The cases were diagnosed with MIBC. (2) All patients received neoadjuvant
treatment. (3) The cases had complete expression data. (4) For analysis of clinical charac-
teristics, the patients had corresponding clinical and prognosis information. The dataset
encompasses comprehensive clinical details and gene expression information, as delineated
in the Supplementary Materials (see Tables S1 and S2). Furthermore, a concise summary of
the principal attributes of the dataset, including sample size, platform, and data sources, is
systematically tabulated in Table 1.

Table 1. Characteristics of the GSE169455 and GSE69795 Datasets.

Dataset Institution Number of Patients Platform

GSE169455 Lund University, Sweden 149 GPL6244
GSE69795 Md Anderson Cancer Center, USA 38 GPL14951

The integration of multiple datasets typically resulted in batch effects or non-biological
variations. To tackle these effects, we utilized the empirical Bayes algorithm provided
in the ComBat function of the SVA package during our data preprocessing phase [46].
This method was crucial for reducing batch-related discrepancies, therefore enhancing the
overall quality and reliability of our data analysis.

4.2. Implementation Details

The programming language employed for the experiments was Python 3.9, provided
by the Python Software Foundation, based in the Netherlands. The deep-learning tasks

https://www.ncbi.nlm.nih.gov/geo/
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were facilitated by the PyTorch framework, which was developed by Facebook in the
USA. Graphical computations were executed using an NVIDIA GeForce RTX 3090-TI GPU,
supplied by NVIDIA, Santa Clara, CA, USA. The training process was configured with a
batch size of eight and a learning rate set to 1 × 10−4. Loss computation was performed
using the cross-entropy function, and the model was optimized with the AdamW algorithm,
which incorporates weight decay.

5. Results
5.1. Construction of Multiview Graphs and Efficacy of Boruta Feature Selection

In our study, we effectively used the Boruta feature selection algorithm to identify
genes crucial for bladder cancer treatment. We limited the algorithm’s random forest
classifier to five layers to prevent overfitting and maintain simplicity. A key part of our
analysis was setting the boruta_perc feature importance threshold at 80%. This threshold
required a feature to be significant in at least 80% of 2400 iterations (boruta_max_iter = 2400)
to be included.

We meticulously explored various boruta_perc thresholds to strike an optimal bal-
ance between retaining significant features and enhancing model performance. Ultimately,
the 80% threshold was selected, ensuring the retention of pertinent features with no compro-
mise on accuracy. Notably, the top 20 genes, ranked by their importance, are systematically
presented in Table 2. Furthermore, a comprehensive list of all evaluated genes is available
in Supplementary Materials Table S3 for detailed reference.

Table 2. Top 20 genes by importance ranking: Gene abbreviations and their corresponding full names.

Gene Abbreviation Full Name

KLHL17 kelch-like family member 17
ZDHHC18 zinc finger DHHC-type palmitoyltransferase 18
XKR8 XK related 8
CDCA8 cell division cycle associated 8
FGGY FGGY carbohydrate kinase domain containing
VCAM1 vascular cell adhesion molecule 1
CTTNBP2NL CTTNBP2 N-terminal like
PIP5K1A phosphatidylinositol-4-phosphate 5-kinase type 1 alpha
CRCT1 cysteine-rich C-terminal 1
LCE3B late cornified envelope 3B
LCE1E late cornified envelope 1E
IL6R interleukin 6 receptor
GPATCH4 G-patch domain containing 4 (gene/pseudogene)
PBX1 PBX homeobox 1
XCL1 X-C motif chemokine ligand 1
C1orf220 chromosome 1 putative open reading frame 220
CD46 CD46 molecule
ATF3 activating transcription factor 3
GALNT2 polypeptide N-acetylgalactosaminyltransferase 2

After selecting features, the gene co-expression network showed an average of 8.914 neigh-
bors per node, a diameter of 8, and a clustering coefficient of 0.404, indicating moderate
connectivity and a tendency for clustering. This is supported by a network density of
0.033, suggesting gene clusters often form closely connected groups. Detailed statistical
information can be found in Table 3.

Meanwhile, the PPI graph was larger, with 847 nodes and an average of 8.944 neighbors
per node. Its diameter of 13 and radius of 7 indicate a more extensive network. The PPI
network’s clustering coefficient of 0.25 suggested less clustering compared to the gene
network. The PPI network, with more nodes and edges, appeared less clustered but more
spread out. Its larger diameter and radius, along with a higher number of connected
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components, hint at a more fragmented structure. This fragmentation may reflect that a
complex interaction landscape is important for understanding diseases.

Our analysis showed the value of examining bladder cancer treatment from two bio-
logical network perspectives. The PPI network, with 128 connected components, revealed
complex protein interactions related to bladder cancer. In contrast, the gene co-expression
network provided insights into gene interaction patterns. Integrating Boruta feature se-
lection with multiview graph construction, we examined the biological complexities of
bladder cancer. This method allowed us to gather comprehensive information from both
networks, forming a robust biological knowledge base for future analysis and treatment
outcome prediction.

Table 3. Topological statistics of the gene co-expression and protein–protein interaction networks.

Metric co-ex ppi

Number of Nodes 308 847
Number of Edges 1221 3186
Average Number of Neighbors 8.914 8.944
Network Diameter 8 13
Network Radius 4 7
Characteristic Path Length 3.305 3.668
Clustering Coefficient 0.404 0.25
Network Density 0.033 0.013
Network Heterogeneity 1.192 1.157
Network Centralization 0.215 0.127
Connected Components 18 128

co-ex is the gene co-expression graph, and ppi is the protein–protein interaction graph.

5.2. Comparative Analysis of Predictive Models

In this study, we evaluated the performance of traditional machine-learning models,
such as Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), and
Gradient Boosting Decision Trees (GBDT), against advanced graph-based models like
Graph Attention Networks (GAT), Multi-Scale Graph Attention Networks (MSGAT), and
Multiview Multi-Scale Graph Attention Networks (MVMSGAT). The traditional models
were optimized using grid search to find the best combination of parameters, ensuring
optimal model performance. Furthermore, to assess the robustness and consistency of
these models, we employed a five-fold cross-validation method. This approach divides the
dataset into five parts, using one as the test set and the others for training in rotation, thus
minimizing fluctuations in model performance across different data splits.

We also explored advanced graph-based models such as GAT, MSGAT, and MVMS-
GAT. GAT introduces an attention mechanism to weight neighboring nodes’ features,
enabling the model to focus on key information. MSGAT expands upon this by incorporat-
ing multi-scale processing, capturing both local node features and overall graph structure.
MVMSGAT further extends this approach by combining data from multiple views, captur-
ing richer and more comprehensive graph structure features across multiple scales.

In evaluating these models, we used metrics such as AUC-ROC, accuracy, F1 score,
recall, and precision. These metrics helped us comprehensively assess the models’ per-
formance in predicting the effectiveness of neoadjuvant chemotherapy in bladder cancer
patients. Through this comparison, we aimed to understand the relative strengths and
limitations of traditional machine-learning models versus advanced graph-based models
in handling complex medical data.

Although RF and GBDT from the traditional models showed notable performance,
it was the graph-based models, especially the MVMSGAT, that outshined the others.
The MVMSGAT model recorded the highest AUC-ROC at 0.8724 ± 0.0511, accuracy of
0.7789 ± 0.068, F1 score of 0.8529 ± 0.0338, recall of 0.9231 ± 0.0719, and precision of
0.8038 ± 0.0955. This indicates that incorporating multiview biological prior knowledge
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into the graph attention mechanism significantly enhances the accuracy of predicting
bladder cancer treatment outcomes. For a comprehensive model comparison, see Table 4.

Table 4. Comparison of Model Performance Metrics for Predicting the Efficacy of Neoadjuvant
Chemotherapy in Bladder Cancer (Table 3).

Model AUC-ROC Accuracy F1 Score Recall Precision

SVM 0.7252 ± 0.1513 0.6526 ± 0.1648 0.6443 ± 0.2133 0.5461 ± 0.3021 0.936 ± 0.0615
DT 0.7529 ± 0.0918 0.6368 ± 0.0706 0.7143 ± 0.1425 0.7692 ± 0.3206 0.7638 ± 0.1097
RF 0.7788 ± 0.0448 0.6894 ± 0.0798 0.7552 ± 0.1359 0.7846 ± 0.2487 0.8000 ± 0.1121
GBDT 0.8064 ± 0.0276 0.7158 ± 0.1026 0.7575 ± 0.1313 0.7231 ± 0.2483 0.8591 ± 0.0613
GAT 0.7929 ± 0.0459 0.7105 ± 0.0588 0.7843 ± 0.0889 0.8231 ± 0.2046 0.7987 ± 0.1155
MSGAT 0.8102 ± 0.0907 0.7368 ± 0.0558 0.8195 ± 0.0446 0.8377 ± 0.0699 0.6988 ± 0.0328
MVMSGAT 0.8724 ± 0.0511 0.7789 ± 0.0680 0.8529 ± 0.0338 0.9231 ± 0.0719 0.8038 ± 0.0955

AUC-ROC stands for Area Under the Receiver Operating Characteristics Curve. This metric is used to evaluate
the performance of a binary classifier. Accuracy, F1 score, recall, and precision are additional metrics for assessing
the effectiveness of the predictive models. The values are presented as mean ± standard deviation. Bold values
indicate the highest performance metrics in each category for easy comparison.

5.3. Comparative Analysis of Graph-Based Models as Inputs

Building on the comparison of various models, we also quantitatively evaluated the
effectiveness of different graph-based models as inputs for predictive modeling of treatment
outcomes. This assessment utilized metrics such as AUC-ROC, accuracy, F1 score, recall,
and precision. The detailed results of this evaluation are presented in Table 5.

Table 5. Performance metrics of graph-based models.

Model AUC-ROC Accuracy F1 Score Recall Precision

co-ex 0.7654 ± 0.0323 0.7210 ± 0.0546 0.7856 ± 0.0899 0.8231 ± 0.2007 0.7973 ± 0.1213
ppi 0.8519 ± 0.0321 0.7105 ± 0.0456 0.8238 ± 0.0225 0.9846 ± 0.0211 0.7094 ± 0.0401
co-ex + ppi 0.8724 ± 0.0511 0.7789 ± 0.0680 0.8529 ± 0.0338 0.9231 ± 0.0719 0.8038 ± 0.0955

co-ex is the gene co-expression graph, and ppi is the protein–protein interaction graph. Co-ex + ppi is the gene
co-expression graph combined with the protein–protein interaction graph. Bold values indicate the highest
performance metrics in each category for easy comparison.

The gene co-expression graph model achieved an AUC-ROC of 0.7654 ± 0.0323 and
an accuracy of 0.7210 ± 0.0546, with the F1 score, recall, and precision at 0.7856 ± 0.0899,
0.8231 ± 0.2007, and 0.7973 ± 0.1213, respectively. The protein–protein interaction graph
model exhibited an enhanced AUC-ROC of 0.8519 ± 0.0321, with the accuracy remaining
consistent with the gene co-expression graph model. Notably, the recall reached a striking
0.9846 ± 0.0211, although the precision was 0.7094 ± 0.0401, indicating a high true positive
rate but a moderate rate of false positives.

Combining gene co-expression with protein interaction data into a multiview graph
model resulted in the best overall performance, with an AUC-ROC of 0.8724 ± 0.0511, accu-
racy of 0.7789 ± 0.068, F1 score of 0.8529 ± 0.0338, recall of 0.9231 ± 0.0719, and precision
of 0.8038 ± 0.0955. This integrated approach outperformed the individual graph models,
underscoring the synergistic effect of combining multiple data views for a more accurate
prediction of treatment outcomes.

5.4. Influence of Network Size on Predictive Accuracy

We evaluated the impact of network size on predictive accuracy by comparing mod-
els with varying proportions of genes, using different boruta_perc thresholds. Specifi-
cally, we assessed models at boruta_perc thresholds of 70% (Boruta-70), 80% (Boruta-80),
and 90% (Boruta-90). The Boruta-80 model showed superior performance, as detailed in
Table 6, achieving the highest AUC-ROC (0.8724 ± 0.0511), accuracy (0.7789 ± 0.068),
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F1 score (0.8529 ± 0.0338), recall (0.9231 ± 0.0719), and precision (0.8038 ± 0.0955). Con-
versely, the Boruta-70 model had lower performance, with an AUC-ROC of 0.8346 ± 0.0278,
accuracy 0.6789 ± 0.0706, F1 score 0.7619 ± 0.0892, recall 0.8000 ± 0.2266, and precision
0.7693 ± 0.0778. The Boruta-90 model, though the most selective, displayed an AUC-ROC
of 0.8256 ± 0.0262, accuracy 0.7526 ± 0.0235, F1 score 0.831 ± 0.0266, recall 0.9000 ± 0.1108,
and precision 0.7827 ± 0.0557. Overall, the Boruta-80 model, with a moderately sized gene
network, provides the optimal balance between sensitivity and specificity, leading to the
best predictive performance for evaluating the efficacy of neoadjuvant chemotherapy in
bladder cancer.

Table 6. Performance metrics of models with different network sizes.

Network Size AUC-ROC Accuracy F1 Score Recall Precision

Boruta-70 0.8346 ± 0.0278 0.6789 ± 0.0706 0.7619 ± 0.0892 0.8000 ± 0.2266 0.7693 ± 0.0778
Boruta-80 0.8724 ± 0.0511 0.7789 ± 0.068 0.8529 ± 0.0338 0.9231 ± 0.0719 0.8038 ± 0.0955
Boruta-90 0.8256 ± 0.0262 0.7526 ± 0.0235 0.831 ± 0.0266 0.9000 ± 0.1108 0.7827 ± 0.0557

Bold values indicate the highest performance metrics in each category for easy comparison.

5.5. Ablation Study on Model Architecture

Our ablation study investigated the effects of varying the number of channels and
heads in a multi-head attention mechanism on model performance. The models with 16, 32,
64, and 128 channels achieved AUC-ROCs of 0.7359, 0.8071, 0.8724, and 0.8352, respectively.
The 64-channel model had the highest accuracy at 0.7789, with the 128-channel model close
behind at 0.7211. These models exhibited different F1 scores, recall rates, and precision
values. Notably, the 32-channel model achieved the highest recall of 0.9846.

In terms of head counts, models with 2, 4, 8, and 16 heads achieved AUC-ROCs of
0.7442, 0.8224, 0.8724, and 0.8346, respectively. The 8-head model stood out with the highest
accuracy of 0.7789 and the highest F1 score of 0.8529. It also had the highest recall at 0.9231,
while the 4-head model reached the peak precision of 0.8139.

The most balanced model combined 64 hidden layer channels with 8 heads, achieving
an AUC-ROC of 0.8724, accuracy of 0.7789, F1 score of 0.8529, recall of 0.9231, and precision
of 0.8038. These results suggest that deviating from these optimal settings leads to reduced
performance. These variations are depicted in Figure 4, emphasizing the importance of a
balanced model architecture for effective predictions.
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Figure 4. Ablation study results showing the impact of different head counts and channel numbers
on model performance.

6. Discussion

This study evaluated the effectiveness of our method in predicting the responses of
bladder cancer patients to neoadjuvant therapy using transcriptomic data. The Boruta
algorithm used in this study initially identified genes linked to treatment outcomes. Our
Boruta-80 model outperformed other versions, highlighting the importance of choosing
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relevant genes for increased model precision. This aligns with Occam’s Razor, suggesting
that simpler models often generalize better while maintaining strong predictive power.
However, in the field of biomedical research, considering the complexity of biological
processes, the complexity of models is sometimes necessary [47].

We underscore the importance of integrating biological insights with network-based
ML techniques in clinical decision-making for neoadjuvant therapies. A major challenge
we faced was applying traditional machine-learning methods to complex genetic data,
which often led to issues of overfitting or underfitting [48,49]. In our experiment, de-
spite SVM exhibiting commendable precision (0.936 ± 0.0615), it may fail to accurately
identify all patients who could benefit from the treatment, therefore increasing the risk
of misdiagnosis. This concern is further demonstrated by the low recall rate of SVM
(0.5461 ± 0.3021), reflecting the potential for overlooking patients who would respond
positively to the therapy. Additionally, the clinical application of artificial intelligence in
the medical field faces challenges in terms of transparency and reproducibility [50]. Studies
in the domain of radiomics machine-learning (employing methods to analyze CT and
MRI data for disease prediction, akin to our focus on small, high-dimensional datasets
for clinical prognosis) have shown that single random train-test splits may lead to unreli-
able model performance assessments [51]. This highlights the importance of employing
cross-validation or other techniques for a more accurate evaluation of model generalization
capabilities. Against this backdrop, our proposed MVMSGAT model demonstrates more
promising results compared to traditional models. Across multiple performance metrics,
including AUC-ROC (0.8724 ± 0.0511), accuracy (0.7789 ± 0.068), F1 score (0.8529 ± 0.0338),
recall (0.9231 ± 0.0719), and precision (0.8038 ± 0.0955), MVMSGAT generally outperforms
SVM, DT, RF, GBDT, GAT, MSGAT. Incorporating biological prior knowledge provides a
significant benefit: models such as GAT, MSGAT, and MVMSGAT demonstrate smaller
standard deviations in five-fold cross-validation, suggesting more stable results. This
stability, particularly in contrast to traditional data-driven machine-learning methods, is
likely because graph-based models handle high-dimensional data more effectively and
are better at capturing complex biomarker interactions. These interactions, such as gene-
gene interactions or protein pathways, are crucial for understanding disease mechanisms.
Instead of relying solely on data-driven patterns like traditional methods, these models
integrate biological insights, potentially enhancing their analytical capabilities and yielding
more reliable and consistent results [52].

The primary goal of neoadjuvant therapies is shrinking tumor size to improve surgical
outcomes, eliminating micro-metastases to lower recurrence risk, and assessing tumor
response to specific treatments [53,54]. In this setting, the MVMSGAT model excels. Its
recall rate is the second highest among its counterparts. More importantly, it leads in
critical metrics like AUC-ROC, Accuracy, and F1 Score. This model’s overall effectiveness
ensures it accurately identifies many patients likely to benefit from treatment. It reduces
false diagnoses and ensures that all eligible patients receive the right care. This accurate
and comprehensive diagnostic capability is vital for the success of neoadjuvant therapies,
significantly affecting patient prognosis and quality of life. The effectiveness and accuracy
of the MVMSGAT model mainly come from two areas: its handling of multi-scale gene
cluster features and the integration of graph inputs from various biological perspectives
at the mRNA level. Traditional methods for graph-level prediction often use simple
readout operations, like averaging or maximizing node values, which can lead to a loss of
important structural information. The MVMSGAT model overcomes this with multi-scale
pooling and hierarchical pooling operations. These allow for data integration at different
levels of detail, preserving crucial structural information. The model’s ability to combine
gene clusters at multiple scales captures finer biological details and biomarker features.
Additionally, by specifically integrating gene co-expression networks and protein–protein
interaction networks at the mRNA level, the MVMSGAT model offers a more thorough
analysis of the biological processes involved in new adjuvant therapies. This combination
of technical advancements and focus on mRNA-level interactions greatly improves the
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model’s performance in complex biological studies. This aligns well with the goals of
neoadjuvant therapies to enhance patient outcomes.

Furthermore, the relevance of selected genes, like VCAM1, IL6R, CD46, and ATF3,
is supported by clinical research. VCAM1, a cell adhesion molecule, is upregulated in
several cancers, including bladder cancer. It plays a crucial role in tumor cell adhesion,
migration, and invasion, possibly interacting with immune cells in the tumor microenvi-
ronment [55,56]. IL6R, a cytokine receptor, regulates immune and inflammatory responses.
Its activation in bladder cancer may encourage tumor growth and progression by affect-
ing cell survival and proliferation [57–59]. CD46, regulating immune responses, shows
abnormal expression in some cancers and relates to the aggressiveness and prognosis of
bladder cancer [60]. ATF3, a stress-responsive transcription factor, is activated in various
cell stress and pathological conditions. It may regulate cellular stress responses, affecting
the survival and death of tumor cells in bladder cancer [61,62]. These insights shed light on
the complex biological processes in bladder cancer and validate the MVMSGAT model’s
ability to accurately predict patient responses to therapy.

6.1. Limitations

Although our method has demonstrated potential in predicting the efficacy of neoad-
juvant therapy for bladder cancer, it is crucial to acknowledge its limitations for a compre-
hensive understanding. A significant limitation of our study is the reliance on a relatively
small dataset, comprising only 210 samples. This size limits the statistical power of our
analysis and may not adequately represent the diversity in bladder cancer stages and sub-
types, potentially impacting the robustness and generalizability of our findings to different
patient populations. The inherent biases present in publicly available datasets, such as the
potential over-representation of certain demographic groups or under-representation of
specific bladder cancer subtypes, further exacerbate this issue. Additionally, our study’s
methodological framework, particularly regarding threshold settings, warrants careful
consideration. This includes not only the feature importance threshold established for the
dataset but also the threshold settings used in constructing the network models, which
might vary significantly across different bladder cancer datasets due to variations in clinical
characteristics and treatment responses. These thresholds, while effective within the context
of our current study, might not be directly applicable to other datasets or different stages
and subtypes of bladder cancer. This limitation is crucial as it affects both the selection
of significant features and the structure of the network models, which are integral to our
method’s performance. The specificity of these thresholds to our dataset underscores the
need for caution when extrapolating our results beyond the current study’s scope.

6.2. Future Work

In terms of future work, addressing these limitations is paramount. First, expanding
the dataset size is essential. Incorporating a larger and more diverse sample pool of bladder
cancer patients would help mitigate the biases and enhance the generalizability of our
model. This expansion would also provide a more robust foundation for validating the
feature importance and network model thresholds across various types of bladder cancer
data. Moreover, an exciting direction for future work is the integration of multi-omics
data with artificial intelligence. Multi-omics approaches, which encompass genomics,
proteomics, metabolomics, and more, offer a holistic view of the biological mechanisms
underlying bladder cancer [63,64]. Leveraging such comprehensive data can uncover
deeper insights into bladder cancer biology and potentially lead to more accurate and
personalized treatment strategies. The combination of multi-omics data and AI has the
potential to significantly advance our understanding of bladder cancer, enabling more
effective and tailored interventions [65].

In conclusion, our study introduces a new precision medicine approach for bladder
cancer treatment, combining multiview knowledge graphs with graph convolutional neu-
ral networks. This methodology has been thoroughly tested on the GEO dataset using
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a five-fold cross-validation, demonstrating excellent performance with an AUC-ROC of
0.8724 ± 0.0511, accuracy of 0.7789 ± 0.068, F1 score of 0.8529 ± 0.0338, recall of
0.9231 ± 0.0719, and precision of 0.8038 ± 0.0955. These results outperform most met-
rics of other methods and underscore the benefits of integrating graph convolutional neural
networks with biological knowledge in predicting treatment outcomes. Furthermore, the
alignment of selected genes with clinical insights confirms the reliability of our approach.
Although these findings are promising for the prediction of neoadjuvant therapy efficacy in
bladder cancer, the need for further research is evident. Future studies involving larger and
more diverse datasets, as well as the exploration of multi-omics data in conjunction with
AI, are crucial. These steps, challenging as they may be and requiring interdisciplinary
collaboration and funding, are essential to enhance the reliability and applicability of our
approach and to achieve significant advancements in personalized medicine for bladder
cancer treatment.

7. Conclusions

In our research, we introduced MVMSGAT, a new predictive model specifically de-
signed to accurately predict bladder cancer patients’ responses to neoadjuvant therapy.
Our approach began with the Boruta algorithm to identify key genes from transcriptomic
data. The central innovation of MVMSGAT is its integration of biological prior knowledge
with a multiview knowledge graph, forming a detailed and effective analytical framework.
This integration is pivotal, allowing the model to process complex biological information
efficiently, therefore significantly boosting its precision and reliability. Tested through
five-fold cross-validation on two datasets from the GEO database, encompassing a total of
210 bladder cancer cases, MVMSGAT demonstrated superior performance in most met-
rics compared to existing methods. This showcases its substantial potential in advancing
personalized treatment and precision medicine for bladder cancer. Additionally, the con-
gruence of the selected genes with clinical insights underlines the model’s applicability and
relevance in the context of bladder cancer therapy.
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pCR pathological complete response
HCC Hepatocellular Carcinoma
GEO Gene Expression Omnibus
MZSA Maximum Z score among shadow attributes
PPI Protein–Protein Interaction
CR Complete Response
PR Partial Response
SD Stable Disease
PD Progressive Disease
DT Decision Trees
RF Random Forest
GBDT Gradient Boosting Decision Trees
GAT Graph Attention Networks
MSGAT Multi-Scale Graph Attention Networks
MVMSGAT Multiview Multi-Scale Graph Attention Networks
VCAM1 Vascular Cell Adhesion Molecule 1
IL6R Interleukin 6 Receptor
ATF3 Activating Transcription Factor 3
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41. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
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