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Abstract: Leveraging natural language processing models using a large volume of text data in the
construction safety domain offers a unique opportunity to improve understanding of safety accidents
and the ability to learn from them. However, little effort has been made to date in regard to utilizing
large language models for the prediction of accident types that can help to prevent and manage
potential accidents. This research aims to develop a model for predicting the six types of accidents
(caught-in-between, cuts, falls, struck-by, trips, and others) by employing transfer learning with a
fine-tuned generative pre-trained transformer (GPT). Additionally, to enhance the interpretability of
the fine-tuned GPT model, a method for saliency visualization of input text was developed to identify
words that significantly impact prediction results. The models were evaluated using a comprehensive
dataset comprising 15,000 actual accident records. The results indicate that the suggested model
for detecting the six accident types achieves 82% accuracy. Furthermore, it was observed that the
proposed saliency visualization method can identify accident precursors from unstructured free-text
data of construction accident reports. These results highlight the advancement of the generalization
performance of large language processing-based accident prediction models, thereby proactively
preventing construction accidents.

Keywords: large language model; generative pre-trained transformer; fine-tuning; accident
prediction; saliency visualization; construction safety

1. Introduction

An unprecedented volume of digital data, approximately 330 million terabytes daily,
is now available [1]. Looking ahead to the next two years leading up to 2025, the global
production of data is projected to soar beyond 181 zettabytes [2]. A significant portion of
this data exists in unstructured forms, encompassing text, images, and videos, making up
an estimated 80% of the total [3]. This surge in data presents the challenge of information
overload, where the sheer volume surpasses the capabilities for effective processing and
analysis [4]. This issue is particularly pronounced for unstructured free-text data, which
traditionally relies on human intervention to extract meaningful insights [5]. Therefore, the
development of automated techniques for processing natural language text is becoming
increasingly vital.

The construction sector is also witnessing a data surge and an increasing emphasis
on leveraging written text, particularly within the domain of construction safety through
digital accident reports [6,7]. The ability to learn from past accidents, incidents, and near
misses holds paramount importance in preventing future injuries [6,8–10]. Safety reports,
in particular, serve as invaluable resources for safety managers, providing insights into the
conditions and events that lead to accidents. This information is crucial for implementing
interventions and ensuring positive safety outcomes. Traditionally, all construction-related
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disasters, including accidents, incidents, and near-misses, have been documented in safety
reports using unstructured or semi-structured free-text formats. These reports encompass
event descriptions, timing information, and location details [11,12]. However, analyzing
accident report data is often laborious and time-consuming, demanding profound un-
derstanding of safety to extract meaningful insights [11,13]. The conventional approach
involves the manual classification of accident cases, typically undertaken by safety pro-
fessionals [11,14]. This method requires a meticulous review of detailed textual accident
reports to categorize accidents based on various accident-related attributes. Furthermore,
beyond consuming substantial resources, manual classification is susceptible to human
bias and errors, potentially leading to incomplete or inaccurate analyses.

The advancements in artificial intelligence (AI) now allow for the automated process-
ing, organization, and handling of free-text data, streamlining this analytical process [15].
Specifically, text rule-based, machine, and deep learning approaches have been showing
potential in predicting anticipated danger and enhancing the understanding of accident
causation. For instance, Zhang et al. [16] developed models aimed at classifying 11 causes
of accidents, such as instances of being caught-in-between objects, the collapse of objects,
electrocution, exposure to chemical substances, among others, utilizing accident report
data and machine learning algorithms. The results of their study demonstrated the average
F1 score for 11 causes of accidents was 0.68, showcasing the effectiveness of their proposed
ensemble model with optimized weights. Separately, Baker et al. [17] developed machine
learning models (e.g., random forest, extreme gradient boosting, and linear support vector
machine) to predict four safety outcomes, such as injury severity, injury type, the body part
impacted, and accident type. The results showed 84.84% in F1 scores for severity prediction.
These studies underscore the significance of leveraging advanced modeling techniques to
gain insights into the diverse factors contributing to accidents and improve safety measures.
Nevertheless, previous research in this domain has primarily concentrated on the devel-
opment of traditional machine and deep learning methods. These methods involve the
manual extraction of text features, which are subsequently fed into a classifier [11]. These
approaches contain several inherent limitations such as limited scalability/generalization,
difficulty in analyzing free-from text, high dimensionality, and limited adaptability to
new tasks. Although traditional machine/deep learning-based approaches have made
significant strides in the natural language processing (NLP) of the construction domain,
such limitations must be mitigated by incorporating more generative and powerful AI
models [18].

Recently, large language models (LLMs), particularly those built on the transformer
architecture, such as the generative pre-trained transformer (GPT), present notable advan-
tages for classification tasks compared to traditional machine learning and deep learning
models [19,20]. The transformer’s ability to capture contextual information, employ end-to-
end learning without manual feature engineering, utilize attention mechanisms for distinct
understanding, and leverage transfer learning for improved performance make it well-
suited for tasks that require a comprehension of accident-related text data [21]. Additionally,
its adaptability to varied input lengths, multimodal capabilities, and efficient parallelization
contribute to its efficacy in handling the complexities of accident classification, marking a
significant advancement over more traditional approaches in the field [22]. Despite these
potential benefits of LLM, leveraging GPT models is still an explanatory stage in the con-
struction accident domain. Further research and validation are needed to assess the model’s
performance, generalizability across diverse accident scenarios, and its interpretability in
the context of safety-critical applications. Additionally, addressing domain-specific chal-
lenges and tailoring the model to the unique characteristics of construction-related text
data via the fine-tuning method is crucial for maximizing the effectiveness of GPT-based
approaches in accident classification within the construction industry.

In this regard, the authors developed a model to predict construction accidents and
visualize accident precursors using a fine-tuned GPT model from raw construction accident
reports. The contributions of this paper are as follows: (1) The authors developed an
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approach to automatically classify construction accidents from a dataset of raw construction
accident reports using a fine-tuned GPT with various hyperparameter optimizations (e.g.,
max token and temperature parameters). Such information holds unique value, as it can
enhance the ability to understand, predict, and prevent accidents; (2) This paper proposes
a method to identify word patterns that, following the fine-tuning process, consistently
demonstrate high predictiveness for each safety outcome; (3) The suggested methods can
also serve to visualize and comprehend the models’ prediction sensitivity; and (4) The
authors experimented with four state-of-the-art machine learning [Term Frequency-Inverse
Document Frequency (TF-IDF)], deep learning [Convolutional Neural Network (CNN)],
and two LLMs [fine-tuned GPT 2.0/3.0 and Korean Bidirectional Encoder Representations
from Transformers (BERT)] using structured and unstructured text from construction
accident reports.

This paper is structured as follows to demonstrate the aforementioned contributions.
First, the authors offer a background regarding the utilization of machine learning, deep
learning, and LLMs in NLP in Section 2. Subsequently, in Section 3, the authors outline
the structure of the proposed model, introducing the saliency visualization of accident
attributes in unstructured free-text data. In Section 4, the authors test the developed method
with the actual construction accident dataset and the preprocessing procedures applied and
elaborate on the experimental configuration alongside comparative benchmark models, and
report the results. Then, Section 5 includes a comprehensive analysis and interpretation
of the findings. Lastly, Section 6 provides a summary and conclusion of the study’s
key contributions. The findings of this paper underscore the improved generalization
performance of construction accident prediction models based on large language processing,
leading to a proactive approach in preventing accidents at construction sites.

2. Research Background

The adoption of NLP analysis presents a transformative shift in the realm of con-
struction site safety [23]. NLP, equipped with its ability to sift through extensive textual
data, provides a robust framework for uncovering subtle patterns and correlations within
accident records [24,25]. This enables stakeholders to access distinctive insights into the
fundamental reasons behind accidents, enabling the creation of proactive and specific safety
measures to avert the recurrence of similar incidents [26,27]. By leveraging the capabilities
of NLP, construction site managers and safety experts can optimize their decision-making
processes, bolstering the efficacy of accident analysis and fortifying the overall safety
standards within the construction industry [28]. This transition to NLP-driven analysis
signifies a progressive stride toward a more data-driven and proactive approach to accident
prevention, ultimately fostering a safer working environment for construction personnel
and mitigating potential risks associated with complex construction operations.

Specifically, recent developments in NLP have created novel opportunities for the
automated examination of textual records related to accidents [17,23,29,30]. By applying
NLP techniques, pertinent information can be extracted from unstructured free-text data,
enabling an effective categorization of accidents based on various parameters [31]. Nu-
merous studies have emphasized the efficacy of NLP in automating accident classification,
resulting in improved efficiency and reduced prejudice. Table 1 presents a summary of
the NLP models used in the literature to predict construction accidents. Specifically, Tixier
et al. [32] demonstrated analyzing unstructured incident reports utilizing the NLP model,
yielding significant results with F1 score values of 0.96, respectively. Similarly, Zhang
et al. [16] employed text mining and NLP methods to investigate construction accident
reports, utilizing various machine learning models, with the optimized ensemble model
showcasing the highest F1 score of 0.68. Cheng et al. [33] introduced the Symbiotic Gated
Recurrent Unit for the classification of construction site accidents, achieving an average
weighted F1 score of 0.69, outperforming other AI techniques. Additionally, Kim & Chi [34]
developed a system for managing construction accident knowledge, demonstrating notable
recall, precision, and F1 score values of 0.71, 0.93, and 0.80, respectively.
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Table 1. Natural Language Processing and Construction Injury Classification Literature.

Authors (Year) Task Source Data Text Fields Outperformed
Method Accuracy

Tixierc, A.J.P., et al.
(2020) [6]

Prediction of 6 incident
type, 4 injury type,

6 body part, 2 severity
from injury reports

A dataset of
90,000 incident

reports from global
oil refineries

Title, accident
details, detail,

root cause
TF-IDF + SVM 71.55%

Kim, H., Jang, Y.,
Kang, H. & Yi, J.S.

(2022) [35]

Classification of
5 accident case from

accident reports

Korea
Occupational

Safety and Health
Agency

Accident case CNN 52%

Zhang, Jinyue, et al.
(2020) [14]

Classification of
11 accident categories
from accident reports

Occupational
Safety and Health

Administration

Accident
narratives BERT 80%

Goh, Y.M. &
Ubeynarayana, C.U.

(2017) [36]

Classification of
11 labels of accident
causes or types from

accident reports

Occupational
Safety and Health

Administration

Accident
narratives SVM 62%

Zhang, Fan, et al.
(2019) [16]

Classification of
11 causes of accidents
from accident reports

Occupational
Safety and Health

Administration

Fatality and
catastrophe

investigation
summary reports

Ensemble 68%

Cheng, M.Y.,
Kusoemo, D. & Gosno,

R.A. (2020) [33]

Classification of
11 labels of accident
causes or types from

accident reports

Occupational
Safety and Health

Administration

Accident
narratives Hybrid model 69%

These research efforts emphasize the importance of employing advanced NLP-based
modeling techniques to gain a comprehensive understanding of the various factors influencing
accidents and to improve safety protocols. However, as mentioned in the Introduction,
current studies have predominantly focused on developing conventional machine and deep
learning methods, which entail manually extracting text features and inputting them into
a classifier [15,29,36]. These approaches come with inherent limitations, including limited
scalability and generalization, difficulties in analyzing free-form text, high dimensionality,
and a lack of adaptability to new tasks. While traditional machine and deep learning methods
have made strides in NLP within the construction domain, overcoming these limitations
requires the incorporation of more innovative, generative, and robust AI models.

Recently, LLMs, particularly those built on the transformer architecture such as GPT,
developed by OpenAI, present notable advantages for various NLP tasks, including clas-
sification, compared to traditional machine learning and deep learning models [20,37].
These models are trained on vast datasets, enabling them to generate human-like text based
on the input they receive. The adaptability and proficiency of GPT models in processing
and generating natural language have the potential to significantly impact and facilitate
various aspects in diverse fields, ranging from education and customer service to research
and industries.

The capacity of GPT to generate text resembling human writing can be attributed to its
deployment of the transformer model. The transformer model employed in GPT is depicted
in Figure 1. The model employs a decoder structure with 96 repeated layers. These layers
allow the model to progressively refine its understanding of the input text, enabling it to
generate coherent and contextually relevant outputs [38]. The repeated stacking of decoder
layers, coupled with attention mechanisms and residual connections, ensures the model’s
proficiency in tasks such as language translation and text generation, particularly classifica-
tion [39,40]. The transformer demonstrates proficiency in capturing contextual information,
implementing end-to-end learning without manual feature engineering, employing atten-
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tion mechanisms for nuanced comprehension, and leveraging transfer learning to improve
performance [41]. These qualities make it well-suited for tasks that require an in-depth
understanding of unstructured free-text data pertaining to accidents [21]. Additionally, its
adaptability to diverse input lengths, multimodal capabilities, and efficient parallelization
collectively contribute to its efficacy in tackling the complexities inherent in accident classi-
fication [42]. This marks a significant advancement over traditional approaches in the field,
reflecting a substantial progress in the capabilities of NLP models. Despite these potential
benefits of LLM, there still exists a knowledge gap on how to better utilize pre-trained
GPT models through fine- and hyperparameter-tunings with enhancing explainability
for construction accident classification. This research is anticipated to contribute to the
expanding knowledge base on NLP applications in safety management, providing practical
insights for safety professionals, researchers, and policymakers dedicated to enhancing
safety practices within the industry.

Figure 1. Transformer architecture used in a generative pre-trained transformer (Modified from
Radford et al. [20] and Brown et al. [39]).

3. Materials and Methods

Despite the existence of traditional machine and deep learning-based algorithms to
predict causes of accidents from structured and unstructured data, their effective use for
accident classification poses technical challenges (e.g., manual feature extraction, limited to
scalability/generalization/explainability, difficulty in free-from text, high dimensionality, and
limited adaptability to new tasks). In this section, the authors demonstrate an alternative
approach that uses GPT models, on an existing construction unstructured and structured text
data to classify 6 construction accident types (caught-in-between, cuts, falls, struck-by, trips,
and others) and visualize word saliency to better understand the cause of accidents.

3.1. Fine-Tuning in Generative Model Using Construction Report Data

In developing a model to predict construction accident types, this paper used a pre-
trained GPT 2.0 and 3.0 model with fine-tuning using training data (unstructured free-text
data from construction accident reports). The foundation of the GPT model lies in the
transformer architecture introduced by Vaswani et al. [21]. The transformer architecture
revolutionized NLP by replacing traditional recurrent neural networks with a self-attention
mechanism. This mechanism enables GPT to effectively capture long-range dependencies
in text data [20].

Figure 2 presents the fine-tuning and generating prediction outcome process. The
initial step involves fine-tuning a pre-trained model on the data intended for training.
Unlike prompt engineering, this involves exposing the model to the new data and allows it
to adjust its internal weights and biases to better generate responses similar to the specific
training data. Fine-tuning a GPT model allows for customization to specific tasks or
domains, enhancing its performance on specialized inputs. This process enables the model
to learn task-specific information and improve its accuracy in generating contextually
relevant outputs. This paper used 5400 cases of unstructured free-text data from the
construction injury report for the fine-tuning process. The data is not overlapped with
the test dataset. After the fine-tuning process, the developers can interact with the fine-
tuned model using the application programming interface (API) gateway of OpenAI as
shown in Figure 3. For the purpose of training, the preprocessing step involves formatting



Appl. Sci. 2024, 14, 664 6 of 16

the training data into JSON files, where the input data and output data are paired as
‘prompt’ and ‘completion’, respectively. These files are then uploaded through the API
gateway. Once the fine-tuning process is complete the developers can iteratively utilize
the completion generated by the fine-tuned model. For example, the fine-tuned model
generates a prediction outcome if one case of text data from a construction accident report is
submitted in the playground page. The outcome can be validated with the actual accident
outcome. To effectively utilize the API gateway of OpenAI, the authors developed an
automated tuning process and generating prediction outcome process using Python.

Figure 2. Overarching fine-tuning process and generating prediction outcome process.

Figure 3. An example of a visualization platform to interact with a fine-tuned model: (a) a prompt
with one case of text data from a construction accident report; (b) a prediction outcome, also known
as a completion; (c) a model name; (d) temperature parameter; and (e) maximum length of the
prediction outcome (max_tokens parameter). The completion is highlighted in various colors to
visually demonstrate how confidently the fine-tuned model responded to each word. The closer to
green, the closer the log probability is to 0, and the closer to red, the closer it is to negative infinity. In
a small window, the model’s confidence in each token is displayed as a percentage.

Additionally, there are several parameters that need to be considered, and the au-
thors confirmed that two hyperparameters (‘temperature’ and ‘max_tokens’) can influence
overall performance on the prediction outcome of GPT models. Specifically, the ‘temper-
ature’ parameter controls randomness in the generated output. Lower values make the
completions less random. As the temperature approaches zero, the model becomes more
deterministic and tends to produce repetitive output. The authors set the ‘temperature’
to 0.2 based on the results of sensitivity analysis. Separately, the ‘max_tokens’ parameter
limits the number of tokens (words or subwords) in the generated text during language
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generation tasks. Setting a specific value for ‘max_tokens’ limits the length of the generated
output, impacting the completeness and context of the response. If set too low, it might
result in truncated or incomplete responses, while a high value could lead to overly lengthy
and potentially less coherent outputs. Choosing an appropriate ‘max_tokens’ value is cru-
cial to obtaining desired results in terms of length and relevance. Thus, the authors tested
the length of ‘max_tokens’ from 4 to 50 and observed that the 10 consistently produces
reliable results.

3.2. Saliency Visualization of Accident Attributes in Unstructured Free-Text Data

Motivated by the desire to unravel the inner workings of GPT models and address
their inherent black-box nature, the authors further developed a model to shed light on
the transparent process of output generation. By systematically assessing the impact of
individual words within an input sentence on the final output, this paper strives to enhance
interpretability and provide users with a clearer understanding of the model’s prediction
accuracy. This is accomplished by strategically manipulating the location of words within a
sentence, enabling the discernment of their unique contributions to the overall output. Each
word is removed from its respective position, and the sentence is reassembled to obtain
prediction accuracy. The Importance Score for a specific word in the sentence, denoted as
wi, is computed as follows:

Importance Scorei = 1 − P(S−{wi})
P(S)

= 1 − P(wi
c|S)

where, S = {w1, w2, w3, · · · , wn}
(1)

• S represents the set of all word elements contained in the sentence.
• w represents an individual word in the set S, with the subscript indicating the posi-

tional information of that word.

In this equation, P(S − {wi}) represents the probability of an accident that can occur
within the sentence S occurring when the researchers remove or exclude the element, a
word, wi from it. P(S) represents the probability of an accident that can occur within the
sentence S happening in its entirety. The Importance Scorei essentially quantifies the signif-
icance or importance of the element wi within the context of event S. It is calculated as the
difference between 1 and the product of two probabilities: one representing the occurrence
of S with the element wi removed and the other representing the overall probability of S.
Ultimately, it can be summarized as 1 − P(wi

c|S) by the properties of the set difference and
conditional probability. If log probability is used, then the values should be normalized to
a range between 0 and 1 using exponential transformation:

Importance Scorei = 1 − eP(S−{wi})−P(S) (2)

Algorithm 1 illustrates the pseudocode to operate saliency visualization. This method-
ology allows for a quantitative comparison of the impact of each word on the final output,
providing insights into the black-box behavior of the GPT model. Using this methodology,
the researchers can obtain a set of Importance Scores for all the words that make up a
sentence. Below is the detailed description of Algorithm 1:
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Algorithm 1 Computing Importance Scores for words in a sentence

Input: A sentence of text data Sent;
Output: List Scores;
1 Split Sent into a List of words S; S = {w1, w2, w3, · · · , wn}
2 Declare Score variables on the disk; Score1, Score2, Score3, · · · , Scoren
3 for i from 1 to n do
4 Si = S − {wi}
5 Senti = Concat(Si)

6 Scorei = 1 − P(Senti)
P(Sent)

7 end for
8 Assign Scores = {Score1, Score2, Score3, · · · , Scoren}

The algorithm commences by performing tokenization on the input sentence, Sent,
resulting in the generation of a list of words, denoted as S. It subsequently initializes
score variables Score1 through Scoren for each word in the sentence. The algorithm then
proceeds to iterate through each word, eliminating the i-th word wi from S, thereby creating
modified sentences Si. The scores Scorei for each modified sentence Si are calculated using
the formula:

Scorei = 1 − P(Si)

P(Senti)
,

where P(Si) represents the probability of the modified sentence, and P(Sent) represents
the probability of the original sentence. Finally, the resulting scores Score1 through Scoren
are stored in the Scores list for subsequent analysis and interpretation.

This algorithm provides a systematic approach to assess the impact of individual
words within a given sentence. It calculates a score for each word by considering the change
in sentence probability when that word is removed. These scores can be valuable for various
NLP tasks, such as keyword extraction, text summarization, and sentiment analysis.

4. Results
4.1. Data

The authors obtained a total of approximately 15,000 construction accident report
data in South Korea from 1990s to 2022. The data were categorized into a total of six
types: caught-in-between, cut, falls, struck-by, trips, and others. The “others” includes the
accident types (e.g., overexertion, occupational diseases, and fire) that cannot be classified
in the remaining five accident types and takes small proportions, which can decrease the
reliability of the classification results. The selection of the six types of accidents in this
study is based on a comprehensive analysis of accident reports, existing literature, industry
standards, and common occurrences in construction sites [13,29,43]. These six accident
types encompass a broad spectrum of incidents that are frequently reported and have
significant implications for construction site safety.

Addressing the issue of data imbalance is indeed a critical task in order to improve
the performance of a classification model. Thus, the authors downsampled by randomly
selecting 1000 records from each category to resolve imbalanced data issues. Fine-tuning
involves transferring learning onto a pre-trained model that has been trained on a large
amount of data, and it often performs well even with a limited amount of data. Moreover,
transfer learning is adopted as a viable solution to overcome data scarcity issues.

Table 2 shows variables and features from construction accident reports. The report
contains two input data: unstructured and structured text data. The structured text data
contain contextual information (e.g., date, time, weather, temperature, type of construction)
during accident events. The unstructured, free-text, data include narrative details of the
accident. Figure 4 presents an example of the unstructured data. It describes the details
of accident circumstances. Additionally, the portions in the accident circumstances that
directly provided information about the occurrence of accidents or allowed for the direct
identification of accident types was removed. For example, the sentence highlighted in red
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in Figure 4, “As the backhoe was reversing to return, the signalman, who was attempting
to guide the backhoe, got entangled in its caterpillar”, directly mentions the word “got
entangled” which directly reveals the injury type.

Table 2. Variables and features from construction accident reports.

Variable Type Feature

Output Event type Categorical
(6 events)

Caught-in-between, Cut, Falls, Struck-by,
Trips, Others.

Input
(Unstructured) Narrative details of accidents Text

(Accident details) Unstructured text data

Input
(Structured)

Date Categorical
(4 seasons) Spring, Summer, Fall, Winter

Time Categorical
(5 windows)

Dawn, Morning, Daytime,
Afternoon, Night

Weather Categorical Sunny, Snowy, Rainy, Windy,
Foggy, Cloudy

Temperature Numerical
(Integer)

. . ., −3 ◦C, −2 ◦C, −1 ◦C, 0 ◦C, 1 ◦C,
2 ◦C, 3 ◦C, . . .

Humidity
Numerical

(Percentage in natural
number)

0%, 1%, 2%, 3%, . . .

Type of construction Categorical File drive, Building blocks,
Formwork installation, . . .

Method of construction Categorical Firewall installation, Doka form
installation, Gang form dismantling, . . .

Nationality Categorical Republic of Korea, Malaysia, USA,
Vietnam, . . .

Age Numerical
(Natural number) 20, 21, 22, . . ., 79

Work progress Categorical
(Ranges of percentage)

0~9%, 10~19%, 20~29%,
. . .,

90~100%

Figure 4. A sample text to illustrate the unstructured data (stop words highlighted in red color).

4.2. Baseline Models

To evaluate the performance of the developed 2.0 and 3.0 fine-tuned GPT-based
method, this study selected three base classifiers, namely TF-IDF, CNN, and BERT, for
comparison based on the literature [6,11,14]. The baseline models play an important
role in classification research as they provide essential benchmarks for evaluating the
performance of more complex or new models. By implementing existing algorithms or
traditional AI approaches, baseline models set a standard against which the effectiveness
of novel methods can be measured. The baseline models serve as reference points for
assessing improvements and offer insights into the challenges of a specific task. The
model’s performance underwent assessment through a designated test set. To ensure robust
evaluation, distinct training and testing splits were formulated for outcome categories. 90%
of the reports were allocated for training purposes, while the remaining 10% were reserved
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for testing the model’s predictive capabilities [44,45]. Additionally, for the optimization of
parameters in the GPT model, a validation set was meticulously generated for each outcome.
This involved randomly isolating 10% of the training set, providing a dedicated dataset for
fine-tuning and enhancing the model’s precision in predicting specific accident types. This
allocation, termed a validation set, plays a crucial role in refining model performance by
facilitating hyperparameter tuning and mitigating overfitting risks [46,47].

1. TF-IDF, is a statistical measure that indicates how important a word is within a specific
document in a collection of documents [48]. Typically used in information retrieval
and text mining [49], TF-IDF provides weightings but does not involve learning on
its own. However, it can be integrated with machine learning techniques and has
surprisingly demonstrated strong performance in prior research, earning its selection
as a benchmark model. Both the stochastic gradient descent (SGD) classifier and
support vector machine (SVM) classifier were trained using the weights obtained
from the TF-IDF vectorizer, and their accuracy was measured. In the training of the
SGD classifier, the performance of four different kernels (radial basis function, linear,
poly, sigmoid) was compared. Among these, the Linear Kernel yielded the highest
accuracy. In the training of the SVM classifier, nine different loss parameters (logistic,
hinge, modified huber, squared hinge, perceptron, squared error, huber, insensitive,
squared epsilon insensitive) were utilized. Among these, the logistic loss parameter
resulted in the highest accuracy.

2. CNN specializes in deep learning models for image and grid data processing [50,51].
They use convolutional layers to detect features, pooling layers to downsample,
and fully connected layers for classification. CNNs excel in tasks such as image
recognition and have wide applications in computer vision and beyond. In the
dataset, the following parameters yielded the most optimal results. The number of
epochs was set to 8, following experimentation in the range of 6 to 100, while the
batch size was configured to 64, tested across a range from 32 to 128. An embedding
dimension of 300 was used, accompanied by 100 filters and filter sizes of 2, 3, and
4. A dropout rate of 0.5 was applied during training. The optimizer employed was
Adam, and the criterion was defined as CrossEntropyLoss, since the task is multiclass
classification. The text was tokenized using the spacy.load (“ko_core_news_sm”)
tokenizer supported by spacy, which is the Python library. The pre-trained model
used for the tokenizer is “ko_core_news_sm”. These parameters were crucial in
achieving the desired outcomes, as highlighted in the provided data.

3. BERT is indeed a type of LLM, similar to GPT, but it’s a smaller model with only
0.3 billion parameters compared to GPT-3.0’s 175 billion parameters [39,52]. The
number of parameters in LLMs is proportional to the size of the training dataset. To
investigate whether there is a performance difference in the dataset based on the
number of parameters, experiments were conducted using BERT. The experiments
were conducted using Python and the Keras TensorFlow package [52,53]. The training
of the BERT model was based on the BERT-Base model available from Google on
GitHub. The BERT-Base model supports 104 languages and consists of 12 layers,
768 hidden units per layer, 12 attention heads, and 110 million parameters. For
optimization, the RAdam optimizer was chosen, incorporating a weight decay of
0.0025 [54,55]. Since the task involves multi-class classification, the sparse categorical
cross-entropy loss function was employed. Furthermore, the following parameters
that produced the best performance were used in this paper: sequence length (128),
batch size (16), epochs (8), learning rate (0.00001), optimizer (Adam).

4.3. Experiment Results

The results of the baseline models (TF-IDF, CNN, BERT) and fine-tuned GPT 2.0/3.0
models can be seen in Table 3. Each column presents the results for a specific outcome
category, and the last column represents the average value across all categories. Identical
performance metrics were applied to all models, encompassing precision, recall, F1 score,
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and accuracy. Precision measures the ratio of correctly identified positive instances to all
instances classified as positive by the classifier, while Recall quantifies the ratio of correctly
identified positive instances to the total number of relevant samples (i.e., all instances that
should have been correctly identified as positive) [56,57]. The F1 score can be considered as
a comprehensive assessment metric that amalgamates Precision and Recall [58].

Table 3. Model performances.

Classifier
(Data Type)

Performance
Metrics

Caught-in-
between Cut Falls Struck-by Trips Others Total Accuracy

(%)

TF-IDF + SGD
(Unstructured data only)

Precision 0.52 0.80 0.56 0.36 0.59 0.35 0.53
51.34Recall 0.59 0.49 0.60 0.48 0.58 0.32 0.51

F1 0.55 0.61 0.58 0.41 0.59 0.33 0.51

TF-IDF + SVM
(Unstructured data only)

Precision 0.54 0.74 0.55 0.38 0.59 0.43 0.54
53.34Recall 0.62 0.55 0.66 0.49 0.54 0.32 0.53

F1 0.58 0.63 0.60 0.43 0.57 0.36 0.53

CNN
(Unstructured data only)

Precision 0.51 0.74 0.56 0.40 0.47 0.43 0.52
52.10Recall 0.58 0.67 0.57 0.42 0.54 0.33 0.52

F1 0.54 0.71 0.57 0.41 0.51 0.38 0.52

BERT
(Unstructured data only)

Precision 0.51 0.78 0.67 0.42 0.63 0.32 0.56
54.33Recall 0.61 0.60 0.56 0.59 0.59 0.30 0.54

F1 0.56 0.67 0.61 0.49 0.61 0.31 0.54

GPT-2.0
(Unstructured data only)

Precision 0.53 0.72 0.62 0.22 0.60 0.52 0.54
56.40Recall 0.48 0.63 0.57 0.10 0.71 0.58 0.51

F1 0.50 0.67 0.59 0.14 0.65 0.55 0.52

GPT-3.0
(Unstructured + structured data)

Precision 0.71 0.93 0.74 0.78 0.87 0.40 0.74
67.22Recall 0.71 0.83 0.64 0.62 0.45 0.80 0.68

F1 0.71 0.88 0.68 0.69 0.60 0.54 0.68

GPT-3.0
(Unstructured data only)

Precision 0.80 0.91 0.88 0.74 0.84 0.76 0.82
82.33Recall 0.79 0.87 0.82 0.83 0.88 0.64 0.81

F1 0.80 0.89 0.85 0.79 0.86 0.75 0.82

Overall, the results show that pretrained GPT-3 with unstructured free-text data is
outperformed almost everywhere. With 82.33% accuracy the best performer is the “Cut”
class (F1 score 0.88). The “Others” class presents low F1 scores in all classifiers. Since the
“Others” class includes different injury scenarios (e.g., overexertion, occupational diseases,
and fire) that cannot be included in the other major five accident outcomes, it may be hard
to find certain attributes in injury scenarios.

Figure 5 presents a confusion matrix of the GPT-3.0 fine-tuned model for both com-
bined structured and unstructured data and unstructured data alone. Initially, the authors
anticipated that incorporating more data would enhance the prediction performance by
providing additional contextual information; the amalgamation of structured and unstruc-
tured data did not exhibit superior performance compared to utilizing unstructured data
alone. The prediction performance was also affected by the version of GPT models. GPT
3.0 outperforms GPT 2.0 in almost every class. GPT 2.0 showed very low performance in
the “Struck-by” class.

4.4. Saliency Visualization Results for Accident Types

As described in the Method section, a novel approach was developed to learn which
parts of the input are critically influenced by the predictive outcomes. This involved
computing the importance of individual words for obtaining a correct answer by deleting
each word from words in a sentence. A white background indicates that redacting the
word did not reduce accuracy. In other words, the greater the influence of a word on the
output, the more prominently it is highlighted. The level of color highlighted in the text
indicates that an amount of accuracy is reduced when the word is removed. Overall, the
highlighted words appear to be the accident precursors (e.g., dust, particles, flash, chemical,
oil) as mentioned in [6].
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Figure 5. A confusion matrix of the GPT-3.0 fine-tuned model for (a) both combined structured and
unstructured data and (b) unstructured data alone.

A visual example and a graph regarding the Importance Score of this method is shown
in Figure 6. The main accident precursors (e.g., “ear”, “leaving”, “while”, “to extract”,
“staircase”, “the 4m”, “pipe”) are highlighted. Additionally, words that indicate situational
status such as “On the floor” and “top” are also included. It shows that the developed
method not only expresses direct factors leading to accidents but also considers contextual
attributes for causing accidents. This result appears to be attributed to the transformer in
the fine-tuned model, which interprets the query of the transformer in consideration of the
position of words and their relationships. This indicates that the fine-tuned GPT model
not only expresses direct factors leading to accidents but also considers indirect situational
context for causing accidents.

Figure 6. Examples of word saliency visualization and a bar graph of Importance Score. (The
presented image demonstrates three sentences highlighted in respect of saliency visualization); (A
bar graph below depicts quantitative values of importance score.)
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5. Discussion

The authors developed a novel fine-tuned GPT model to predict construction accident
outcomes. The GPT mode excels in tasks involving accident-related text data by capturing
context, and employing end-to-end learning without the manual feature engineering of tra-
ditional machine learning and deep learning algorithms. Additionally, the introduction of a
saliency visualization method enhances the interpretability of the model’s decision-making
process. The research makes a substantial contribution to the domain of construction safety
through the application of NLP models, with a particular emphasis on utilizing generative
AI models. The findings of the study underscore the superior performance of fine-tuned
GPT models, specifically highlighting the effectiveness of GPT-3.0, when compared to
traditional models such as TF-IDF, CNN, BERT, and GPT-2.0. The achieved overall accuracy
of 82.33% signals the potential of the fine-tuned GPT model for predicting construction
accident types from unstructured text data.

The proposed saliency visualization method is a noteworthy addition to the research,
offering a solution to the black-box nature of GPT models. By systematically assessing the
impact of individual words on prediction outcomes, the method enhances interpretability,
suggesting unique insights into the decision-making process of the model. This aspect
of the research contributes to building trust in the model’s predictions, minimizing the
labor required to extract valuable insights from free-form text, and generating dependable
safety predictions from accident reports. It also has great potential to understand accident
causal relationships that support existing correlational evidence in attribute-based accident
analytics studies [15,23]. Furthermore, this research offers actionable insights for practical
application at construction sites. Implementation involves incorporating construction
documents (e.g., daily work reports and text data regarding scheduling, estimating, and
specifications) to proactively predict potential accidents. By utilizing easy-to-use generative
AI at construction job sites, it becomes possible to automatically assess the anticipated
accident types and discern the influential attributes or textual elements. This approach
facilitates a preventive strategy by leveraging the model’s predictive capabilities to mitigate
safety risks. Such integration of advanced LLM models into daily construction safety
management holds promise for enhancing on-site safety measures.

While this study presents significant advancements in the prediction of construction
accidents through fine-tuned GPT models, several limitations warrant consideration. The
fine-tuning process of the GPT models on a specific dataset raises concerns about its adapt-
ability to unforeseen circumstances and diverse construction environments. Incorporating
multimodal data, such as images and videos from construction sites, could further enrich
the model’s learning capabilities and provide a more comprehensive understanding of
accidents. Additionally, the downsampling approach employed to address data imbalance,
while effective, may inadvertently omit crucial information related to infrequent accident
types, impacting the model’s robustness. Furthermore, the study’s focus on the Korean
construction context may limit the generalizability of the findings to construction sites in
other geographical regions with distinct safety reporting practices and cultural nuances.
Including and testing more data from different countries and languages can mitigate the
generalizability and reliability concerns of the model. Separately, the study found that
GPT-3.0 consistently outperformed GPT-2.0, mainly due to its substantial increase in pa-
rameters, with 175 billion compared to GPT-2.0’s 1.5 billion. This increased scale allowed
GPT-3.0 to capture more intricate patterns, resulting in significantly improved performance.
This highlights the importance of using the latest language models to achieve optimal
results, guiding practitioners and researchers in model selection. Lastly, the interpretability
of the saliency visualization method, while a valuable addition, may be limited in captur-
ing subtle relationships within complex textual data. Incorporating additional advanced
explainable AI methods (e.g., layer-wise relevance propagation and local interpretable
model-agnostic explanations) is needed to enhance the interpretability of the accident
prediction model.
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The authors anticipate the developed fine-tuned GPT model to play a pivotal role in
revolutionizing construction safety practices. As the construction industry increasingly
embraces data-driven approaches, the model’s predictive capabilities offer a transformative
impact on accident prevention. Proactively identifying potential accidents and safety
risks through the analysis of unstructured free-text data enables construction sites to
implement targeted interventions, thereby enhancing overall safety outcomes. The model’s
adaptability to dynamic environments, potential integration with multimodal data sources,
and real-time monitoring mechanisms position it as a versatile tool for safety professionals
and decision-makers. Moreover, the saliency visualization method contributes to model
interpretability, fostering collaboration between AI technologies and human expertise in
safety management. Collaborative efforts with industry stakeholders, safety professionals,
and policymakers can facilitate the real-world integration of the proposed model, ensuring
its practical applicability and effectiveness in enhancing safety management practices. The
study represents a significant step forward in leveraging the GPT model for construction
safety. By addressing key challenges and offering innovative solutions, the research opens
avenues for future investigations that can further refine and expand the applicability of
these models in real-world safety management contexts.

6. Conclusions

This study presents the remarkable potential of leveraging fine-tuned GPT models for
predicting construction accidents from unstructured free-text data, achieving an outstand-
ing overall accuracy of 82.33%. The superior performance of these models compared to
baseline AI model approaches is evident, underscoring their efficacy in enhancing predic-
tive capabilities. The introduction of the saliency visualization method further elevates the
model’s interpretability, providing valuable insights into accident attributes. Beyond its
performance metrics, the significance of this research extends to its practical application in
real-world safety management. The proposed model, with its promising adaptability for
dynamic updating and potential integration with multimodal data, emerges as a proactive
tool for accident prevention in the construction industry. As the field of construction safety
increasingly embraces advanced NLP models, this study contributes to the broader trans-
formation toward data-driven and proactive safety practices. This research, therefore, holds
pivotal importance for the global scientific community by advancing the understanding of
how state-of-the-art language models can revolutionize safety prediction in a construction
industry. Its implications reach beyond the construction sector, influencing the broader
landscape of safety management across diverse domains.
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