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Abstract: Plasma arc deposition as an additive manufacturing technology has unique advantages for
producing parts with complex shapes through layer-by-layer deposition. It is critical to predict and
control the temperature field during the production process due to the temperature distribution and
gradients determining the properties and performance of the part. Numerical simulation approaches,
such as the finite element method, which provides a large amount of data for machine learning
modeling, thus reducing the overhead of experimental measurements, are widely used in machine
learning. In this paper, we propose a neural network combined finite element method and process
prediction workflow. A one-dimensional convolutional neural network model for predicting 2D
temperature distribution is developed by training the collected data on the planar temperature field
of titanium–aluminum twin-wire plasma arc additive manufacturing and the finite element method.
The results show that the predicted temperature mean square error is only 0.5, with less than a 20 ◦C
error in peak temperature and a relative error below 1%. The proposed transfer learning method
achieves the same training loss and is 500 iterations faster than basic training, which improves the
training speed by 25%. The current study confirms the accurate performance of the ML model and
the effectiveness of the optimization method.

Keywords: plasma arc welding; additive manufacturing; temperature field prediction; machine
learning; convolutional neural network

1. Introduction

Plasma arc additive manufacturing (PAAM) technology utilizes an electric arc to melt
powder or filament material and solidify it on a substrate or previous layer to create parts
via layer-by-layer deposition [1]. It has the superior ability to directly print complex geo-
metrical parts compared to traditional manufacturing techniques [2]. Titanium–aluminum
alloys have the merits of material properties, while their usage is constrained due to their
weak ductility at room temperature [3]. Therefore, additive technology like PAAW serves as
an ideal process for manufacturing Ti-Al alloys [4]. A huge temperature gradient exists near
the melt pool during the deposition process, which leads to significant thermal residual
stress and deformation that affect the mechanical properties of the part [5].

The temperature distribution during the deposition process is a key factor in determin-
ing the quality of the printed components. In recent years, researchers have studied these
temperature distribution features considering the factors of the heat source mode, print
material delivery form, and print path [6–8]. At the same time, it is common to use finite
element methods instead of experiments to study the characterizations of the deposition
process [9]. The use of this method possesses advantages such as cost savings and reduced
difficulty in parameter measurement [10]. However, trade-offs need to be made between
computational accuracy and computational time [11,12].
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With the explosive growth of machine learning research, many scholars have tried
to use in situ parameters to predict experiment results. Zhang et al. [13] predicted the
producing quality by using molten pool, plume, and spatter images obtained from a
high-speed camera. Shevchik et al. [14] used acoustic signals to determine the producing
quality during the deposition process. Montazeri et al. [15] collected spectral data and used
neural networks, support vector machines, and linear discriminant analysis to predict the
manufacturing quality. Xie et al. [16] collected infrared temperature data and used them to
predict mechanical properties such as the maximum tensile strength of a component.

Many scholars have found that the cost of data collection can be reduced through a
numerical simulation approach. Chowdhury et al. [17] used an artificial neural network
model that predicted thermal deformation by extracting the deformation nodes generated
by the finite element model. Roy et al. [18] used a machine learning algorithm to pro-
pose a fast surrogate model to replace the traditional numerical simulation methods for
acquiring temperature cycle features during the deposition process. Data-driven methods
can generate hundreds of thousands of data for further analysis [19], which are difficult
to reach through experiments. Raissi et al. [20,21] proposed a neural network approach
for solving partial differential equations, which benefited from the popularization of the
concept of Automatic Differentiation (AD) [22] in ML algorithms. Lu et al. [23] applied
such physics-informed neural networks (PINNs) to solve the partial differential equations
of heat conduction and compared them with the traditional FEM, achieving ideal results.
Li et al. [24] proposed an innovation in the structure of neural networks by combining resid-
ual block with PINN and achieved great results. However, restricted to the structure itself,
this method can only perform point-to-point prediction, and there exists the problem of
solving the partial differential equation logically under the physical law for 2D scenes [23].
To fit practical applications, ML approaches have also been used to investigate the effect
of the deposition path on heat accumulation [19]. Ren et al. [25] summarized previous
research results and used model predictions to guide a metal component printing process,
which achieved the expected results. With the continuous progress of ML algorithms, many
new structures of neural networks have been proposed to predict the temperature field of
the deposition process [26–28].

To predict the temperature field and control the appearance of defects such as cracks
during the deposition process [29,30], we constructed a novel one-dimensional convolu-
tional neural network model for predicting the 2D temperature field during the deposition
process by using one-dimensional feature data collected from the experiment, in which
case, the feature is the temperature on the deposition path. Meanwhile, this paper proposes
a neural network combined finite element method and process prediction workflow by
combining a neural network, transfer training, and other methods. By constructing the FEM
model, a large amount of training data is provided for the neural network model training,
which ensures the robustness of the model. The proposal of transfer training dynamizes
the training process of the model and improves the model prediction performance.

2. Datasets Building
2.1. Experiment Description

In our research [31,32], a TA2 titanium plate measuring 200 × 100 × 8 mm was
used as the substrate. Titanium (ERTI-2) and aluminum (ER1100) feeding wires (both
with diameters of 0.8 mm) were used as the deposition materials. The shielding gas was
99.9% Ar. Bottom-up deposition was performed using the PAAM to deposit 30 layers, each
with an approximate thickness of 1 mm, as Figure 1a depicts. An infrared camera was
used to collect the temperature field data of the molten pool and the substrate during the
deposition process, as shown in Figure 1b.
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Figure 1. Schematic diagram of (a) the PAAW process; and (b) the thermal measure experiment.

Based on the substrate plane temperature field data during the deposition process
of the first two layers of the experiment, we used FEM to reconstruct the 2D temperature
distribution features of the plane and established the needed data set to train the neural
network model. The fidelity of the neural network prediction results is guaranteed by
the finite elements as well as the experimental data. Tables 1 and 2 show the elemental
composition of the wire and the substrate.

Table 1. Composition (at.%) of the Al alloy wire (ER1100).

Si Cu Zn Mn Fe Al

ER1100 0.03 0.02 0.013 0.003 0.18 Bal

Table 2. Composition (at.%) of the Ti alloy wire (ERTI-2) and the substrate (TA2).

O Fe N C H Ti

ERTI-2 0.08–0.16 0.12 0.015 0.03 0.008 Bal

TA2 0.25 0.3 0.05 0.1 0.015 Bal

2.2. Finite Element Method Description

Based on Fourier’s law, the general form of the heat transfer equation can be defined as:
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where ρ is the material density, c is the specific heat capacity, T is the temperature, t is the
time, and Q is the heat flux. In addition, the subscripts x, y, and z denote the horizontal arc
motion, the vertical arc motion, and the direction perpendicular to the xy plane, respectively.
Moreover, kx, ky, and kz are the thermal conductivities as a function of T in the x, y, and z
directions, respectively. The Gaussian cylindrical heat source is chosen as the Q heat source
formula, as shown in Equation (2).

Q(x, y, t) =
3ηP
πr2 · exp

(
−C(x − (vt + x0))

2 − C(y − y0)
2

r2

)
(2)

C is the concentration of the heat source, η is the energy absorptivity, P is the laser
power, and r is the plasma arc radius. The ambient temperature was 25 ◦C. For the initial
temperature of the substrate, 300 ◦C was used. The boundary condition in the model was
the convection with the air, which can be expressed as:

−k
∂T

∂
→
n

= h(T − Ta) (3)
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where h is the heat convection coefficient between the substrate and air, Ta is the ambient
air temperature, and

→
n is the orientation vector at the substrate surface. In our FEM model,

the geometry of the simulation domain was set to 50 mm × 50 mm × 5 mm, with a total of
83,603 nodes and 75,168 cells. The mesh size was uniformly set to 1 mm × 1 m. Table 3
summarizes the other relevant parameters during the simulation. The simulation process
was conducted by a solver based on the Lagrange–Galerkin finite element method.

Table 3. Manufacturing parameters and material properties in the experiment.

Name Units Value

Manufacturing parameters
DC Current A 90

Voltage V 80
Welding speed mm/min 90

Material properties
Density g m−3 3.525

Thermal conductivity W m−1 ◦C−1 1.79e−6T2 + 4.77e−3T + 15.9
Enthalpy J g−1 ◦C−1 3.01e−5T2 + 0.69T − 92.9

We used a Python script to extract the temperature data for each node from the FEM
results. We designed 13 groups of single-track deposition with different time steps and
different heat source locations to enrich the dataset. Each group was divided by time steps,
and more than 1000 cases of temperature fields under different deposition times were
collected. In total, 11 of these groups were training sets and 2 groups were validation sets,
which represented short and long deposition times, respectively, and were not involved
in the training stage. The training set and validation set vary in the total time used in the
deposition process. Considering that the manufacturing parameters were defined values,
the dominant factor that determined the temperature features was the variation in heat
accumulation, which can be noted as the deposition time in our research. Each training set
and validation set shared different deposition times. The volume of the validation set was
15% of the total dataset. We normalized the values of the temperature to 0∼1 in order to
train the neural network model efficiently. The training set for the model consisted of 2D
temperature fields as the output and the 1D temperatures at the center path as the input. In
this paper, we focused on the temperature variations in the melting stage of the deposition
process, and the temperatures of the cooling stage were not considered.

3. Methodology
3.1. Basic Workflow

Figure 2 illustrates a complete working framework model, where the training work
is divided into two parts: basic training and transfer training [33]. When training for a
specific set of manufacturing parameters, the whole training process goes into the left
side of the basic training process, where finite element methods are used to obtain and
pre-process the input. After the training stage, the well-trained model parameters are saved.
When new manufacturing features, such as print path, print material, and other process
parameters, emerge, the training process enters the transfer training process. The saved
model parameters can be utilized as the initial parameters to fine-tune the performance of
the model. The training cost can be significantly reduced by the transfer training method
without losing the accuracy [34]. Thus, the use of transfer training makes the training stage
a dynamic process to adapt to different situations.
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the datasets.

3.2. Architecture of the Conv1D Network

Figures 3 and 4 provide illustrations of the network architecture and the operators
used in each hidden layer. The model mainly consists of five groups of conv-blocks and
the fully connected part. A conv-block can be subdivided into a convolutional layer and a
linear layer.
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When the training data are input into the convolutional layer, the convolution opera-
tion [35] is conducted. The convolution kernel scans through the input data and derives
the eigenvalues, which can be expressed as:

al(lout, cout) = wl(cout, k) ∗ al−1(lin, cin) + bl (4)
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where wl is the weight, k is the kernel size, and cout is the number of output channels.
al−1 is the input, lin is the length of the input, cin is the input channels, and b is the bias.
The length of the output, lout, is computed from lin and k using Equation (5).

lout =
lin + 2p − k

s
+ 1 (5)

where p is the number of zero-padding and s is the size of stride. In our model, p = 2 and
s = 1. The convolutional layer is followed by a pooling layer, which amplifies the data
features following the logic of max-pooling [36]. Unlike the convolutional layer, there
are no weights and biases in the pooling layer, only the input data are scanned, and the
maximum value of each kernel is selected. After the convolution operator, the ReLU
nonlinear operator is performed. The nonlinear operation is calculated as:

al = max
(

0, al−1
)

(6)

The inclusion of nonlinear computation divides the convolutional layer and the linear
layer, avoiding the phenomenon of zero grad transmission during the training stage. At
the linear layer, we borrowed the idea of the fully connected neural network to build the
structure. The transmission of each value is calculated using the weights and biases, then
passed to the next layer after the nonlinear operator, which is calculated in Equation (7).

al
i = σ

(
wl

i·al−1 + bl
)

(7)

where al
i is the ith element of the output, wl is the weight of the current layer, and σ(.) is

the nonlinear operator. The role of the fully connected layer is to fine-tune the output
values from conv-blocks. Up to this point, a complete forward propagation is computed
and prevents the output values from being negative, where the temperature distribution
will not be lower than the ambient temperature. The fully connected layers of the model
consist of two linear layers. The nonlinear activation of the last layer is a sigmoid function
(Equation (8)).

al =
1

1 + exp
(
−al−1

) (8)

One complete propagation of the model includes forward propagation and backpropa-
gation. In our model, inputting the data of length 51 will obtain the predicted temperature
field data T̂ of size 51 × 51 after implementing one forward propagation. The detailed
size of each layer’s output is shown in Figure 3. Then, the model will calculate the loss
function and implement back-propagation. The propagation gradient according to the
learning rate will be calculated to update the parameters of the hidden layer in the stage;
this process is also called regression or gradient descent. The mean squared error (MSE)
function is chosen as the loss function for the regression stage. Equation (9) defines the
MSE loss function.

MSE =
1
N

N

∑
1

[
T̂(x, y)− T(x, y)

]2 (9)

where T is the original temperature data in the training set and T̂ is the output matrix of
the model, which represents the predicted temperature. N is the total number of training
samples. While the model performs accurately enough, the value of the loss function will
be close to zero. The Adam optimizer is used to optimize the back-propagation, which
speeds up the speed of propagation and reduces the occurrence of gradient explosion [37].
The total number of training iterations is 2000, with a learning rate of 0.0002, a minibatch
size of 128, and is implemented by Pytorch environment, on an i3-10100 3.60 GHz CPU
with an 8 G RAM. The total training time is about 6 h (21,042 s).
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4. Results and Discussion

In order to estimate the prediction ability of the Conv1D model, we will discuss the
model’s performance on the training set, the performance on the validation set, and the
performance for computation cost to comprehensively display the model’s capabilities.

4.1. The Performance of Conv1D Model at Training Set

The loss value during the training process can intuitively reflect the prediction ability
of the model. Figure 5 shows the changes in the loss value after taking the logarithm of the
MSE loss function for 2000 iterations. When calculating the training loss, we restored the
normalized output values so that they reflected the difference with the true temperature.
The loss value reached an order of magnitude of 1 × 105 at the beginning of the training
stage, which means that the model failed to capture the characteristic relationship between
the input and output. As the number of iterations increased, the training loss (log) gradually
decreased to −0.046 in the gradient descent session. Since we set the learning rate to a
fixed value, the gradient of the training loss may have been too large at each regression,
which led to oscillations in the loss curve. In this experiment, the training loss of the model
decreased with an increase in the training iterations, which means that the predicted results
of the model became more accurate. To improve the training efficiency after the training
loss decreased to 1 × 103 and reduce the fluctuation amplitude so that the model could
converge faster to the saddle point [38], it was necessary to reduce the value of the learning
rate according to the training iterations [39].
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After completing 2000 training iterations, the overall training loss of the Conv1D
model was reduced to 0.8995 ◦C. Figure 6 lists the FEM temperature distribution (column 1),
the predicted temperature distribution (column 2), and the absolute temperature error
(column 3) at t = 4.5 s, t = 9 s, and t = 13.5 s, respectively. When the time step was
4.5 s, the peak temperature of the numerical simulation was 1707.4 ◦C and the predicted
peak temperature was 1702.58 ◦C, with a minor difference of 4.82 ◦C. When deposition
proceeded to the 9 s, the predicted result of the heat source moved in the same direction
as the FEM result, and the error of the peak temperature was 4.35 ◦C. At 13.5 s, the peak
temperature reached 1802.2 ◦C as deposition proceeded, at which point, the error of the
peak temperature widened to 14.19 ◦C. We can see that the model’s temperature prediction
was basically consistent with the actual situation, and the prediction accurately captured
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the heat conduction phenomenon in the process. In the given cases, the MSEs between the
predicted temperature field and the temperature field calculated via numerical simulation
were 1.5022 ◦C, 0.7936 ◦C, and 0.7803 ◦C, respectively. Three individual prediction cases
show that the prediction performance of the Conv1D model reached a high level of accuracy
in general. By comparing the absolute temperature error between the FEM and the Conv1D
model, it can be observed that most of the prediction errors were concentrated in the molten
pool region, where the temperature gradient changed fiercely. The training results show
that the Conv1D model was able to accurately predict the characteristics of the temperature
distribution, including the direction of heat source movement and the size of the melt pool,
in the deposition process.
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Figure 6. Two-dimensional temperature field and error distribution of Conv1D and FEM results in
the deposition stage at t = 4.5 s, t = 9 s, and t = 13.5 s three substeps.

In the local temperature distribution, the neural network model still gave good results.
Figure 7a shows the temperature distribution curves at the center of the path predicted by
the Conv1D model and the numerical simulation at times t = 4.5 s, t = 9 s, and t = 13.5 s,
respectively. The plot shows that the temperature values predicted by the neural network
match well with the values calculated using the FEM, and the model’s predictions are
numerically comparable to the true temperatures during the heating phase and the cooling
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phase. The relative error (RE) of the model is one of our focuses to evaluate the model’s
prediction performance, and its expression is shown in Equation (10)

RE =

∣∣T̂(x, y)− T(x, y)
∣∣

T(x, y)
× 100% (10)
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As shown in Figure 7b, in the region with a fierce temperature gradient, the model‘s
prediction had large error fluctuations compared with the true temperature value. However,
the prediction error was controlled within 20 ◦C, with a relative error is less than 1%. In the
rest of the region, the prediction error could decrease to 5 ◦C or less, and its relative error
was controlled within 0.5%. From the point of view of the prediction value’s accuracy, the
prediction accuracy of the neural network model could reach more than 99%, and most
of the errors were concentrated in the region of the huge temperature gradient. Moreover,
considering the aspect of the limited influence that the maximum error value, which did
not exceed 20 ◦C, brings to the actual manufacturing process, this is quite acceptable.

4.2. The Performance of Conv1D Model at Validation Set

The distribution of samples in the training set affected the training effect of the model.
An unreasonable training set led to overfitting of the trained model, under which circum-
stances, the model’s error in the training set was small; still, the model’s performance in
the validation set was poor. This means that the model had a poor understanding of the
sample features and the robustness of the model was weak.

In order to evaluate the robustness of the Conv1D model, we built up a validation set
consisting of two cases, A (Figure 8c) and B (Figure 8d). Each consisted of sub-steps with a
time interval of 0.2 s, and the validation set contained a total of 161 samples. The coefficient
of determination, R2 (Equation (11)) and MSE loss, were used to measure the fitness of the
Conv1D model to the validation set data.

R2 = 1 − ∑N
1
[
T̂(x, y)− T(x, y)

]2
∑N

1
[

T(x, y)− T(x, y)
]2 (11)
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Figure 8. Scheme of (a) R2 values of validation sets, (b) MSE loss of validation sets, (c) temperature
gradient rising at geometry boundary of case A, and (d) temperature gradient rising at geometry
boundary of case B.

In Figure 8a, we can see that the model had a good performance on the validation set.
The individual sample data in the validation set, which are shown as the blue dots in the
figure, fit the red regression line very well. The overall R2 value of the validation set was
0.999963, which is very close to the ideal value of 1. The overall MSE loss of the model was
maintained around 0~5, as shown in Figure 8b. We note that there were a few samples with
large error numbers in Cases A and B, with the biggest error of 71.38 occurring at Sample
A1. Figure 8c,d indicate that these samples were located at the end of each deposition
process, where the workpiece’s temperature continued to increase. Compared to those
at the more stabilized manufacturing stage, the center of the heat source was close to
the geometric boundary of the workpiece, and the shape of the high-temperature region
changed due to the constraints of the geometric boundary of the workpiece. Therefore,
new characteristics of the temperature distribution appeared. The new changes in the
distribution characteristics of the temperature resulted in the precision of the model’s
reconstructed temperature distribution not being accurate enough.

Figure 9 gives the absolute temperature errors for the A1 sample predicted by the
model, with the true temperature and predicted temperature map listed on the bottom
left. It can be seen from the figure that most of the prediction errors were concentrated
in the high-temperature area, paralleled with the conclusion in Section 4.1. Furthermore,
the model’s prediction of the position of the heat source center was quite accurate, while
the prediction of the temperature distribution at the geometric boundary had a higher
tolerance, where the maximum error exceeded the number of 110 ◦C and reached a relative
error of 7.3%. This is consistent with the conclusion we made in the previous paragraph.
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In order to improve the performance of the neural network model on the validation
set, transfer learning is proposed to enhance the model’s prediction ability. The blue curve
in Figure 10 shows the training loss (log) curve for the validation set; compared to the
training loss in the base training, the value of the validation set’s initial loss was only
1 × 102. The training loss increased the first time due to the gradient value being too large
in the first few iterations. Then, the value of the training loss continued to drop, as in the
general case. After about 30 iterations, the loss dropped below 1, achieving the effect of
2000 iterations in the basic training. In addition, transfer learning works well with other
datasets referring to new manufacturing parameters in the production process. Using
transfer training methods tends to speed up the training procedure. The red curve in the
figure shows the regression training with the trained Conv1D model’s parameters that
match the temperature distribution dataset in the base training after changing the material
properties. Compared to the basic training, the value of the new model’s training loss
with transfer training was 100 times lower than that of base training. Reaching the same
loss value of 1, the transfer training method shortened the training iterations by nearly
500 iterations, speeding up the model’s convergence velocity by 25%. Figures A1 and A2
give additional prediction performances on the training set and the validation set.
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The proposal of transfer training aimed to transform the model’s training process from
a static state to a dynamic state. We can supplement the features of the training objects to
fine-tune the model and improve the prediction robustness of the model. At the same time,
we can use it to accelerate the training procedure to adapt the new object’s feature and save
computational time.

4.3. The Performance of Conv1D Model for Computational Cost

A small computational cost while the machine learning model is running is preferred
so that it can be deployed on adequate hardware. In addition, choosing the right model
can satisfy the requirements on the response speed in the real manufacturing order. With
accuracy requirements met, models with smaller computational costs and faster runtimes
will have higher utility values.

Figure 11 compares the difference in the number of parameters between the Conv1D
model and the commonly used fully connected neural network (FCNN) (40). In the
convolutional stage, the number of parameters used in the Conv1D model was smaller
than that of the FCNN model, floating from 10 times to 1000 times. It is noted that the
definition of the machine learning model’s training parameters refers to those participating
in forward and backward propagation, in which circumstance layers like max-pooling
contain no training parameters. The advantage of the smaller number of parameters comes
from the computation principle of the sliding convolution kernel on the input parameters
shown in Figure 4 at Section 3, which makes the Conv1D model require significantly fewer
parameters compared to the FCNN model when processing the same input data. Therefore,
the Conv1D model has a significant advantage in terms of ROM occupation.
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Figure 11. Comparison of the parameter numbers between Conv1D model and FCNN model.

Figure 12a gives the training time required for both models over 200 to 2000 iterations
and Figure 12b shows the highest accuracy achieved in the training stage. Although
the Conv1D model has a more complex architecture than the FCNN model, the overall
computation time was still quicker than that of the FCNN model due to the difference in
the parameter numbers between the convolutional layer and the fully connected layer. As
shown in Figure 12a, when the number of iterations reached 2000, the FCNN model took
26,245 s, while the Conv1D model took 20% less time, which was 21,042 s, to complete the
training. Since the training parameters of the FCNN model were much greater than those
of the Conv1D model, this resulted in the FCNN model having a slightly higher prediction
accuracy than the Conv1D model in the overall training stage. However, when the number
of iterations was increased to 1000 and above, the average prediction difference between
the two models was less than 0.5 ◦C, which is numerically acceptable.
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Table 4 gives the running time, Read-Only Memory occupation, and R2 performances
of the three Conv1D, FCNN, and FEA models on the same dataset with a length of 100.
In terms of running time, the two neural network models required much less time than
the finite element model, with a time requirement of only 0.5% of the latter, while the
Conv1D model took 0.5 s less time compared to the FCNN model, speeding up the forward
propagation by about 50%. Considering the aspect of ROM occupation, the Conv1D model
was only half the size of the FCNN model, occupying a size of 52 MB, and the size of the
FEM results file was 14 times larger than that of the Conv1D model. As for accuracy, the
difference between the three models was almost negligible.
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Table 4. Comparations between machine learning methods and finite element method.

Running Time Read-Only Memory Occupation R2

Conv1D 0.7 s 52 MB 0.99999251

FCNN 1.2 s 111.5 MB 0.99999597

FEM 3 min 55 s 721 MB 1

Table 5 summarizes the performances of typical CNN and FCNN models. It can be
seen that the overall accuracy of the CNN model was better than that of the FCNN model.
With appropriate modification to the model structure, the prediction ability of the ML
model can be improved. The three sections in this chapter provide a systematic evaluation
corresponding to the dimensions of the Conv1D model’s accuracy, robustness, and capabil-
ities. With the use of statistical methods such as MSE and R2, we can comprehend more
clearly that the ML model has an excellent ability to derive the relationship between the
process parameters and machining results in industrial manufacturing. At the same time,
compared with the use of the FEM model, the ML model has a faster response ability and
less operation consumption under the premise of ensuring the accuracy of the results. It
provides a new approach for establishing fast accurate numerical simulation afterwards.

Table 5. Comparison of the performance between the Conv1d model and typical ML models.

Conv1d Hua [39] Spodniak [40] Liao [41] Xie [42]

MSE 0.8995 / / 12.8881 18.6624

R2 0.9999 0.9995 0.9951 / 0.9980

Model type 1D-CNN 2D-CNN FCNN Physical-informed FCNN Physical-informed FCNN

5. Conclusions

In this paper, a one-dimensional convolutional neural network was constructed for pre-
dicting the two-dimensional plane temperature distribution of a workpiece during plasma
arc additive manufacturing processing using titanium–aluminum twin-wire. Through
the reasonable use of machine learning, this paper explored a neural network combined
numerical simulation method and process prediction workflow that included the finite
element method, a convolutional neural network, and transfer learning. The accuracy
of the prediction reached more than 99%. The main contributions of this paper can be
summarized as follows:

1. The article organically combined the FEM with the machine learning method and
transfer training methods. A basic training and transfer training workflow was
proposed, which provides a large amount of training data. At the same time, it
transforms the model’s training process into a dynamic process to strengthen the
model’s prediction robustness.

2. The one-dimensional convolutional neural network model designed in this paper can
effectively be fed one-dimensional processed features and predict temperature results
during the manufacturing process. The MSE of the temperature field predicted by the
neural network was reached within 0.5, and the prediction accuracy exceeded 99%.

3. The model performed well in the validation set and had a good robustness. The R2 of
the prediction results in the validation set could reach 0.999963, and the main error
was concentrated in the high-temperature region of the workpiece. Through transfer
training, the prediction error could be reduced to the desired value after 30 iterations.

4. The proposed Conv1D model had a better performance than the fully connected
neural network model by using 50% of the running time, 80% of the training time,
and only 50% of the ROM occupation. Compared with the traditional FEM prediction
of temperature, the neural network model has obvious advantages in running time
and ROM usage.
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The characterization method of matching experimental parameters and experimental
phenomena through neural networks will remain our focus in subsequent studies, and we
will explore the relationship between other parameters and the prediction effect based on
this study. In addition, there is still room for improvement in the structure of the ML model.
We will continue to explore the construction of the model to obtain a more accurate, robust,
and better-performing neural network model.
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