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Abstract: The combination of MCDM and fuzzy sets offers new potential ways to solve the challenges
posed by complex image contents, such as selecting the optimal segmentation algorithm or evaluating
the segmentation quality based on various parameters. Since no single segmentation algorithm can
achieve the best results on satellite image datasets, it is essential to determine the most appropriate
segmentation algorithm for each satellite image, the content of which can be characterized by relevant
visual features. In this research, we proposed a set of visual criteria representing the fundamental
aspects of satellite image segmentation. The segmentation algorithms chosen for testing were
evaluated for their performance against each criterion. We introduced a new method to create a
decision matrix for each image using fuzzy fusion, which combines the image content vector and the
evaluation matrix of the studied segmentation algorithms. An extension of the Preference Ranking
Organization Method Enrichment Evaluation (PROMETHEE) using intuitive fuzzy sets (IFSs) was
applied to solve this problem. The results acquired by the proposed methodology were validated by
comparing them with those obtained in expert ratings and by performing a sensitivity analysis.

Keywords: satellite imagery; image segmentation; segmentation quality assessment; multiple-criteria
decision-making methods; PROMETHEE; intuitionistic fuzzy set

1. Introduction

The development of various methodologies actively exploits the flexibility of fuzzy
logic in various areas of image processing. In image segmentation, the combination of
MCDM and fuzzy sets offers new potential ways to solve the challenges posed by complex
image content, such as choosing the optimal segmentation algorithm or the number of
clusters, improving existing algorithms, and evaluating the segmentation quality based on
various parameters.

Image segmentation plays a crucial role in satellite image analysis [1] as it involves
dividing an image into multiple regions (or segments) based on their unique characteristics,
such as color, texture, and brightness. This process facilitates a more detailed analysis of
various areas within the image, enabling the identification and classification of distinct
land cover types, such as forests, water bodies, and urban areas.

Many satellite sensors capture data in multiple spectral bands, including visible and
near-infrared [2]. Utilizing color-based segmentation, these bands, or combinations of
them, can be employed to distinguish different land cover classes. This method provides
an intuitive way to interpret satellite images as it is often easier for humans to recognize
and understand features based on color differences.

In the image segmentation process, color is the most important characteristic. It enables
the discernment of many shades of color information, making color-based segmentation a
more effective method for extracting information compared to intensity or texture-based
segmentation [3]. The authors of [4] additionally mention that the process of extracting
color features has its limitations, requiring a combination with other extraction methods
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to enhance segmentation accuracy, specifically if the object has a very small size and
range area.

Color-based segmentation can be effective and computationally efficient for certain
applications. Especially for satellite images, color contains information correlating with
human visual perception [5]. As humans naturally interpret and distinguish regions based
on color, including color information in segmentation processes creates a more effective
approach. The authors of [6] introduce a method for color image segmentation based
on the visual attention mechanism. The low-level features of the image, including color
information, are extracted to construct a saliency map that highlights the salient regions in
the image, which aids in the subsequent segmentation process.

Visual features of an image describe various aspects of the image content. Satellite
images have distinct colors and textures as well as patterns and shapes. Volcanoes and
craters are characterized by circular shapes, whereas mountain ranges typically extend in
lengthy, occasionally wavy lines. This is an important factor in the selection of satellite
image segmentation or processing methods. In addition, the MCDM methods [7] provide
tools suitable for addressing numerous practical decision-making scenarios where the task
involves identifying the optimal alternative amidst various competing criteria.

An alternative, in the MCDM context, represents a candidate or a choice that is being
considered for selection. From an image segmentation perspective, alternatives could be
different segmentation algorithms that are being compared based on multiple criteria to
determine their effectiveness in producing desired segmentation results. Criteria are the
standards or measures used to evaluate and compare alternatives. In image segmentation,
criteria can be image content features or objective quality metrics.

The utilization of MCDM methods extends to diverse applications in various domains.
MCDM methods, like a neutrosophic extension of the CoCoSo method [8], were used to
select the best retrofit strategy. WASPAS-mGqNS [9] was utilized for ranking regions by
minimizing the traveled distance and maximizing the exploration space of an autonomous
robot. The mGqNN version of the PROMETHEE multi-criteria method was used to calcu-
late the trustworthiness index of the respondents participating in a game-based survey [10].
MCDM methods have also been adapted for formulating and solving image processing
problems, including segmentation. The authors of [11] investigated the application of
evaluation based on the distance from average solution (EDAS) method within the con-
text of image segmentation. The Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) method was incorporated as a component within the model for image
segmentation fusion [12]. A novel edge detection method for color images was suggested,
utilizing MCDM combined with evidential reasoning and widely used edge detection
operators [13].

The wide variety of evaluation criteria that can be used for image segmentation quality,
including both objective metrics and subjective evaluations, makes MCDM methods well-
suited for the problem of selecting the most appropriate segmentation method. Since
MCDM methods can handle both quantitative and qualitative criteria, this offers a way
to blend objective measures with subjective human judgments. The popular objective
quality evaluation metrics assess the segmented image according to one feature, while with
the help of MCDM methodology using a set of selected visual features for which we do
not always have objective metrics, we can have a more sensitive qualitative evaluation.
Image content varies widely, and MCDM methods can provide a flexible framework to
adapt to different data types, allowing users to incorporate various image-specific criteria
without constraints.

In parallel, using fuzzy set theory in MCDM enables the representation and handling of
uncertainty and imprecision within these criteria, such as subjectivity in human perception
or lack of ground truth data.

Intuitionistic fuzzy set (IFS) theory [14] is an extension of the traditional fuzzy set
theory, which was introduced by L. A. Zadeh in the 1960s. While fuzzy sets represent un-
certainty and vagueness in a mathematical framework, intuitionistic fuzzy sets incorporate
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an additional dimension called “non-membership”. IFS theory recognizes that in many
real-world scenarios, uncertainty is not only characterized by degrees of membership but
also by degrees of non-membership. This recognition allows for a more comprehensive
and nuanced representation of uncertainty, which is a common problem in image segmen-
tation. IFS theory has applications in various domains, including image segmentation.
For example, traditional FCM faces challenges when segmenting infrared ship targets due
to interference from non-ship objects and variations in intensity. The intuitionistic fuzzy
C-means (IFCM) method [2] was designed specifically for infrared ship segmentation. The
authors of [15] introduced the Bias Corrected Intuitionistic Fuzzy Clustering with Spatial
Noise Inhibition (BCIFCMSNI) method based on IFS theory. This method is designed for
image segmentation to address issues related to bias fields and noise artifacts in MRI im-
ages. The BCIFCMSNI method utilizes the Euclidean intuitionistic fuzzy distance measure
to cluster the IFS. This approach uses the principles of IFS theory to effectively manage the
inherent vagueness and uncertainty found in MRI images.

MCDM methods can be extended to incorporate various other fuzzy sets. Pythagorean
neutrosophic sets (PNSs) [16–18] are an extension of neutrosophic sets, which themselves
are an extension of fuzzy sets. PNSs assign three values to each element: truth-membership,
indeterminacy-membership, and falsity-membership, with the constraint that the square
of the truth-membership, indeterminacy-membership, and falsity-membership sum up to
one, satisfying the Pythagorean theorem. Another newer concept is the Pythagorean pic-
ture fuzzy set (PPFS), which combines the picture fuzzy set with Yeger’s Pythagorean
fuzzy set [19] and is applied to developing the Pythagorean fuzzy C-means (PFCM)
algorithm [20].

The ability to assess and compare the segmentation methods is equally important. Re-
searchers often need to systematically evaluate and improve novel segmentation methods
by comparing them to existing techniques or by selecting the most suitable for existing im-
age content. Different environmental monitoring, urban planning, or disaster management
applications demand specialized segmentation methods to extract the required information.
Less research is published focusing on developing methodologies that actively consider
the unique content of satellite images to adapt segmentation methods, ensuring higher
accuracy and applicability. The main contributions introduced in this research can be
summarized as follows:

• We developed a methodology for selecting the most appropriate segmentation al-
gorithm for satellite images using the PROMETHEE multi-criteria decision-making
(MCDM) method extended with intuitionistic fuzzy sets (IFSs). In connection with
this, we also applied the SWARA weight selection method and proposed a set of visual
criteria representing the fundamental aspects of satellite image segmentation.

• In the suggested methodology, we proposed an extension of the classical PROMETHEE
MCDM method by incorporating intuitionistic fuzzy sets (IFSs). Since traditional
fuzzy sets do not define negative numerical values, two arrays have been used to
separately contain positive and negative outranking flow differences of the proposed
PROMETHEE-IFS method.

• An innovative approach to constructing a decision-making matrix is introduced. In this
methodology, the fuzzy fusion of the image content vector and segmentation algorithm
matrix allows for assessing and comparing different segmentation algorithms based
on their performance against each visual criterion of image content.

The structure of this research is as follows. Section 2 provides an overview of related
works. Section 3 consists of a methodology framework summary, analysis of the visual
features’ set of the satellite image content, segmentation algorithm selection, description of
criteria weights, description of the fundamental concepts of intuitionistic fuzzy sets (IFSs),
and PROMETHEE modification via intuitionistic fuzzy sets (IFSs). Section 4 demonstrates
a practical application of the PROMETHEE-IFS methodology to select the optimal segmen-
tation algorithm for the RGB satellite images. The discussion section (Section 5) addresses
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the study’s findings and implications, while Section 6 presents concluding observations
and outlines potential aspects for future work.

2. Related Works

Segmentation quality assessment and selection of an optimal segmentation algorithm
are often challenging, especially when dealing with noisy or complex [21,22] image content.
The MCDM method can consider multiple, sometimes conflicting, criteria to address these
challenges to make more informed decisions. Beyond its effectiveness, MCDM brings
versatility to image segmentation quality evaluation, enabling the integration of subjective
human preferences and adaptation to diverse image characteristics. This ability to handle
multiple criteria makes MCDM useful for image segmentation problems.

In every segmentation situation, three important and related problems must be solved:
(1) selecting an appropriate segmentation algorithm for the data set, (2) determining the
optimal number of clusters, and (3) assessing the segmentation quality (typically using
quality evaluation metrics [23]). This article addresses the first and third issues. However,
the segmentation quality is related to the ranks (the first rank is the best segmentation, etc.)
determined by the decision-making method.

Several methods and strategies can be employed for selecting the most optimal seg-
mentation algorithm. The most common is comparative analysis, which is conducting
practical tests by applying various segmentation algorithms to the specific image content
and evaluating their performance using quality metrics [24]. The quality of the active
contour model based on local Kullback–Leibler divergence for fast image segmentation [25]
was validated using popular DSC (Dice Similarity Coefficient) and IoU (Intersection over
Union) external measures. Another active contour model based on the retina and pre-fitting
reflectance for fast image segmentation [26] used running time, number of iterations, and
IoU measures for comparative tests. The full-reference objective metric developed by the
authors of [27] was validated by comparing its performance with other state-of-the-art
objective measures. However, consulting experts from a particular field may become in-
dispensable when dealing with uncommon image content, especially when ground truth
is not available. Content analysis [28] deals with understanding the image content that
can guide the choice of the algorithm. On the other hand, content analysis might involve
some level of subjectivity, especially when it comes to defining what features are important.
However, using consensus from experts or statistical measures can mitigate this issue. Ma-
chine learning-based methodologies [29] involve training models, including deep neural
networks, that could predict the optimal segmentation algorithm based on image content
statistics. Features extracted from the image, such as texture, color, and shape, can be used
as input for the model. The authors of [30] explored the hypothesis of using meta-learning
(a subfield of machine learning and artificial intelligence) to select the most suitable image
segmentation algorithm. One of the shortcomings of training deep learning networks is the
demand for substantial allocation of computational resources [31]. Other techniques are
needed when training a model is impractical or the dataset is too small.

The authors of [32] propose a model for decision-making support for the evaluation of
clustering algorithms (DMSECAs) to estimate the performance of clustering algorithms in
selecting the most satisfactory clustering algorithm according to the decision preferences.
Research findings indicate that the DMSECAs model, following the principles of the
80-20 rule, can produce a list of algorithm priorities and an optimal ranking scheme
that best aligns with the decision preferences of all participants engaged in a decision-
making scenario. The viability and efficiency of the presented model are demonstrated and
confirmed through a statistical analysis of rankings using 20 UCI datasets.

The authors of [33] introduce a group MCDM (GMCDM) framework for assessing and
ranking clustering algorithms across diverse benchmark datasets, employing internal and
external measures. As relying solely on a single ranking algorithm may lack robustness,
three MCDM algorithms are used, and their ranks are merged using the Borda method to
obtain the final ranking.
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For satellite images, the neutrosophic WASPAS [34] method was used to select the
best edge detection algorithm based on visual features of satellite images, such as contrast,
roughness, and edge density evaluated by four user groups. The reliability of the method-
ology was validated through expert assessments. Similarly, the authors of [35] introduced a
novel methodology for the qualitative selection of lossy compression techniques for aerial
images. The suitability of transform-based lossy compression algorithms with specific
compression ratios was assessed according to image resolution and content. These algo-
rithms were ranked for aerial images using WASPAS-SVNS with a direct criteria weight
evaluation method.

The quality of the segmentation results can be significantly influenced by the selec-
tion of the optimal number of clusters. MCDM methods such as the WSM (Weighted
Sum Model), PROMETHEE II (Preference Ranking Organization Method for Enrichment
Evaluation), and TOPSIS have been used to estimate the optimal number of clusters for a
given dataset [36]. The authors proposed an MCDM-based approach for estimating the
optimal number of clusters in a data set, which treats different numbers of clusters as alter-
natives and clustering validity measures as criteria. The comparative study demonstrates
that the three MCDM methods (WSM, TOPSIS, and PROMETHEE II) surpass existing
relative measures.

Segmentation quality is influenced by various other factors, such as preprocessing,
segmentation parameters, and color space. In a recent paper [37], the authors developed
a genetic algorithm designed to select optimal segmentation methods and their optimal
segmentation parameters and color space. The authors of [38] proposed a selection algo-
rithm that uses a deep neural network (DNN) to select the optimal segmentation results by
predicting the optimal number of segmentation iterations.

The existing methods mentioned earlier do not fully address several common issues,
such as the need to train large models that demand substantial computational resources,
working with a small dataset, analyzing an unconventional image content type(s), or
lacking ground truth data that is often unavailable for satellite image datasets or is inac-
curate. Various methods were employed to select the optimal segmentation algorithm,
including comparative and content analysis and machine learning-based methodologies.
A particular aspect the existing methods might not have fully evaluated is the need for a
unified approach combining several criteria. While some methods consider expert opinions,
extract statistical features, or use several objective metrics simultaneously, there is a gap in
evaluating image segmentation algorithms that could merge expert knowledge with visual
image features, providing more specialized decision-making for satellite images.

3. Selection of Methods for Methodology
3.1. A Framework of the Methodology Implementation

The usual process of evaluating the quality of segmentation involves calculating
individual internal, external, or relative metrics without considering several criteria si-
multaneously. The proposed methodology can be used to determine the most effective
segmentation algorithm for specific use cases. The proposed methodology for the selection
of image segmentation algorithms includes six essential steps:

1. Determination of a set of basic visual characteristics (properties) of satellite
image content.

2. Selection of a set of segmentation algorithms.
3. Evaluation of the influence of the visual properties of satellite images on the result

of the respective segmentation algorithms. The images of different content (with the
selected visual properties varying within the min–max range) were used to evaluate
the algorithms.

4. Evaluation of satellite image content according to a set of visual characteristics.
5. Application of the PROMETHEE-IFS method for optimal decision-making using

selected criteria weights.
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6. Ranking of segmentation algorithms according to their suitability for the respective
type of satellite image.

After obtaining the ranks, additional steps could involve verifying the results, for
example, through a subjective quality evaluation.

The suggested approach is represented in Figure 1. It is versatile and can be applied
with any segmentation method, distinct visual image features, or dataset. The method for
criteria weights can also be selected according to preference.
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Figure 1. General framework for the selection of optimal segmentation algorithm for satellite images.

3.2. Visual Characteristics (Features) of the Satellite Image Content

Satellite images capture a wide range of visual characteristics that provide valuable
information about the Earth’s surface and the objects it contains. Our methodology is
designated for selecting the optimal segmentation method considering these character-
istics of the image content. Many visual features may significantly influence the results
of segmentation algorithms. Thus, in our proposed methodology, the quality of image
segmentation is determined by the image content and the sensitivity of the segmentation
algorithm, i.e., how certain visual features influence the segmentation result.

For this research, we selected five distinct visual features to construct the initial
image vector: contrast, roughness, regions of very small size, distortions of regions, and
smoothness (continuity) of region edges. All mentioned visual features are discussed below.

Satellite images with high contrast make distinguishing between different land covers
easier, as there is a clear separation between the pixel intensities, improving the segmenta-
tion method accuracy for identifying the region boundaries.

Brightness contrast (or global contrast) determines the difference in brightness between
the lightest and darkest parts of an image. An image with high brightness contrast will
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have bright highlights and dark shadows, while an image with low contrast will have
a uniform brightness across the entire image. Color contrast refers to the distinction in
brightness between two neighboring colors or overlapping colors, typically involving a
foreground and background color [1]. An image with high color contrast will have vivid
and distinct colors, while an image with low color contrast will have muted or similar
colors. Color-based image segmentation can sometimes encounter challenges when visually
distinct colors are close to each other in the chosen color space and are incorrectly assigned
to the same cluster. Contrast adjustment is a common preprocessing step incorporated
into various segmentation algorithms to enhance segmentation accuracy by emphasizing
edge pixels. Figure 2 shows low brightness contrast (Figure 2a,b) compared to high color
contrast in images (Figure 2c,d).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 31 
 

 

For this research, we selected five distinct visual features to construct the initial image 

vector: contrast, roughness, regions of very small size, distortions of regions, and smooth-

ness (continuity) of region edges. All mentioned visual features are discussed below. 

Satellite images with high contrast make distinguishing between different land co-

vers easier, as there is a clear separation between the pixel intensities, improving the seg-

mentation method accuracy for identifying the region boundaries. 

Brightness contrast (or global contrast) determines the difference in brightness be-

tween the lightest and darkest parts of an image. An image with high brightness contrast 

will have bright highlights and dark shadows, while an image with low contrast will have 

a uniform brightness across the entire image. Color contrast refers to the distinction in 

brightness between two neighboring colors or overlapping colors, typically involving a 

foreground and background color [1]. An image with high color contrast will have vivid 

and distinct colors, while an image with low color contrast will have muted or similar 

colors. Color-based image segmentation can sometimes encounter challenges when visu-

ally distinct colors are close to each other in the chosen color space and are incorrectly 

assigned to the same cluster. Contrast adjustment is a common preprocessing step incor-

porated into various segmentation algorithms to enhance segmentation accuracy by em-

phasizing edge pixels. Figure 2 shows low brightness contrast (Figure 2a,b) compared to 

high color contrast in images (Figure 2c,d). 

(a) (b) 

(c) (d) 

Figure 2. Contrast features of different regions: (a,b) low contrast between river and forest, (c,d) 

high contrast between river and forest. (a) “river_5.jpg“, (b) “river_10.jpg “, (c) “river_327.jpg “, (d) 

“river_249.jpg “. Images from the Aerial Image Dataset (AID) [39]. 

Roughness refers to the degree of irregularity or coarseness in an image’s texture or 

surface [22]. This irregularity or coarseness can manifest as pixel color values, intensity 

levels, or texture pattern fluctuations. In a color image, roughness can be used to describe 

how color values change spatially. Rapid fluctuations in pixel color values across an area 

of the image indicate a high roughness (Figure 3c,d). Low roughness (Figure 3a,b) sug-

gests a smoother, uniform appearance, such as water, and is easier to segment. While high-

roughness regions can be more challenging to segment, roughness can help identify dif-

ferent regions of an image if they have different color fluctuations. Low-level features like 

roughness may not necessarily correspond to objects with semantic meaning, such as 

Figure 2. Contrast features of different regions: (a,b) low contrast between river and forest,
(c,d) high contrast between river and forest. (a) “river_5.jpg”, (b) “river_10.jpg”, (c) “river_327.jpg”,
(d) “river_249.jpg”. Images from the Aerial Image Dataset (AID) [39].

Roughness refers to the degree of irregularity or coarseness in an image’s texture or
surface [22]. This irregularity or coarseness can manifest as pixel color values, intensity
levels, or texture pattern fluctuations. In a color image, roughness can be used to describe
how color values change spatially. Rapid fluctuations in pixel color values across an
area of the image indicate a high roughness (Figure 3c,d). Low roughness (Figure 3a,b)
suggests a smoother, uniform appearance, such as water, and is easier to segment. While
high-roughness regions can be more challenging to segment, roughness can help identify
different regions of an image if they have different color fluctuations. Low-level features
like roughness may not necessarily correspond to objects with semantic meaning, such as
bushes in the desert. High roughness is related to the inherent characteristics of the image
or object and represents meaningful visual content. However, high roughness and noise
can sometimes be related or occur together. Noise is unrelated to the image and represents
unwanted variations introduced during satellite image acquisition or processing.
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The characteristics of texture or roughness can vary depending on the direction.
Anisotropic texture in one direction (e.g., along the dune crests) might appear relatively
smooth and homogeneous. In contrast, in another direction (e.g., perpendicular to the
dune crests), the texture might appear rough and exhibit significant changes in pixel values
(Figure 3c).

Regions of very small sizes image feature [34] is related to the number of small
clusters in the satellite image. The size of the individual cluster could be determined by the
pixel count. In color-based image segmentation, the number of clusters is equivalent to the
number of colors perceived by the human eye. Each cluster typically represents a distinct
color or a range of similar colors. If the satellite image contains a wide range of distinct
color values, the user may set many clusters, with each representing a different color.
These clusters have semantic meaning, such as crop fields or buildings (Figure 4c), and can
influence image segmentation in several ways. Generally, the possibility of making errors
during segmentation decreases if there are only several big clusters (Figure 4a) compared
to many small clusters (Figure 4b,d). If the image contains noise or slight variations in
pixel values (roughness), these can be misinterpreted as distinct regions when segmenting
images with many small regions. This sensitivity to noise can lead to errors in segmentation,
resulting in the inclusion of unwanted details (under-segmentation) or the fragmentation
of larger meaningful regions (over-segmentation). Many segmentation methods employ
region merging and filtering or applying smoothing or noise reduction as the pre-processing
step to address these issues.

Distortions of regions refer to errors or inaccuracies in delineating and separating
objects or regions of interest within an image. These distortions can take various forms,
including holes, shadows, clouds (smoke), sea spray (Figure 5c), or compression artifacts.
Shadows (Figure 5b) in satellite images can be particularly challenging and often mistakenly
segmented as part of an object. Changes in lighting conditions can result in variations
in the appearance of shadows. Thicker and more opaque clouds can create additional
shadows on the ground (Figure 5d). This can result in overly complex and redundant
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segmentation results, which may require additional post-processing steps to merge or
simplify the segmented regions.
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Holes in the segmentation result can be defined as visually noticeable regions in
the original image but semantically unwanted within the segmented area based on the
context and application. Holes (under-segmentation) can happen due to the presence of low
contrast, noise, or the limitations of the segmentation method. If an object in the image is
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partially occluded by another object or some obstruction, it can lead to holes. For example,
the reflection of the tree shadows in the water (Figure 5a).

Smoothness (or continuity) of region edges image feature refers to the degree to
which the boundaries between different regions in an image are visually coherent and
uninterrupted. In the context of image segmentation, the smoothness of region edges
significantly affects the accuracy of the segmentation results. If the edges between regions
are not smooth enough and exhibit noise or irregularities, it can lead to over-segmentation
(Figure 6a,b). Compression artifacts can break continuous object boundaries into smaller,
disconnected segments (jagged edges). This fragmentation can result in the segmentation
algorithm treating parts of a single object as separate objects. Jagged edges in satellite
or aerial imagery can often be created naturally by tree lines, especially when trees have
irregular or densely packed canopies (Figure 6d). If the edges between regions are overly
smooth, meaning they lack sufficient contrast or sharpness (Figure 6c), it can result in
regions being merged or fused, leading to under-segmentation.
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Several other features can be considered. If segmentation is based on color, the number
of clusters is equivalent to different colors in the segmented image. This feature is influenced
by contrast and roughness features. When used as an image segmentation quality metric,
the context-dependent nature of such criterion presents challenges that make it less suitable
for assessing image segmentation quality. While reducing the number of clusters may be
desirable in some cases to simplify an image or emphasize dominant objects, in other cases,
maintaining a larger number of clusters can be equally valid, especially when preserving
fine details or capturing subtle color variations.

The number of clusters also influences the computational complexity of the seg-
mentation process, increasing processing time. Although comparison and optimization
studies [15,40] would need execution time as a criterion, time depends on the number of
pixels to be processed, the algorithm (or its implementation), and computer specifications.
Consequently, this variability can make it more challenging to compare the results obtained
by another research directly.

Finally, the shape of clusters can influence the segmentation quality. Different segmen-
tation algorithms have varying sensitivities to cluster shapes. For example, K-means is
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suited for spherical (convex) clusters, while other methods, such as DBSCAN, are suited
for nonconvex clusters [23]. The shape of clusters feature is again context-dependent, and
what might be considered an appropriate cluster shape can differ based on the goals of
segmentation or application requirements.

3.3. Segmentation Algorithm Selection

The process of selecting an image segmentation algorithm involves considering various
factors and criteria like dataset characteristics and application area. To demonstrate the
practical realization of methodology, we selected five soft clustering alternatives: fuzzy C-
means (FCM) [41], superpixel-based fast fuzzy C-means (SFFCM) [42], significantly fast and
robust fuzzy C-means (FRFCM) [40], robust self-sparse fuzzy clustering (RSSFCA) [43], and
the Gaussian mixture model (GMM). Except for the GMM, all segmentation algorithms are
modified versions of the FCM segmentation method. Fuzzy image segmentation algorithms
can handle uncertainties and ambiguities in the image data. The original FCM clustering
algorithm has been widely applied for image segmentation problems. FCM allows each
pixel of an image to belong to multiple clusters simultaneously, which is useful for images
with complex textures and overlapping objects. However, FCM has limitations such as
sensitivity to noise, initialization dependency, and slow convergence, which led to the
development of many modified versions of FCM such as T-spherical fuzzy C-means [44],
improved fuzzy subspace clustering [45], and an adaptive entropy weighted picture fuzzy
clustering algorithm with spatial information (APFCM_S) [46].

Image segmentation algorithms, including clustering-based methods like FCM, define
the objective function that serves as a mathematical representation of the goal the algorithm
aims to achieve. The objective function quantifies how well the segmentation algorithm is
performing and helps guide the algorithm to find the optimal segmentation solution. The
objective function is often designed to be minimized. The classical FCM algorithm defines
its objective function as follows:

JFCM =
C

∑
i=1

N

∑
j=1

um
ij ·d2

ij (1)

JFCM is FCM’s objective function that aims to minimize the distance between pixels and
cluster centers while considering the extent to which each pixel belongs to each cluster. The
parameter m > 1, referred to as the fuzzifier, controls the level of fuzziness in the clustering
outcome, with higher m values resulting in more fuzzy clusters. C is the number of clusters,
and N is the number of pixels. dij is the distance from the j-th pixel to the i-th cluster. uij
is the degree of membership of the j-th pixel in the i-th cluster

(
0 ≤ uij ≤ 1

)
. Researchers

often modify objective functions depending on the image content to enhance segmentation
results. A common solution to suppress the influence of noise is the inclusion of (fuzzy)
local spatial information inside the objective function [47].

Traditional fuzzy clustering algorithms encounter several problems. They are sensitive
to outliers due to the non-sparse nature of fuzzy memberships. Secondly, these algorithms
often lead to excessive image over-segmentation, primarily due to the loss of local spatial
information within the image. These issues are solved by the RSSFCA method. The authors
define a final objective function in the following form:

JRSSFCA =
C

∑
i=1

N

∑
j=1

uij·Φ′ (xj |vi, ∑i ) + γ·
C

∑
i=1

N

∑
j=1

u2
ij. (2)

Φ′(xj
∣∣vi, ∑i

)
represents the distance metric between xj and vi while also ensuring the

requirement of positive values on the distance measure metric. The xj denotes the j-th pixel
in the image and vi is the i-th clustering center. Parameter γ is a balancing parameter that
controls the sparsity level within memberships. Adjusting the γ value results in variations
in the objective function, leading to different levels of resilience to outliers or noise.
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FRFCM represents a significant advancement in FCM algorithms, utilizing morpho-
logical reconstruction (MR) and membership filtering to enhance speed and robustness.
Compared to conventional FCM, FRFCM offers simplicity and significantly improved pro-
cessing speed, as it eliminates the need to calculate distances between pixels and clustering
centers within local spatial neighborhoods. The proposed FRFCM method is executed on
the grayscale histogram, resulting in the formulation of the objective function as follows:

JFRFCM =
q

∑
l=1

C

∑
k=1

γl ·um
kl∥ξl − vk∥2 (3)

ukl represents the fuzzy membership of gray value l concerning cluster k; ∑
q
l=1 γl = N, and

N is the total number of pixels in the grayscale image f = {x1, x2, . . . , xN}, x1 is the gray
value of the i-th pixel. vk represents the prototype value of the k-th cluster. ξ is an image
reconstructed by MR, and ξl is a gray level, (1≤ l ≤ q); q denotes the number of the gray
levels contained in ξ. The ξ = Rc( f ), where Rc is the morphological closing operation and f
is the original image.

The SFFCM method takes a novel approach by integrating the color histogram into its
objective function, resulting in a faster segmentation process. The improved performance
in color image segmentation is achieved by incorporating both adaptive local spatial
information and global color features into the objective function:

JSFFCM =
q

∑
l=1

C

∑
k=1

Sl ·um
kl∥
(

1
Sl

∑
p∈Rl

xp

)
− vk∥2 (4)

l (1≤ l ≤ q) is the color level; q is the number of regions of the super-pixel image; C is
the number of clusters; Sl is the number of pixels in the l-th region Rl ; xp is the color
pixel within the l-th region of the super-pixel image obtained by Multiscale Morphological
Gradient Reconstruction-Watershed Transform MMGR-WT [42].

The GMM involves the superposition of multiple Gaussian distributions. The GMM
distinguishes itself by its enhanced ability to handle outliers compared to K-means cluster-
ing. However, it does not consider spatial information [48], which may not effectively pro-
cess content with noise or complex images. The GMM objective function can be defined as
the log-likelihood of the data, which is to be maximized. For an image X = {x1, x2, . . . , xN}
consisting of N data points (pixels) and a GMM with C Gaussian components, the objective
function JGMM can be defined as follows:

JGMM =
N

∑
i=1

log

(
C

∑
j=1

πj·
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(xi |µj, ∑j )

)
(5)

where N is the number of pixels, C is the number of Gaussian components in the mixture;
πj is the weight (or mixing coefficient) of the j-th Gaussian component, with the constraint
∑C

j=1 πj = 1; xi is the i-th pixel; µj is the mean vector of the j-th Gaussian component; ∑j is
the covariance matrix of the j-th Gaussian component;

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 31 
 

 

Φ′(𝑥𝑗|𝑣𝑖 , ∑𝑖) represents the distance metric between 𝑥𝑗 and 𝑣𝑖 while also ensuring the 

requirement of positive values on the distance measure metric. The 𝑥𝑗  denotes the j-th 

pixel in the image and 𝑣𝑖 is the i-th clustering center. Parameter γ is a balancing parame-

ter that controls the sparsity level within memberships. Adjusting the γ value results in 

variations in the objective function, leading to different levels of resilience to outliers or 

noise. 

FRFCM represents a significant advancement in FCM algorithms, utilizing morpho-

logical reconstruction (MR) and membership filtering to enhance speed and robustness. 

Compared to conventional FCM, FRFCM offers simplicity and significantly improved 

processing speed, as it eliminates the need to calculate distances between pixels and clus-

tering centers within local spatial neighborhoods. The proposed FRFCM method is exe-

cuted on the grayscale histogram, resulting in the formulation of the objective function as 

follows: 

𝐽𝐹𝑅𝐹𝐶𝑀 =∑∑𝛾𝑙 ∙ 𝑢𝑘𝑙
𝑚

𝐶

𝑘=1

‖𝜉𝑙 − 𝑣𝑘‖
2

𝑞

𝑙=1

 (3) 

𝑢𝑘𝑙 represents the fuzzy membership of gray value l concerning cluster k; ∑ 𝛾𝑙 = 𝑁
𝑞
𝑙=1 , 

and N is the total number of pixels in the grayscale image f = {𝑥1, 𝑥2, … , 𝑥𝑁}, 𝑥1 is the gray 

value of the i-th pixel. 𝑣𝑘 represents the prototype value of the k-th cluster. ξ is an image 

reconstructed by MR, and 𝜉𝑙 is a gray level, (1≤ 𝑙 ≤ 𝑞); q denotes the number of the gray 

levels contained in ξ. The ξ = 𝑅𝑐(𝑓), where 𝑅𝑐 is the morphological closing operation 

and f is the original image. 

The SFFCM method takes a novel approach by integrating the color histogram into 

its objective function, resulting in a faster segmentation process. The improved perfor-

mance in color image segmentation is achieved by incorporating both adaptive local spa-

tial information and global color features into the objective function: 

𝐽𝑆𝐹𝐹𝐶𝑀 =∑∑𝑆𝑙

𝐶

𝑘=1

∙ 𝑢𝑘𝑙
𝑚

𝑞

𝑙=1

‖(
1

𝑆𝑙
∑ 𝑥𝑝
𝑝∈𝑅𝑙

) − 𝑣𝑘‖

2

 (4) 

l (1≤ 𝑙 ≤ 𝑞) is the color level; q is the number of regions of the super-pixel image; C is the 

number of clusters; 𝑆𝑙 is the number of pixels in the l-th region 𝑅𝑙; 𝑥𝑝 is the color pixel 

within the l-th region of the super-pixel image obtained by Multiscale Morphological Gra-

dient Reconstruction-Watershed Transform MMGR-WT [42]. 

The GMM involves the superposition of multiple Gaussian distributions. The GMM 

distinguishes itself by its enhanced ability to handle outliers compared to K-means clus-

tering. However, it does not consider spatial information [48], which may not effectively 

process content with noise or complex images. The GMM objective function can be de-

fined as the log-likelihood of the data, which is to be maximized. For an image 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑁} consisting of N data points (pixels) and a GMM with C Gaussian compo-

nents, the objective function 𝐽𝐺𝑀𝑀 can be defined as follows: 

𝐽𝐺𝑀𝑀 =∑log(∑𝜋𝑗 ∙ Ɲ(𝑥𝑖|𝜇𝑗, ∑𝑗)

𝐶

𝑗=1

)

𝑁

𝑖=1

 (5) 

where N is the number of pixels, C is the number of Gaussian components in the mixture; 

𝜋𝑗is the weight (or mixing coefficient) of the j-th Gaussian component, with the constraint 

∑ 𝜋𝑗 = 1
𝐶
𝑗=1 ; 𝑥𝑖 is the i-th pixel; 𝜇𝑗 is the mean vector of the j-th Gaussian component; ∑𝑗 

is the covariance matrix of the j-th Gaussian component; Ɲ  represents the probability 

density function of a multivariate Gaussian distribution with mean μ and covariance ma-

trix ∑. The GMM’s objective function seeks to find the parameters (𝜋𝑗, 𝜇𝑗, ∑𝑗) that max-

imize the likelihood of the observed data. This is typically done using the Expectation-

represents the probability density
function of a multivariate Gaussian distribution with mean µ and covariance matrix ∑.
The GMM’s objective function seeks to find the parameters (πj, µj, ∑j) that maximize the
likelihood of the observed data. This is typically done using the Expectation-Maximization
(EM) algorithm [49], which iteratively estimates the parameters by maximizing the objective
function. In the E-step, the algorithm calculates the posterior probabilities of data points
belonging to each Gaussian component. In the M-step, it updates the parameters to
maximize the likelihood.

The main requirement for the selection of segmentation methods was that the segmen-
tation results created by the selected methods were visually distinguishable and provided
different subjective evaluation results. Based on the segmentation tests using the AID, it
was noticed that fuzzy subspace clustering (FSC), maximum entropy clustering (MEC),
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and FCM consistently produced visually very similar segmentation results. Therefore, any
of these segmentation methods could have been included in the list of alternatives, but not
all together.

Selecting the right combination of parameters for image segmentation algorithms
(known as hyperparameter tuning [23]) is often a necessary starting process. The user is
required to provide the number of clusters as input for all segmentation algorithms selected
for this case study. The optimal number of clusters is a hyperparameter that needs to be
tuned. A common approach for determining the optimal number of clusters is to select
the number corresponding to the highest average silhouette score [50]. However, as this is
not the focus of the current research, default segmentation parameters were used, and the
number of clusters was set to the dominant colors perceived in the image. Because there
were various color shades, we experimented with different numbers of clusters to ensure
that the segmentation results matched the human visual system (HVS). No additional
pre-processing techniques to improve segmentation accuracy were applied.

3.4. Method for Criteria Weights

Once the set of criteria is determined, the next step is to decide on their relative
importance through weighting methods. The evaluation of criteria weights is a common
issue that arises in many MCDM methods. Criteria weighting must be carefully selected
in most MCDM models because it greatly affects the final ranking of the alternatives [51].
Weights can be specified by experts (subjective weighting) or calculated via mathematical
weighing procedures (objective weighting). In objective weighting, the decision maker
has no role in assigning the weights. Using an integrated weighting approach combining
subjective and objective weighting methods is also possible. Objective weighting is applied
once the data of the decision matrix is known, while subjective weighting can be applied
once the criteria set is known. Depending on the characteristics of the decision problem,
the available data, and the goals of decision-makers, numerous weighting methods can be
used with MCDM.

The stepwise weight assessment ratio analysis method (SWARA) [52] incorporates
individual expert opinions, and it belongs to the subjective weighting method group.
Naturally, these methods may require significant time and preparation for participants to
evaluate the image content. This can be a drawback, especially when dealing with a large
set of subjective criteria, and objective weighting may be more efficient. The entropy weight
method (EWM) [53] is a commonly employed objective weighting method for MCDM
problems, which evaluates the degree of value dispersion in decision-making. In contrast
to subjective weighting models, the EWM’s primary strength is its ability to eliminate the
influence of human factors on indicator weights. However, in certain situations, EWM may
also lead to distorted decision-making results.

The SWARA method, which was selected for calculating criteria weights, can be
summarized by the following six steps:

(1) Identification of the criteria set. This involves defining and selecting the key factors or
attributes that are relevant and important to the decision-making problem at hand.
The criteria must be clearly defined, measurable, and non-redundant.

(2) An expert evaluation is used to sort the criteria in descending order based on their
importance. This step provides a starting point for determining the criteria weights.
Ten experts consisting of scientists from Vilnius Gediminas Technical University
(Vilnius Tech) with teaching experience in image processing were interviewed to rank
the criteria.

(3) Determining the average value of comparative importance sj; how much more impor-
tant is criteria Ci than criteria Ci+1. The results are presented in Table 1.

(4) The benefits of the comparative importance are calculated as follows:

k j =

{
1, j = 1,
sj + 1, j > 1.

(6)
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(5) Transitional weights are recalculated, where j is the index of the criteria:

qj =

{
1, j = 1,
qj−1

kj
, j > 1. (7)

(6) The final weights are normalized, where n is the number of criteria:

wj =
qj

∑n
j=1 qj

(8)

The results are presented in the last column of Table 2.

Table 1. Evaluation of the relative importance by criteria pairs.

Experts
Pairwise Evaluation of Criteria Relative Importance

C1↔2 C2↔3 C3↔4 C4↔5

1 0.40 0.10 0.35 0.85
2 0.10 0.15 0.30 0.25
3 0.15 0.00 0.70 0.65
4 0.25 0.33 0.79 0.74
5 0.33 0.20 0.28 0.45
6 0.52 0.48 0.69 0.63
7 0.35 0.60 0.20 0.50
8 0.20 0.39 0.30 0.62
9 0.25 0.77 0.58 0.55
10 0.30 0.65 0.65 0.75

Average 0.285 0.367 0.484 0.599

Table 2. Criteria weighting by SWARA method.

Criteria
Average Values of

Comparative Importance
Criteria sj↔j+1

Coefficients of Comparative
Importance Criteria,

kj

Recalculated (Intermediate)
Criteria Weights,

qj

Final Criteria Weights,
wj

C1 - 1 1 0.336585
C2 0.285 1.285 0.778210 0.261934
C3 0.367 1.367 0.569283 0.191612
C4 0.484 1.484 0.383614 0.129119
C5 0.599 1.599 0.239909 0.080750
∑ 2.971016 1

Average values of comparative importance sj are then used for calculating final criteria
weights wj by the SWARA method (Table 2).

3.5. Preliminaries of Intuitionistic Fuzzy Sets

Intuitionistic fuzzy sets (IFSs) extend the concept of classical fuzzy sets by incorporat-
ing additional information to deal with uncertainty and hesitation. The main idea behind
intuitionistic fuzzy sets is to represent the hesitancy and ambiguity that are often associated
with decision-making processes.

First, we discuss the preliminaries of the intuitionistic fuzzy set (IFS) and the algebraic
operations (discussed in [54]) between the intuitionistic fuzzy numbers (IFNs) that are
relevant to the proposed PROMETHEE method, namely, PROMETHEE-IFS.

Definition 1. If the domain of problem-related objects is denoted by X, x ∈ X is a single object. In
this research, X is a set of criteria modeled under the intuitionistic fuzzy environment and x is a
value of a single criterion.
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In fuzzy sets, the membership function defines the degree of membership of each
element in the set. This function maps each element to a value in the interval [0, 1]. The
intuitionistic fuzzy set IFS consists of two membership functions (fuzzy components):

Ti f s, Fi f s : X → [0, 1] (9)

Here, Ti f s is the truth membership function that represents the degree to which an
element x belongs to the set and Fi f s is the falsity membership function (or non-membership
function) that represents the degree to which an element x does not belong to the set. Then,
the intuitionistic fuzzy set [14] is defined as follows:

IFS =
{〈

Ti f s(x), Fi f s(x)
〉

: x ∈ X
}

(10)

The two membership functions also satisfy the following condition:

0 ≤ Ti f s(x) + Fi f s(x) ≤ 1 ∀x ∈ X (11)

The IFS theory also introduces a third dimension known as hesitation function π,
which is also called the degree of non-determinacy (or uncertainty) [14]. This function,
of the element x ∈ X to the intuitionistic fuzzy set IFS represents the degree of hesita-
tion or uncertainty associated with the element x’s membership status. This allows for
a more realistic representation of uncertainty that may arise during the assessment of
segmentation methods.

πi f s(x) = 1 − Ti f s(x)− Fi f s(x) (12)

Here, 0 ≤ πi f s(x) ≤ 1, ∀x ∈ X. A high value of πi f s(x) indicates a higher degree
of hesitation or uncertainty regarding whether the element x belongs to the set or not.
Conversely, a low value of πi f s(x) suggests a more confident or deterministic membership
status. This expression ensures that the sum of Ti f s(x), Fi f s(x), and πi f s(x) is always equal
to 1. For traditional fuzzy sets, the value of πi f s(x) would be equal to 0 for all elements
x ∈ X.

Definition 2. The intuitionistic fuzzy number can be defined as IFN = ⟨t, f ⟩.

Definition 3. Let IFN1 = ⟨t1, f1⟩ and IFN2 = ⟨t2, f2⟩ be two intuitionistic fuzzy numbers. Then,
the summation of the two IFNs can be defined by the following:

IFN1 ⊕ IFN2 = ⟨t1 + t2 − t1t2, f1 f2⟩ (13)

The multiplication between the two IFNs can be defined by the following:

IFN1 ⊗ IFN2 = ⟨t1t2, f1 + f2 − f1 f2⟩ (14)

The multiplication operation between the IFN and a real number λ > 0 can be defined
by the following:

λ · IFN1 =
〈

1 − (1 − t1)
λ, f λ

1

〉
(15)

The power function of IFN when λ > 0 can be defined by the following:

λ ⊙ IFN1 =
〈

tλ
1 , 1 − (1 − f1)

λ
〉

(16)

The subtraction between the two IFNs can be defined by the following:

IFN1 ⊖ IFN2 =

〈
t1 − t2

1 − t2
,

f1

f2

〉
, t1 > t2; f2 > f1; f2 > 0 (17)
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The division between the two IFNs can be defined by the following:

IFN1

IFN2
=

〈
t1

t2
,

f1 − f2

1 − f2

〉
, t1 < t2; f1 > f2; t2 > 0 (18)

To ensure the stability of the fuzzy set logic, the complementary function of IFN can
be defined as follows:

IFN1
c = ⟨ f1, t1⟩ (19)

These algebraic operations allow for the manipulation and combination of intuitionis-
tic fuzzy sets to handle uncertainty and hesitancy in various decision-making and modeling
scenarios. The choice of specific operations may depend on the problem context, the MCDM
method, and the desired behavior of the IFS.

Definition 4. In the defuzzification stage (converting the fuzzy number back to its original crisp
form), the score value of IFN can be calculated by the score function S(IFN) proposed by Szmidt
and Kacprzyk [55]:

S(IFN) =
1
2
·
(

1 + πi f s

)
·(1 − t) (20)

If IFN1 = ⟨t1, f1⟩ and IFN2 = ⟨t2, f2⟩ are two intuitionistic fuzzy numbers, the
comparison of them is determined by score values:

i f S(IFN1) > S(IFN2), IFN1 > IFN2
i f S(IFN1) < S(IFN2), IFN1 < IFN2
i f S(IFN1) = S(PFN2), IFN1 = IFN2

(21)

3.6. PROMETHEE-IFS Method

A new extension of the PROMETHEE method under the intuitionistic fuzzy set
environment, namely PROMETHEE-IFS, is designed and presented in this section to solve
the selection of the image segmentation algorithm for satellite images. The main steps of
this approach can be expressed as follows:

(1) The solution procedure of the PROMETHEE method starts with the constructed initial
algorithm evaluation matrix X, which consists of the elements xij and is defined
as follows:

Xij =


x11 x12 · · · x1j
x21 x22 . . . x2j

...
...

. . .
...

xi1 xi2 · · · xij

, i = 1, 2 , . . . , n; j = 1, 2 , . . . , m. (22)

The element xij represents the assessment of the i-th alternative (algorithm) by the
j-th criterion (image features). For this test case, additional information is included by
evaluating the image content based on the same criteria. These expert evaluations can
also be expressed in linguistic terms (Table 3) and are used to create an image vector
Ii = (I1, I2 . . .) that has the same number of elements as the columns in the algorithm
evaluation matrix Xij.

(2) Vector normalization is applied to the algorithm evaluation matrix Xij elements xij to
obtain a normalized algorithm evaluation matrix Xij:

xij =
xij√

∑m
i=1 xij ∗ xij

; i = 1, 2 , . . . , n; j = 1, 2 , . . . , m. (23)

Additionally, a normalized image assessment vector Ii =
(

I1, I2, . . .
)

is calculated.



Appl. Sci. 2024, 14, 644 17 of 31

Table 3. Fuzzification table for the criteria of the alternatives.

Linguistic Terms Normalized Value rij IFN

Extremely good (EG)/1.0 1.00 (1.00, 0.00)
Very very good (VVG)/0.9 0.90 (0.90, 0.10)

Very good (VG)/0.8 0.80 (0.80, 0.20)
Good (G)/0.7 0.70 (0.70, 0.30)

Medium good (MG)/0.6 0.60 (0.60, 0.40)
Medium (M)/0.5 0.50 (0.50, 0.50)

Medium bad (MB)/0.4 0.40 (0.40, 0.60)
Bad (B)/0.3 0.30 (0.30, 0.70)

Very bad (VB)/0.2 0.20 (0.20, 0.80)
Very very bad (VVB)/0.1 0.10 (0.10, 0.90)
Extremely bad (EB)/0.0 0.00 (0.00, 1.00)

(3) Fuzzification is a fundamental process in fuzzy logic that involves converting crisp or
precise data, which typically consists of numerical values, into fuzzy data. Fuzzifi-
cation of the normalized decision matrix Xij is performed by mapping crisp values
(expert evaluations) to fuzzy values, as displayed in Table 3. In this step, every
member xij of Xij is replaced with the intuitionistic fuzzy numbers (IFNs)ij as in
Definition 2. Intermediate values are obtained via linear interpolation. As a result, the
intuitionistic fuzzy decision matrix X̃ij is created. Similarly, we perform the fuzzifi-
cation of the normalized image assessment vector Ii to obtain an intuitionistic fuzzy
image assessment vector Ĩi.

A special step is proposed and performed to obtain the final decision matrix X̃I by
fuzzy column-wise addition (Equation (13)) of the fuzzy image assessment vector Ĩi and
the fuzzy algorithm evaluation matrix X̃ij:

X̃Iij = X̃ij ⊕ Ĩi (24)

This integration improves the selection process of the appropriate segmentation algo-
rithm by considering both the visual image characteristics and the algorithm’s sensitivity to
these characteristics. These evaluations for the algorithm matrix are left constant through-
out the experiment, while the image content vector varies for each satellite image. The final
decision matrix is then formed from these two elements by fuzzy fusion. In this way, the
decision matrices are computed for all test images.

(4) To rank the alternatives using the PROMETHEE-IFS method, a comparison is made
between each pair of alternatives (Aj and Ak) by calculating the aggregated preference
function π

(
Aj, Ak

)
using the following equation:

π
(

Aj, Ak
)
=

m

∑
i=1

ωi·Pt
(
di
(

Aj, Ak
))

(25)

Here, ωi are weights (of the i-th criterion) obtained from the SWARA method (∑m
i=1 ωi = 1).

If Aj > Ak, the difference di between two IFNs is calculated as di
(

Aj, Ak
)
= IFNij ⊖ IFNik,

and if Aj < Ak, the difference is calculated as IFNik ⊖ IFNij. (Equation (17)).
PFNij corresponds to the value of the i-th criterion of the alternative Aj, and PFNik

corresponds to the value of k-th criterion of the alternative Ak.
Pt(d) = Pt

(
di
(

Aj, Ak
))

is the k-th preference function (Figure 7) for the i-th cri-
terion selected from the six types of criteria functions proposed by the authors of the
PROMETHEE method.
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Pt(d) =


0, 0 < d

(
Aj, Ak

)
≤ q

d
(

Aj, Ak
)
− q

p − q
, q < d

(
Aj, Ak

)
≤ p

1, d
(

Aj, Ak
)
> p

(26)
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The preference function Pt(d) assigns values between 0 and 1 to quantify the degree
of preference or indifference between two alternatives. Here, p and q are the preference
function’s thresholds, i.e., the maximum and minimum values of the selected criteria.

(5) Calculation of the positive outranking flow:

F+
j =

n

∑
k=1

π
(

Aj, Ak
)
, j = 1, 2, . . . , n. (27)

Calculation of the negative outranking flow:

F−
j =

n

∑
k=1

π
(

Ak, Aj
)
, j = 1, 2, . . . , n. (28)

(6) Calculation of the positive net flow value Fj is a step that needs to be performed to
determine the final rank of the alternative Aj. This value is obtained by subtracting
the negative flow values from the positive flow values:

Fj = F+
j − F−

j (29)

Note: To accommodate the characteristics of fuzzy sets, such as the non-negativity of
fuzzy numbers, the calculation of negative net flow values is carried out using additional
intuitionistic algebra, which can be represented as follows:

Fc
j = F−

j − F+
j (30)

(7) Defuzzification is the reverse process of fuzzification, where fuzzy data is converted
into crisp data. The process of defuzzification of the net flow value Fj involves
calculating the score function S

(
Fj
)

for each alternative Aj. Based on S
(

Fj
)

values, the
ranking of the alternatives is determined as described in Definition 4.

The sign of the final results of PROMETHEE-IFS is interpreted by directly ranking the
alternatives with a positive score value S

(
Fj
)
, where the best alternative would have the

highest score value. However, for negative score values, the best alternative is the one with
the smallest score value.
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4. Application of Methodology for Satellite Images

This section briefly discusses the dataset and the initial decision-making matrix cre-
ation. It displays the final ranking of segmentation algorithms produced by PROMETHEE-
IFS that demonstrates the optimal method for each test image. Finally, the verification
step is performed by comparing the average expert rank with the average rank by the
PROMETHEE-IFS method. In addition, a rank sensitivity test has been conducted.

4.1. Selection of the Dataset

After analyzing the visual characteristics of the satellite image content most important
for segmentation, selecting an appropriate dataset becomes the next crucial step.

Usually, a large sample of images can enhance the precision while evaluating various
machine-learning methods. However, a large dataset is not needed for our proposed
methodology. The goal is to select the test images with the most prominent visual features
(described in Section 3.2).

The Aerial Image Dataset (AID) [39] is a large-scale aerial scene classification dataset
that was selected for this experiment. The AID dataset is larger than the popular UC
Merced Land Use dataset. It contains 220–420 images per class (10,000 images in total)
in RGB color space, a size of 600 × 600 px, 24-bit JPG image format with a multi-pixel
resolution that varies from approximately eight meters to half a meter. Files are named
using the following format: <CLASSNAME_ID>.jpg, where ID is a numeric value that
varies depending on the class of aerial scene.

AID is divided into 30 classes: (1) airport, (2) bare land, (3) baseball field, (4) beach,
(5) bridge, (6) center, (7) church, (8) commercial, (9) dense residential, (10) desert, (11) farm-
land, (12) forest, (13) industrial, (14) meadow, (15) medium residential, (16) mountain,
(17) park, (18) parking, (19) playground, (20) pond, (21) port, (22) railway station, (23) re-
sort, (24) river, (25) school, (26) sparse residential, (27) square, (28) stadium, (29) storage
tanks, and (30) viaduct.

All of the images were acquired at multiple locations, varying times and seasons, and
under diverse imaging conditions, resulting in increased intra-class diversity within the
data [39]. An image pair (a, b) in Figure 8 provides an example of the same class/object
but at a different scale and lighting conditions. The smaller inter-class dissimilarity feature
of the dataset is illustrated by image pair (c, d). Rough or uneven textures composed of
grain and similar colors characterize both bare land and desert classes. The only difference
is that the bare land class typically contains clear roads and smaller solitary objects such
as buildings.

The higher complexity of the dataset provides more meaningful results for investi-
gating the sensitivity of the segmentation algorithms to visual features of images. More
complex content can better highlight the shortcomings and advantages of different methods
since most methods will usually perform well with simple image content or a low number
of clusters [42].
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4.2. Subjective Image and Segmentation Method Assessment

In order to apply the PROMETHEE-IFS method for selecting the best-performing
segmentation algorithm for a specific image, developing an initial decision-making matrix
is required. This section describes the subjective assessment used to construct the initial
decision-making matrix. The subjective assessment consists of two parts:

(1) Evaluation of the sensitivity of the segmentation method according to individual
visual image characteristics to obtain segmentation algorithm evaluation matrix Xij.
In the initial experiment, five image segmentation algorithms were evaluated: FCM,
SFFCM, FRFCM, RSSFCA, and the GMM. The content of the selected images influ-
ences the segmentation results. The sensitivity of the algorithms to the image content
was evaluated by presenting the segmentation results to the group of ten experts.
The experts were asked to assess how each algorithm processes satellite images with
specific visual content. The sensitivity measurement was based on a (1–9) rating scale.
The mean values of these assessments were calculated as presented in Table 4. The
same group of experts provided their opinion on the weights of the visual criteria
described in Section 3.4.

(2) Evaluation of the presence of visual features in the image content to obtain an image
assessment vector Ii. The second part of the evaluation was aimed at assessing the
content of the images by analyzing their visual features. A set of proposed visual
features that characterize satellite images was constructed (in Section 3.2). We have
selected images that best represent each visual feature for this test case. Before the
image content evaluation process, a group of ten experts was given visual criteria
(characteristics) definitions, a rating scale, and information on what is considered to
be a minimum and a maximum value of each criterion. A (1–9) rating scale was used
to evaluate the image content, and the mean values of the content assessments were
subsequently calculated (Table 5).

Table 4. Evaluation of the segmentation algorithms (1–9).

Features of Images (Criteria) Optimum
Segmentation Algorithms (Alternatives)

FCM,
A1

GMM,
A2

SFFCM,
A3

FRFCM,
A4

RSSFCA,
A5

Contrast, C1 max 9 9 2 8 1

Roughness, C2 min 4 2 6 5 7

Regions of very small size, C3 min 4 3 6 5 7

Distortions of regions (holes,
shadows etc.), C4

min 4 3 7 5 6

Smoothness (continuity) of
region edges, C5

max 6 5 9 7 8
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Table 5. Content evaluation of the selected satellite images (1–9).

Features of Images (Criteria) Optimum
Satellite Images

square_1, desert_23, beach_19, port_19, farmland_159, river_237,

Contrast, C1 max 7 3 6 5 5 6

Roughness, C2 min 5 7 4 2 3 4

Regions of very small size, C3 min 5 8 5 2 4 5

Distortions of regions (holes,
shadows etc.), C4

min 5 5 4 1 3 5

Smoothness (continuity) of
region edges, C5

max 5 2 5 1 6 6

Evaluation results of algorithm sensitivity are presented in Table 4, and the assessment
of image content is shown in Table 5. Ai denotes the alternative (segmentation method),
and Ci denotes the criteria.

The optima in Tables 4 and 5 refer to the optimization direction of the selected criteria.
There are two possible optimization directions—max and min. The max optimization
direction aims to maximize the performance associated with the (C1, C5) criteria. In
such cases, the optimization direction of the criteria is towards higher values, and better
alternatives will achieve higher possible performance on the criteria. The min optimization
direction aims to minimize the negative impact associated with the C2, C3, C4 criteria. In
such cases, the optimization direction of the criteria is towards lower values, and better
alternatives will achieve lower possible performance on the criteria.

The elements of the final decision-making matrix are then calculated by fuzzy addition
operation (Equation (13)) by adding an image column vector in Table 5 to each of the
segmentation algorithm’s columns in Table 4. The resulting matrix X̃I contains the criteria
Ci in the rows and the alternatives Ai in the columns and is used for decision-making.

4.3. Ranking of Segmentation Algorithms

Each test image is segmented by algorithms described in Section 3.3 to obtain experts’
opinions on ranking segmentation algorithms. Segmentation results are presented in
Figures 9–14.
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Figure 11. Satellite image “beach_14” after segmentation: (a) RSSFCA; (b) SFFCM; (c) FRFCM;
(d) FCM; (e) GMM; (f) original color image from AID.

The FCM and the GMM effectively preserved more details and provided relatively
precise boundaries between clusters. However, improved RSSFCA and SFFCM methods
returned smoother clusters with reduced noise and artifacts. At the same time, FCM and
GMM methods are more sensitive to lossy compression artifacts if present in the image.
The FRFCM method was a balanced solution between FCM and the GMM (which overly
replicates the original image) and SFFCM and RSSFCA algorithms (clean clusters, but
excessive merging).
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(d) FCM; (e) GMM; (f) original color image from AID.

From the overall results in Table 6, the classical segmentation method FCM obtained
one first place and the GMM two first places. Similarly, SFFCM obtained one first place and
FRFCM two first places. Other special situations are presented in the discussion section.
Thus, we can note that the quality of the results of segmentation algorithms depends on the
image content’s characteristics and the algorithm’s sensitivity to the corresponding visual
characteristics of the image.
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Figure 14. Satellite image “river_237” after segmentation: (a) RSSFCA; (b) SFFCM; (c) FRFCM;
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Table 6. Intuitionistic fuzzy PROMETHEE method ranking. The best values (first places are in bold).

Image
Segmentation

Algorithms
(Alternatives)

Satellite Images

square_1, desert_23, beach_19, port_19, farmland_159, river_237,

PROMETHEE-
IFSScore | Rank

PROMETHEE-
IFSScore | Rank

PROMETHEE-
IFSScore | Rank

PROMETHEE-
IFSScore | Rank

PROMETHEE-
IFSScore | Rank

PROMETHEE-
IFSScore | Rank

FCM 0.0334 1 −0.0054 3 −0.0156 5 −0.0634 5 −0.0098 4 −0.0306 5

GMM 0.0046 4 0.0052 2 −0.0112 4 0.0779 1 0.0092 1 −0.0135 3

SFFCM 0.0059 3 −0.0122 4 0.0298 1 0.0732 3 −0.0092 3 0.0226 2

FRFCM 0.0063 2 0.0393 1 −0.0129 3 0.0741 2 0.0007 2 0.0231 1

RSSFCA 0.0040 5 −0.0174 5 0.0015 2 −0.0545 4 −0.0118 5 −0.0145 4

4.4. Verification of Methodology

Alternative methods were used to validate experiment results to confirm the depend-
ability of the ranking results of PROMETHEE-IFS. PROMETHEE rankings of each of the
six test images are compared to the expert rankings.

The experts evaluated the visual quality of each segmentation and ranked segmen-
tation methods from 1 (best) to 5 (worst) in Table 7. The original image was provided for
reference. For example, expert 1 rankings for square_1 are 4, 3, 1, 2, and 5; expert 2 rankings
for square_1 are 1, 4, 3, 2, and 5, etc. Since the ranks are restricted to a small range of values
and rank scores do not contain outliers, the arithmetic mean was used for the average
score/rating of all expert evaluations. The average rank value by the PROMETHEE-IFS
method is then compared to the average expert rank value in Table 8.

The ranks created by PROMETHEE-IFS and experts can be categorized as ordinal data,
so the rank difference sign in Table 8 does not necessarily have a meaningful interpretation
in this context.
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Table 7. Ten experts’ options on the ranking of segmentation algorithms.

Method
Satellite Images

square_1, desert_23, beach_19, port_19, farmland_159, river_237,

FCM 4,1,3,3,3,2,1,3,3,4 2,2,3,2,1,2,1,1,3,2 5,1,5,3,5,4,5,2,2,4 5,2,4,5,4,3,4,5,5,5 2,1,5,1,4,4,3,3,4,4 4,2,5,5,5,5,5,5,5,5

GMM 3,4,4,4,4,1,2,1,2,2 4,3,2,3,3,3,3,2,2,3 2,2,3,4,1,5,4,5,4,5 4,3,5,4,5,2,1,2,2,4 3,3,2,3,2,2,1,2,1,2 2,4,4,1,4,4,4,4,4,4

SFFCM 1,3,1,1,2,4,3,4,4,1 5,4,5,4,5,4,5,4,4,5 1,5,2,5,3,2,1,3,3,2 2,4,2,2,2,4,3,4,3,2 5,5,3,4,1,1,2,1,2,1 1,3,1,3,2,1,3,2,1,2

FRFCM 2,2,2,2,1,3,4,2,1,3 1,1,1,1,2,1,2,3,1,1 3,3,4,2,4,1,2,1,1,3 3,1,3,3,1,1,2,1,1,1 1,2,4,2,3,3,4,2,3,3 3,1,2,2,3,2,2,1,2,1

RSSFCA 5,5,5,5,5,5,5,5,5,5 3,5,4,5,4,5,4,5,5,4 4,4,1,1,2,3,3,4,5,2 1,5,1,1,3,5,5,3,4,3 4,4,5,5,5,5,5,5,5,5 5,5,3,4,1,3,1,3,3,3

Table 8. Average expert rank comparison with average rank by the PROMETHEE-IFS method *.

Method Expert Rank PROMETHEE-IFS Rank Difference Percentage
Difference

FCM 3.35 3.8(3) −0.48(3) 13.4571

GMM 2.9(6) 2.50 0.4(6) 17.0731

SFFCM 2.8 2.(6) 0.1(3) 4.8780

FRFCM 2.05 1.8(3) 0.21(6) 11.1588

RSSFCA 3.88(3) 4.1(6) −0.28(3) 7.0393
* In the following rankings, a lower numerical value indicates a higher level of algorithm performance while
a higher numerical value indicates a lower performance. Therefore, a rank close to 1 represents the best result
(first place), while a rank close to 5 corresponds to the worst result (last place). A repeating decimal is denoted
by parentheses.

The average expert rank can be calculated in several ways. First, calculate the average
value for each image and then find the final average between these averages. In addition
to the final average, this approach allows the assessment of individual averages for each
image individually. The final average (FA) score can be expressed as follows:

FA =
1
n
·

n

∑
i=1

(
1

mi
·

mi

∑
j=1

xij

)
(31)

where mi is the total number of experts, xij represents the evaluation of the j-th image by
i-th expert, and n is the number of images in the set.

The percentage difference in Table 8 represents the relative difference between the two
values and can help assess the magnitude of the difference meaningfully. When calculating
the percentage difference, the average of the two scores was used in the denominator for
relative comparison:

Percentage difference =
|A − B|
(A+B)

2

·100 (32)

Here, A is the expert rank and B is the PROMETHEE-IFS rank from Table 8. We aim
for the ratings obtained using the PROMETHEE-IFS method to be as close as possible to
experts, as expert ratings are selected for validation.

In Table 8, the experts’ ranking differs from PROMETHEE-IFS because it is challenging
to decide which ones to prioritize when a person evaluates a segmented result against a set
of features. The MCDM method helps to overcome this problem and evaluate the result
according to individual criteria by combining them to calculate the ranking.

Comparing MCDM methods can be challenging because their performance often
depends on the alternatives used (in our case, algorithms), the set of criteria, the application
area, and the problem being solved. An additional experiment was conducted to assess the
sensitivity of image content evaluation and validate the proposed methodology. Sensitivity
analysis [56] is an important step in the assessment of the reliability of MCDM methods.
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This analysis relies on the precision of image assessments, specifically, how the oscillations
of the respondents’ evaluations affect the selection of segmentation algorithms.

Two new groups, consisting of students and experienced users, evaluated the image
content according to the given criteria. The image “square_1” was taken for sensitivity
analysis. After the content was evaluated, two new sets of rankings were compared. The
impact of rank sensitivity analysis is presented in Table 9, and its visualization is shown
in Figure 15. A robust method should handle small variations in ranking data without
significantly altering the overall decision outcome.

Table 9. Opinions of the evaluator groups in the evaluation of the image “square_1”.

Features of Images (Criteria) Optimum
Evaluator Groups

Students Experienced Users Experts

Contrast, C1 max 7 8 7

Roughness, C2 min 5 5 5

Regions of very small size, C3 min 5 4 5

Distortions of regions (holes,
shadows etc.), C4

min 7 7 5

Smoothness (continuity) of
region edges, C5

max 4 5 5
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Figure 15. Rating of the five segmentation algorithms based on the different evaluation of the image
content by three evaluator groups. PROMETHEE-IFS was used for the experiment with image
“square_1 in Figure 9” (A1-FCM, A2—GMM, A3—SFFCM, A4—FRFCM, A5—RSSFCA).

The assessments presented in Figure 15 lead to the conclusion that for the square_1
image, both the experts and experienced users regarded the FCM algorithm (preserved
more details) as the best choice, while students preferred the FRFCM algorithm (less noise).
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5. Discussion

The goal of this research is to propose a methodology by extending the PROMETHEE
MCDM method through IFS and applying it to the selection of optimal segmentation
methods for satellite images. The selection of the optimal algorithm depends on the subjec-
tive visual characteristics of the satellite images being analyzed. Different segmentation
methods may excel in different scenarios based on the desired outcome, application, or
characteristics of the data set [57]. In the segmentation of satellite images, the objective is
often to accurately identify and separate various regions by specific criteria, as described in
Section 3.2. These five criteria related to satellite image content were selected and used for
content evaluation. The segmentation algorithms were evaluated according to the same
criteria. Table 8 shows a correlation between subjective (expert ranks) and objective ranks
produced by PROMETHEE-IFS. In all cases, the rank difference is less than one rank. The
visual ranking of segmentation results revolved around balancing under-segmentation and
over-segmentation.

The results in Table 2 indicate that C1 (contrast) is the most important criterion, while
C5 (smoothness) is the least important criterion in the list. This outcome can be attributed
to the fact that human visual perception can tolerate certain types of distortions while
being very sensitive to others. For example, humans can tolerate border holes to some
extent, which is known as human visual tolerance [27]. This could explain the difference in
obtained SWARA weightings for C1 and C5 criteria.

The test results in Table 6 show that even classic segmentation methods (GMM and
FCM) may achieve better results than modernized versions depending on the content.
In addition, some segmentation algorithms may be tuned against over-segmentation, so
images with small objects may not have a clear separation (under-segmentation). For
example, the RSSFCA is tuned against over-segmentation and obtained the worst expert
and PROMETHEE-IFS ranks, as it often unnecessarily merged regions, such as dunes in
desert_23 or did not preserve finer details (smaller lakes in river_237). On the other hand,
RSSFCA yielded better results in the case of the beach_19 image dominated by three large
clusters, suggesting its suitability for less complex content.

Compared to another classical method like the GMM, the FCM fails to correctly
separate between blue coastal water and green fields in port_19, which is possibly due to
several contributing factors. In a given dataset, the GMM treats the input data points as
being generated from a mixture of several Gaussian distributions. This modeling approach
is often more suitable for capturing the distribution of colors and their variations. Overall,
the GMM outperformed FCM (Table 8) due to being more robust to noise than FCM. The
GMM can provide a more flexible representation of the data density in the feature space.
This can be especially beneficial when dealing with regions with smooth color transitions.
Moreover, light green and cyan are relatively close to each other in the RGB color space, so
an algorithm like FCM that relies on the default Euclidean distance in the RGB color space
might fail to distinguish between shallow water and grass.

Small expert and PROMETHEE-IFS rank differences, such as for SFFCM, can be
interpreted as a stable segmentation solution in relation to other methods. In this case, the
SFFCM method produced consistent results (2–3 places) in all segmentation scenarios.

Conducting a comprehensive comparison with existing research results is challenging.
However, we can refer to the articles in which our selected algorithms are evaluated. For
example, the rankings provided by PROMETHEE-IFS align with the findings presented by
the FRFCM authors [40], particularly in scenarios involving noise (see Tables 3 and 4 from
the original article). Our proposed method also selects FRFCM over FCM in the cases of
more noisy desert_23 and river_237 images. The FRFCM method achieved the best expert
and PROMETHEE-IFS ranks (Table 8) since morphological reconstruction (MR) effectively
suppressed noise while maintaining precise object contours.

The result validation in Table 8 showed that the proposed PROMETHEE-IFS corre-
lates with a subjective evaluation with an accuracy of less than one rank, confirming the
effectiveness of the proposed method. At the same time, the rank sensitivity analysis in
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Table 9 shows rank differences between alternatives within one rank, validating the robust-
ness of the methodology. For example, despite minor differences in evaluations across all
evaluator groups, the RSSFCA method consistently ranked last due to its visually worst
segmentation results.

Subjective evaluation methods can be adapted to different types of content. They can
be used to evaluate different aspects of image content or quality, such as image sharp-
ness, color fidelity, or contrast. In the context of our research, this adaptability could be
particularly valuable when describing the feature-rich content of satellite images.

The user is mostly interested in a situation where the image segmentation methods
return visually distinct results (i.e., the clear winner is not apparent). In such cases, human
judgment can provide insight into the quality and appropriateness of the segmentation
result that objective metrics may not always capture. In cases where the segmentation
method always gives a poor result (especially with complex images), there is no need to
use our methodology since such a method will always be in the last place. Alternatively, if
all segmentation methods return visually similar outcomes (especially with less complex
images), there is no necessity to determine the optimal method.

Subjective content evaluation methods can provide insights into the overall percep-
tual aspects of the image content. While most visual image features may be relatively
independent of others, there is typically some level of interdependence. Combining ob-
jective and subjective evaluation criteria can achieve a more comprehensive evaluation
of image content. However, our task is to combine the features of the image content
with the evaluation of algorithms, which was achieved during step 3 of the proposed
PROMETHEE-IFS method.

6. Conclusions and Future Work

Image segmentation algorithms may not always return accurate results due to the
image complexity and different image content. Therefore, identifying the most appropriate
method for the specific image content is often essential. This paper proposed an approach
that extends the PROMETHEE method via intuitionistic fuzzy sets and combines it with the
SWARA weighting model for selecting optimal segmentation methods for satellite images.
This study used five subjective visual features: contrast, roughness, regions of very small
size, distortions of regions, and smoothness of region edges. A novel way of forming a
decision matrix was used by combining information from two different sources (image
assessment vector and the fuzzy algorithm evaluation matrix). Average rank comparison
and sensitivity analysis confirm that the proposed PROMETHEE-IFS method is well-suited
for the selection of segmentation algorithms for satellite images.

Image content characteristics are often interrelated. Changing one image feature
leads to changes in other image features (increased contrast can create more separation
between adjacent colors). Different segmentation algorithms have varying sensitivity and
interpretation of image content features. Thus, no one algorithm fits all content. Both
the results of this experiment and the verification confirm the NFL theorem [58] in the
context of image segmentation. This again underlines the importance of considering the
characteristics of the images when choosing or developing segmentation algorithms.

This methodology can be used with other subjective visual features; however, the
features must have a clearly defined optimization direction, i.e., minimum and maximum
values. If a feature does not have a logical minimum or maximum value that could
affect the quality of segmentation, such a criterion cannot be easily included in the initial
decision matrix. For example, mathematically quantifying the shape of clusters (as a visual
feature) in a way that applies universally across diverse image content and domains might
be challenging.

A single image may not fully represent specific features or the class it belongs to. This
is especially true for general-purpose image datasets that lack specific categorization or are
not created for a particular task or application. Applying the suggested method to a larger
set of images might be necessary in such a case.
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The following further research perspectives may be included:

• Assessing the impact of optimal segmentation method selection under different score
functions [59] or other normalization methods of the decision-making matrix;

• Although we have chosen criteria that reflect the main aspects of segmentation, it is
worth exploring other specific criteria/metrics when developing the methodology.

In general, MCDM methods can be applied to optimize the segmentation algorithm,
particularly fuzzy logic-based segmentation methods [60]. By incorporating MCDM meth-
ods, these algorithms can be further optimized to provide more accurate segmentation
results. Finally, the proposed approach can be adapted to select the optimal number of
clusters problem, where within a given dataset, different numbers of clusters would be
represented as potential alternatives.
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