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Abstract: Aiming to serve as a preliminary study for South Korea’s national GHG emission factor
development, this study reviewed data treatment and sample size determination approaches to estab-
lishing the destruction and removal efficiency (DRE) of the semiconductor and display industry. We
used field-measured DRE data to identify the optimal sample size that can secure representativeness
by employing the coefficient of variation and stratified sampling. Although outlier removal is often a
key process in the development of field-based coefficients, it has been underexplored how different
outlier treatment options could be useful when data availability is limited. In our analysis, three
possible outlier treatment cases were considered: no treatment (using data with outliers as they are)
(Case 1), outlier removal (Case 2), and adjustment of outliers to extreme values (Case 3). The results
of the sample size calculation showed that a minimum of 17 and a maximum of 337 data (out of a
total of 2968 scrubbers) were required for determining a CF4 gas factor and that a minimum of 3 and
a maximum of 45 data (out of a total of 2917 scrubbers) were required for determining a CHF3 gas
factor. Our findings suggest that (a) outlier treatment can be useful when the coefficient of variation
lacks information from relevant data, and (b) the CV method with outlier adjustment (Case 3) can
provide the closest result to the sample size resulting from the stratified sampling method with
relevant characteristics considered.

Keywords: greenhouse gas; semiconductor and display industry; destruction or removal efficiency
(DRE); sample size

1. Introduction

In October 2020, South Korea declared to achieve carbon neutrality by 2050. In
December 2021, the country submitted a strengthened nationally determined contribution
to greenhouse gas (GHG) reduction (40% reduction from the total GHG emissions of
727.6 million tons CO2eq in 2018 by 2030) to the United Nations Framework Convention on
Climate Change in response to the Paris Agreement. In March 2023, the Korean government
released the First National Carbon Neutrality and Green Growth Master Plan (Government
Draft), which details specific sectoral and annual GHG reduction targets to be achieved
by 2030 [1].

The industrial sector is one of the major greenhouse gas emitters in South Korea, with
the semiconductor and display industry being a significant contributor. The semiconductor
and display industry generates GHGs primarily via the use of electricity and fluorinated
GHGs in etching and deposition processes. As of 2020, greenhouse gas emissions from
the semiconductor and display industry amounted to approximately 20 million tons of
CO2eq, and this emission trend has been on the rise due to the increasing demand for
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semiconductors and technological advancements [2]. In response, Korean semiconductor
and display industries are making various efforts to reduce GHG emissions, one of which
was the launch of a public–private partnership called the Semiconductor and Display
Carbon Neutrality Committee [3].

In South Korea, the estimation of GHG emissions from the semiconductor and display
industry relies on Tier 2a and 2b methods proposed in the Intergovernmental Panel on
Climate Change (IPCC) guidelines and the IPCC default values. Among the parameters
for calculating GHG emissions, the volume fraction of gas and the residual percentage of
gas in Bombe are applied to the data of the business site when available. The IPCC default
values are applied if there is no data available at the business site [4–6].

In the context of our study, destruction and removal efficiency (DRE) refers to the
efficiency of scrubbers in reducing greenhouse gas emissions in the semiconductor and
display industry. The IPCC coefficient for each type of greenhouse gas is averaged over
the characteristics of the target scrubber. The IPCC guidelines recommend using country-
specific values to calculate GHG emissions as a way to improve inventory reliability.
However, South Korea is currently using the IPCC default values for the sector’s DRE due
to the absence of country-specific estimates.

In the case of South Korea, only a limited number of business sites calculate GHG
emissions by applying the values estimated by themselves. To improve the reliability
of the GHG inventories, it is ideal to develop national GHG emission factors based on
an exhaustive survey of on-site data. However, conducting a comprehensive survey
for all business sites is practically infeasible due to physical and time constraints. The
determination of a reliable DRE for each type of GHG with limited data requires rigorous
statistical approaches to optimizing the sample size and treating outliers effectively. This
is especially the case for semiconductor and display industries, considering that there are
various types of GHGs (about 11 types, including PFCs and HFCs) and a large number of
scrubbers (more than 3000).

Aiming as a preliminary study for the development of South Korea’s national GHG
emission factors, the present study explores different approaches to determining the optimal
number of samples and processing them so the sampled data can be representative of the
population. To this end, we review sampling methods, examine data processing approaches,
and evaluate the applicability of each case.

2. Review of Sampling Methods

Developing the national emission factors typically involves a comprehensive survey,
which is the best method, but can be time-consuming and costly. An alternative approach
to address these problems is to collect a representative sample. A sample is an actual mea-
surement obtained from a population, a set of units extracted from a sampling frame, and a
subset of the population. A sample must resemble the population to enable the estimation
of the parameter that is a characteristic of the population. A study with an underestimated
sample size will not have sufficient power, rendering the results of the study unreliable.
On the other hand, an overestimated sample size makes it challenging to prove the signifi-
cance of the results even though the results may have substantial power. Calculating the
sample size, therefore, requires various pieces of information to be considered, including
the effective sample size, significance level, power, and variability, which are considered
parameters [7–11]. Using parameter estimates in sample size calculation requires introduc-
ing uncertainty into the sample size itself. Therefore, in this study, we investigated various
possible ways to extract a sample and proceeded with the most suitable method.

2.1. Sample Size Determination through Stratified Sampling

Among different sampling methods, the probability sampling method allows the gen-
eralization of analysis results through random sampling [12–14]. Stratified sampling is one
type of probability sampling methods. The stratified sampling method has the advantage of
increasing the representativeness of the sample through stratification, facilitating its popu-
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lation representativeness and the identification of the characteristics via stratum. However,
the downside of having prior knowledge of the population is that more information is
required for stratification, and if the stratification is too complex or erroneous, sampling
errors can increase [15–17]. The stratified sampling method distributes the sample in four
ways, which are detailed in Table 1.

Table 1. Stratified Sampling Methods.

Stratified Sampling
Methods Details

Neyman Allocation An allocation method that minimizes the variance of the estimate for a total cost,
assuming that the sampling cost per unit extracted from each stratum is equal

Proportional
Allocation A method for allocating samples proportional to size in each stratum

Post-stratification Methods A methodology for using auxiliary variables ex post facto to improve sample size consistency

Optimal Allocation A method for considering the cost per unit and total cost of sampling from each stratum and
minimizing the variance of the estimate

2.2. Sample Size Determination through Cluster Sampling

Cluster sampling involves classifying a population into several small groups (clus-
ters), randomly selecting a predetermined number of small groups from the clusters, and
sampling from the selected groups through simple random sampling. Because cluster
sampling does not sample all clusters but only a subset of them, there is a risk of selecting
a biased sample if the clusters are internally homogeneous. In cluster sampling, for this
reason, clusters must be heterogeneous within and homogeneous across clusters, unlike
stratified sampling [18–20].

When organizing clusters, the size of each cluster should be as similar as possible to
ensure that the size of the cluster is set at an appropriate level for control, and consideration
should be given to reducing the on-site survey time and cost. This can be achieved by
selecting a small number of clusters and taking many samples from each or selecting a large
number of clusters and taking a few samples from each. The choice between these two
depends on which method is more efficient in terms of the survey time and cost. Cluster
sampling divides the population into multiple clusters and extracts the required number
of clusters through simple random sampling. These selected clusters are then used as a
procedure to construct a sample from the elements within the extracted clusters.

Yang (2022) conducted a study responding to the heightened demand for the analysis
of sensor multivariate data in manufacturing settings driven by advancements in sensor
technology. The research involved performing hierarchical clustering analysis based on
distance correlation coefficients using process data that included binary outcomes, such
as pass/fail decisions. The primary objective was to investigate the potential indepen-
dence among independent variables by grouping sensors exhibiting high correlation into a
unified entity [21]. Qing et al. (2021) delved into the challenges of estimating population
parameters for various ecological indicators, such as forest area, productivity, and biodi-
versity, within forest ecosystems. To enhance the precision of these estimations, the study
explored the utility of generalized systematic adaptive cluster sampling as a remedy to the
limitations associated with systematic adaptive cluster sampling. The research aimed to
improve the accuracy of estimating population parameters for diverse ecological metrics in
forest ecosystems [22].

2.3. Using the Coefficient of Variation for Sample Size Determination

If some relevant information about the population is known, a sample can be extracted
using confidence levels, margins of error, and coefficients of variation. The Korea Energy
Agency (KEA) introduced a sampling method using a coefficient of variation (CV) in
their “M&V Guidelines for Calculating Energy Savings for Equipment Replacement.”
The sampling procedure recommended by KEA is summarized in Table 2. If previously
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measured information is available on the population, the CV can be calculated, and if there
is no prior information on the population, the CV can be arbitrarily assigned to 0.5 [23–25].

Table 2. Procedure for determining the sample size with CVs of variation and required materials.

Methods Details

Determining the confidence level and error level M&V Guidelines recommend 90% ± 10%
For general polls and statistical surveys, 95% confidence level

Defining the standard error
(CV definition)

If the population is uninformed, maximum variance is assumed
(the CV is often used)

Preliminary survey or past information is used

Determining the initial sample size Calculates the sample size with a formula for determining the sample
size based on the error for a given confidence interval

Correcting the sample size of finite populations Corrects the sample size for finite populations
→ when N/n0 (=1/f) is less than 20

Marcos et al. (2017) utilized the CV method to establish an optimal sample size,
ensuring the representativeness and validity of the research outcomes before embarking
on experiments to estimate characteristics of four Crotalaria species [26]. Andre et al.
(2021) conducted experiments to investigate the characteristics of cassava under different
nursery conditions, estimating the appropriate sample size for the experiment through the
assessment of the CV [27].

3. Target Gas Selection and Data Collection

DREs in the semiconductor display industry cover a wide range of F-gases. This
study utilized ground truth Tier 3 DRE data to calculate the number of samples. In the
case of South Korea, a Tier 3 factor must be developed for facilities that emit more than
500,000 tons CO2eq of GHGs; Tier 3 refers to a factor developed through an appropriate
process test method by the business site. In the semiconductor and display industry, some
companies have developed and applied DRE as Tier 3 based on actual measurements,
and the values reported by them are considered reliable because they are verified by the
governing body and supervisory body [28]. Therefore, this study was conducted based on
the data obtained from the national organizations in charge of this field-measured material.

Because the sample size in this study considers the distribution of existing measure-
ments, the sample size was determined for CF4 and CHF3—two gases that are frequently
used in the semiconductor and display industry. Table 3 shows the total sample size of the
targeted F-gases and their sampling period.

Table 3. Collected Tier 3 DRE data content.

Target Gases Sample Sampling Period

CF4 44
2020–2021CHF3 39

4. Data Processing and Sample Size Determination Methods
4.1. Data Processing Methods

When determining the sample size, it is important to consider outliers, especially
when calculating measurements or representative values. In particular, when it comes to
the development of national GHG emission factors, outliers should be carefully examined
as they can be underestimated or overestimated [29,30]. Careful examination of outliers is
imperative, especially in the absence of detailed information concerning them. This study
reviews the data processing methods commonly used in previous studies on inventory
development and applies various ways of outlier handling to determine the appropriate
sample size.
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Extreme values should be identified before assuming the presence of outliers. Al-
though several methods are available to identify extreme values, the interquartile range
(IQR) method is the most popular one among them and has been used in related research.
IQR identifies extreme values and finds outliers via a box-and-whisker plot, which is one
of the summary methods that integrate multiple information into one figure using several
measurements, such as the position of the center and degree of scatter [31,32].

From the box-and-whisker plot, you can identify most outliers in the data values in
addition to the symmetry of the distribution, center of the data, degree of dispersion, and
concentration of the tail of the distribution. Box-and-whisker plots are primarily built
around interquartile values. A square box is drawn around 50% of the data at the center of
the size-ordered data set, and lines of appropriate length are drawn and connected to the
left and right (or below and above) of the box to represent the ranges of 25% of the data
with smaller values and 25% of the data with larger values, respectively.

The process of IQR is as follows: First, determine the interquartile values
(Q1, Q2(= median) , Q3). Second, connect Q1 and Q3 to a square box and draw a ver-
tical line at the position of the median (Q2). Third, compute IQR = Q3 − Q1. Fourth,
bound the box with a size range 1.5 × IQR at each end and connect the minimum and
maximum values within this range with lines from Q1 and Q3, respectively. Finally, indicate
the data values that fall outside the two boundaries and determine these points as extreme
values. A graphical representation of the above process is shown in Figure 1.
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There are different ways to handle outliers. First, you can choose to eliminate outliers
to remove their influence. However, it has the disadvantage of reducing the overall number
of data. Another way is to winsorize outliers. This method adjusts all values above
and below the threshold set with the extreme upper and lower limits. The winsorizing
method is less sensitive to outlier values because it can replace them with less extreme
values [33,34]. Although estimation using winsorization introduces bias (the difference
between the expected value of the estimate and the true value of the parameter), it has the
advantage of reducing variance, making it more likely to be used for random sampling.
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We calculated and examined the sample size for CV, based on the following three
treatment optionss: using the existing data as they are (Case 1), of removing outliers
(Case 2), and of adjusting outliers to extreme values (Case 3).

4.2. Sample Size Determination Methods

Here, sample size determination methods used for developing the national greenhouse
gas emission factors were evaluated, including the Neyman allocation method, which is a
stratified sampling method, and sample size determination method, which is based on the
coefficient of variation (CV) used by the International Organization for Standardization
(ISO) and Korean national organizations.

n =

(
∑L

i=1 NiSh

)2

N2D + ∑L
i=1 NiS2

h

(1)

Here,
n: Total number of sample business sites
N: Number of population business sites
S: Standard deviation per stratum
h: Subscript for strata (energy sources and facilities)
D: ( B

NZa/2
)2

B: Margin of error
za/2:The value of a standard normal distribution with a confidence level of (1 − α)

(with a 95% confidence level, this would be approximately 1.96).
In the method of determining the sample size using the CV, the sample size is first

calculated based on the CV of the existing measured data, and the method is based on the
assumption that the CV of the existing measured data is known. This method suggests
that a figure of 0.5 can be utilized when there is no prior information about the target.
However, in this method, having information on the existing population helps to determine
the sample size of the population more accurately. The method for determining the sample
size using the CV is shown in Equation (2).

n0 =
Z2

α/2 × CV2

e2 (2)

Here,
n0: Initial sample size
CV: Coefficient of variation
e: Precision
za/2: (1 − α) Confidence coefficient below 100% confidence level
If N/n < 20, correct according to Equation (3).

n =
n0 × N
n0 + N

(3)

Here,
n: Sample size
N: Total population size
In this study, we approached the sample size determination from two perspectives.

Concerning the CV method, the CV information available on the existing measurement
data was sufficient to calculate the sample size; hence, we chose this method, assuming
that the relevant information is unknown. Additionally, in this method, we considered
details about outlier handling. This method requires careful examination, especially when
there is no prior information; therefore, we handled outliers under the assumption that
there was no prior information and then reviewed the suitability of outlier handling based
on prior information for validation.
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For stratified sampling, there must be information about the data to be stratified so that
the relevant data must be identifiable. In the case of stratified sampling, stratification was
performed using the data related to scrubber types that can be obtained further in this study.
For this study, technical information on scrubbers was obtained by surveying companies
that use the gas and requesting data from relevant organizations. Because there was some
prior information in this case and the number of data reduced considerably when divided
into scrubber types, it is suggested that there would be difficulties in interpreting the results
to apply the outlier handling method. Hence, the relevant part was not considered.

5. Results and Discussion
5.1. Results of Outlier Handling and Sample Size Determination Using Coefficient of
Variation (CV)

This study used the CV to determine the target sample size for the Tier 3 DRE data
in the semiconductor and display industry. The underlying assumptions were as follows.
To determine the sample size using the CV, the significance and confidence levels need
to be determined. For the significance level, a conservative 1% level was chosen for this
study, rather than the typical 10% applied in general surveys. As for the confidence level,
it was based on the most commonly used 95% confidence level. For outliers, we used
IQR to find the extreme values and then calculated the sample size with no handling of
outliers (Case 1), with outliers removed (Case 2), and with outliers adjusted to extreme
values (Case 3).

5.1.1. Outlier Handling and Sample Size Determination for CF4 Tier 3 DRE Data

For CF4 gas, 44 Tier 3 DRE data were used, and the sample size was determined after
handling outliers in each case (Table 4). The value corresponding to the third quartile (Q3)
of the CF4 gas DRE values was found to be 0.969, while the value corresponding to the first
quartile (Q1) was found to be 0.924. IQR for Q3 minus Q1 was found to be 0.046, while
the figure considering 1.5 times the IQR was found to be 0.069. Taking these values into
account, the DRE values for CF4 gas were determined as outliers if they were higher than
1.039 or lower than 0.856.

Table 4. Resources for handling outliers in CF4 Tier 3 DREs.

Classification Value

Q3(75th Percentile) 0.969
Q1(25th Percentile) 0.924

IQR 0.046
IQR × 1.5 0.069

Maximum(Q3 + 1.5 × IQR) 1.039
Minimum(Q1 − 1.5 × IQR) 0.856

The results of the Tier 3 DRE values for CF4 gas according to the case of outlier
handling are shown in Table 5. In Case 1, where existing data were used, the mean was
0.921, which is the lowest among all the three cases, and the standard deviation was the
highest. In Case 2, where outliers were removed, the sample size decreased by eight
compared to the original; here, the mean was 0.961, which is the highest, while the standard
deviation was 0.020, which is the lowest. In Case 3, where outliers were adjusted to extreme
values, the mean and standard deviation values were at intermediate levels for Case 1
and Case 2.

For validation, we checked the characteristics of the handled outliers. The character-
istic information of the current data is scrubber, and all eight of the handled outliers had
burn-type attributes. Therefore, we checked the difference in outliers by including only
burn-type scrubbers in the CF4 Tier 3 DRE values (Table 6).
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Table 5. DRE values for CF4 gas based on outlier cases.

Classification Case 1 Case 2 Case 3

Sample 44 36 44
Mean 0.921 0.961 0.94

SD 0.092 0.02 0.04

Table 6. Requirements for handling outliers in the Burn scrubber Tier 3 DRE during CF4.

Classification Value

Q3(75th Percentile) 0.938
Q1(25th Percentile) 0.775

IQR 0.163
IQR × 1.5 0.244

Maximum(Q3 + 1.5 × IQR) 1.182
Minimum(Q1 − 1.5 × IQR) 0.531

For the CF4 gas DRE values, Q3 was found to be 0.938, while Q1 was 0.775 when
including only the burn-type scrubbers. IQR for Q3 minus Q1 was 0.163, while the figure
considering 1.5 times the IQR was 0.244. Based on these values, the DRE values for burn-
type scrubbers in CF4 gas were considered as outliers if they exceeded 1.182 or were less
than 0.531.

After applying the outlier criteria to review the DRE values obtained for the burn-type
scrubber, it was found that none of the values met the outlier criteria. The mean value of the
CF4 burn-type DREs was 0.843 (which is lower than the overall mean value of CF4 DREs),
and their standard deviation was relatively large at 0.115 (which is within the characteristic
range of CF4 burn type). This result indicates that there were no outliers that were handled.
It also suggests that differences may occur depending on the presence of information about
the scrubber type when processing DRE data. Due to the limitations existing in collecting
relevant information from the perspective of data processing, we assume that there is
no prior information on the relevant data and determine the sample size based on data
processing and CV distribution.

Based on the outlier criteria, the sample size of CF4 DREs was determined using
CV values, and the results are shown in Table 7. Based on the outlier criteria, the sam-
ple size was 337 for Case 1, 17 for Case 2, and 85 for Case 3. These results show that
Cases 2 and 3 had relatively smaller sample sizes compared to Case 1, as outliers were
treated and adjusted.

Table 7. Sample size for CF4 DRE development considering outlier cases and CVs.

Classification Case 1 Case 2 Case 3

CV 0.10 0.02 0.05
Z score

(95% confidence interval) 1.96 1.96 1.96

Error level 1% 1% 1%
Estimated number of sample 337 17 85

5.1.2. Outlier Handling and Sample Size Calculation for CHF3 Tier 3 DRE Data

For CHF3 gas, 39 Tier 3 DREs were used, and the sample size was determined after
handling outliers in each case (Table 8). The value corresponding to Q3 of the CHF3 gas
DRE values was found to be 0.999, while the value corresponding to Q1 was 0.987. IQR for
Q3 minus Q1 was found to be 0.013, while the figure considering 1.5 times the IQR was
found to be 0.019. Considering these values, the DRE values for CHF3 gas were judged to
be outliers if they were higher than 1.019 or lower than 0.967.
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Table 8. Resources for handling outliers in CHF3 Tier 3 DREs.

Classification Value

Q3(75th Percentile) 0.999
Q1(25th Percentile) 0.987

IQR 0.013
IQR × 1.5 0.019

Maximum(Q3 + 1.5 × IQR) 1.019
Minimum(Q1 − 1.5 × IQR) 0.967

Results of the Tier 3 DRE values for CHF3 gas based on the case with outlier handling
are shown in Table 9. Case 1, which used existing data, had the lowest mean of 0.985 and
the largest standard deviation. Case 2, which removed the outliers, had five fewer samples
than before; here, the obtained mean was the highest among all three cases (0.995), and
the standard deviation was the lowest (0.008). Case 3, which adjusted outliers to extreme
values, had mean (0.993) and standard deviation (0.012) values that are in between those
obtained for Case 1 and Case 2.

Table 9. DRE value for CHF3 gas according to the outlier case.

Classification Case 1 Case 2 Case 3

Sample 39 34 39
Mean 0.985 0.995 0.993

SD 0.033 0.008 0.012

For CHF3, we also checked the characteristics of the handled outliers for valida-
tion purposes. The characteristic information of the current data is scrubber, and in the
case of CHF3, all five of the handled outliers had burn-type attributes. Therefore, we
checked the difference between outliers in the CHF3 Tier 3 DRE values by only including
burn-type scrubbers.

Of the CHF3 gas DRE values, Q3 was found to be 0.99, and Q1 was found to be 0.954
when only the burn-type scrubber was considered. IQR for Q3 minus Q1 was found to be
0.046, while the figure considering 1.5 times the IQR was found to be 0.069. Considering
these values, for CHF3 gases, the burn-type DRE values above 1.068 or below 0.089 were
judged as outliers.

When reviewing the DRE values for the burn type using the outlier criteria, two values
were found to be outliers, which were lower than the four outliers obtained for CHF3
(Table 10). This is because the mean of the burn-type scrubber for CHF3 was 0.967, and
the standard deviation was 0.051, which is relatively not much larger than the standard
deviation of the burn type for CF4, so the DRE values for CHF3 were found to include
some outliers as well. However, even in this case, the criteria for handling outliers can vary
depending on whether the scrubber has information or not, indicating that much attention
is needed to handle outliers. Thus, we believe that relatively more information is needed to
handle outliers in F-gas.

Table 10. Requirements for handling outliers in the Burn scrubber Tier 3 DRE during CHF3.

Classification Value

Q3(75th Percentile) 0.999
Q1(25th Percentile) 0.954

IQR 0.046
IQR × 1.5 0.069

Maximum(Q3 + 1.5 × IQR) 1.068
Minimum(Q1 − 1.5 × IQR) 0.089
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To determine the sample size for the CHF3 DRE development, CV values based on
the outlier criteria were used, and the results are presented in Table 11. According to the
outlier criteria, the sample size calculated was 45 for Case 1, 3 for Case 2, and 6 for Case 3.
These results show that Cases 2 and 3 had relatively smaller sample sizes than Case 1, as
outliers were treated and adjusted. For CHF3 DRE, the required sample size is lower than
that required for CF4 DRE because CHF3 data are more homogeneously distributed than
CF4 data, as seen in the outlier handling process.

Table 11. The sample size for CHF3 DRE development considering outlier cases and CVs.

Classification Case 1 Case 2 Case 3

CV 0.008 0.02 0.05
Z score

(95% confidence interval) 1.96 1.96 1.96

Error level 1% 1% 1%
Estimated number of sample 45 3 6

5.2. Sample Size Calculation Using the Neyman Allocation Method

Among the various stratified sampling methods, the number of DRE samples was
determined according to Neyman allocation, assuming that there is sufficient relevant
information for stratification. Because the data available for this study are scrubber type,
the sample size for developing DRE for CF4 and CHF3 gases was determined by considering
the scrubber type and total population count.

5.2.1. Sample Size Calculation for CF4 Tier 3 DRE Using the Neyman Allocation Method

In this study, the total number of scrubbers required for the Tier 3 development of
target gas was obtained to confirm the information related to the population. The number
of CF4 scrubbers, considering scrubber types, is presented in the following Table 12.

Table 12. Number of scrubbers by scrubber type for DRE development in CF4.

Classification Scrubber

Burn 420
Plasma 2546
Catalyst 2

Total 2968

To stratify and calculate the sample size using Neyman allocation, information regard-
ing the standard deviation for the characteristic of the substance in each stratum is required
in addition to the stratum population. Because the purpose of this study was to identify
the sample size for developing the DRE values, the mean and standard deviation of Tier 3
DRE for CF4 gas by scrubber type were determined and presented in Table 13.

Table 13. Tier 3 DRE mean and standard deviation by scrubber type in CF4.

Classification Burn Plasma Catalyst

Mean 0.768 0.970 0.945
SD 0.115 0.008 0.032

The results of DRE calculations by scrubber type indicate that the plasma type had the
highest value at 0.970, followed by the catalytic type at 0.945, and the burn type had the
lowest value at 0.768, along with the largest standard deviation.

The calculation of the sample size using Neyman allocation considered the same
error level (1%) and confidence level (95% confidence interval) as the previous method of
calculating the sample size using CV. The sample size was calculated according to Neyman
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allocation considering the characteristics (standard deviation) of the strata, and the sample
size per stratum is shown in Table 14 considering the proportion of the population in each
stratum. After calculating the sample size, it was found that a total of 21 samples were
required for the development of CF4 DRE, with two burn types, 18 plasma types, and one
catalyst type by stratum.

Table 14. Number of samples per scrubber type for CF4 DRE development considering the Neumann
distribution method.

Classification Population Estimated Number of Samples

Burn 420 2
Plasma 2546 18
Catalyst 2 1

Total 2968 21

5.2.2. Sample Size Calculation for CHF3 Tier 3 DRE Using the Neyman Allocation Method

In this study, the total number of scrubbers required for the Tier 3 development of
target gases was obtained to confirm the information related to the population. The number
of CHF3 scrubbers, considering scrubber types, is presented in the following Table 15.

Table 15. Number of scrubbers per scrubber type for DRE development in CHF3.

Classification Scrubber

Burn 369
Plasma 2546
Catalyst 2

Total 2917

For CHF3, the standard deviation is also required to understand the stratum character-
istics. Therefore, the mean and standard deviation of Tier 3 DRE for CHF3 gas by scrubber
type were calculated and presented in the table.

The results of the DRE calculations by scrubber type for CHF3 show that the plasma
type had the highest value at 0.996, followed by the catalytic type at 0.986, and the burn
type had the lowest value at 0.967, along with the highest standard deviation (Table 16).

Table 16. Tier 3 DRE mean and standard deviation by scrubber type in CHF3.

Classification Burn Plasma Catalyst

Mean 0.967 0.996 0.986
SD 0.052 0.007 0.012

In the case of CHF3, the determination of the sample size using Neyman allocation
considered the same error level (1%) and confidence level (95% confidence interval) as the
previous method of estimating the sample size using CV. The sample size was calculated
according to Neyman allocation considering the characteristics (standard deviation) of the
strata, and the sample size per stratum is shown in Table 17 considering the proportion
of the population in each stratum. The sample size determination revealed that a total of
six samples were required to develop a DRE for CHF3, with one burn type, four plasma
types, and one catalyst type per layer.
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Table 17. Number of samples per scrubber type for CHF3 DRE development considering the
Neumann distribution method.

Classification Population Estimated Number of Sample

Burn 369 1
Plasma 2546 4
Catalyst 2 1

Total 2917 6

5.3. Comparison of Sample Sizes Based on Determination Methods and Criteria

To consider various conditions, the sample size in this study was determined using
two methodologies: CV, which can be used only when the measured value information
for the measured object is known, and Neyman allocation, which can be used when there
is enough information to divide the strata. In the CV method, details related to data
processing must be considered when there is no prior information, so we considered the
data processing case as well. The target gases are CF4 and CHF3, which are F-gases used in
the semiconductor and display industry.

Table 18 shows a comparison of sample sizes by method of determination. It was found
that to develop the DRE of CF4 gas, the CV method, which uses existing data as they are
without handling outliers, required a sample size of 337. Case 3 required 85 samples, while
the Neyman allocation method required 21 samples and 17 samples for Case 2. For CHF3,
we found that Case 1 required the highest sample size of forty-five, followed by Case 3 in
the CV method and the Neyman allocation method, which both required six samples, while
Case 2 required the lowest with three samples, similar to CF4. These findings indicate that
outlier removal considerably reduces the variance between measurements, suggesting that
a smaller sample is needed overall. However, caution should be exercised when removing
outliers, as valid data should not be removed inadvertently. For Case 3, CHF3 is similar to
the sample size by Neyman allocation, and for CF4, the sample size determined by Neyman
allocation is less than Case 3 but larger than Case 2. Therefore, adjusting outliers to extreme
values might be a better approach than their complete removal when processing data.

Table 18. Sample size for CHF3 DRE development considering outlier cases and CVs.

Classification
CV Method Neyman Alloction

MethodCase 1 Case 2 Case 3

CF4 337 17 85 21
CHF3 45 3 6 6

6. Conclusions

As preliminary research for developing Korea’s national DREs in the semiconductor
and display industry, the present study aimed to review different determination methods
for sample size and data processing. To this end, we examined different sample size
calculation methods and selected two methods. For analysis, measurement-based DRE data
were obtained for CF4 and CHF3, which are the two gases utilized in the semiconductor
and display industry, and were used to calculate the minimum and maximum sample
sizes. Some of the previous studies employed the CV method to develop Korea’s national
GHG emission factors whereas others applied the stratified sampling method. In this
study, we employed both methods. The CV method can be considered for many situations;
for example, when prior information is unknown, we can apply different ways to handle
outliers. In our study, the treatment of outliers was examined in three different ways—using
the existing data as they are (Case 1), removing outliers (Case 2), and adjusting outliers to
extreme values (Case 3)—because the choice of outlier handling method can influence the
results of sample size calculations.
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Depending on the determination method applied, we obtained different optimal
sample sizes as follows. For the development of CF4 gas DRE, it turned out that a minimum
of 17 and a maximum of 337 data points needed to be collected out of a total of 2968 scrubber
data. For CHF3, a minimum of three and a maximum of 45 data points were required
out of a total of 2917 scrubber data. The number of samples calculated by the Neumann
distribution method, which reflects the scrubber characteristics of the sample, was close
to the result of Case 3. In this regard, using a CV and adjusting the outliers (Case 3) can
be one of the most feasible ways to reflect the scrubber characteristics when there is no
detailed information about the business site.

For CF4 and CHF3 gas DREs, plasma-type scrubbers were found to be outliers due
to the large variation exhibited by them in the data. As there are limited data that can
be removed as outliers on an individual plasma-type basis, eliminating outliers could be
challenging in applying a CV to calculate the sample size. When outliers were adjusted to
extreme values, the sample size characterizing the scrubber was equal to or slightly higher
than the result of outlier removal, indicating that the Case 3 method is likely to be more
reliable than removing outliers when they must be handled. It is also regarded that the
scrubber type needs to be considered when developing DRE factors for the semiconductor
and display industry. This is because the DRE for this industry currently provided by the
IPCC is offered only in an overall mean value without consideration of scrubber type.

It is important to note the limitations of this study. Due to the lack of prior information,
we could consider only the scrubber characteristics in our analysis. Also, it will be important
in future work to examine the validation methodology beyond the sample size calculation.
We believe these limitations can be addressed in a future study with a larger sample size
and more empirical data.

Nevertheless, the findings of our study offer important contributions. The results
relating to scrubber types highlight the errors that can be introduced by other methods
that currently do not take scrubber types into account. In particular, some scrubber types
including burn-, heat-, and plasma-type scrubbers can be seen as outliers when compared
to the overall average. In this respect, the present study demonstrates the need to consider
scrubber type in the development of gas-specific national DREs. The development of a
representative national DRE can be further strengthened by applying a validation method
to the calculated sample size and a relevant methodology for the various gases utilized in
the semiconductor and display industry.
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