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Abstract: Prestressed steel strands in prestressed structures offset or reduce the tensile stress caused
by external loads, making them the primary load-bearing components. Great concerns have been
raised about prestress monitoring due to the growing use of structural health monitoring (SHM).
Piezoceramic (PZT) active sensing methods are commonly used in this field. However, there appears
to be a problem of “energy saturation” in the utilization of piezoceramic active sensing methods.
In this study, a smart anchor washer with semi-cylinders was developed to alleviate the saturation
problem. An intelligent monitoring system is formed by combining the upper and lower annular
cylinders with two piezoelectric patches. The piezoelectric patch on the upper annular cylinder is
used as an actuator to emit signals through the contact interface of the smart anchor washer, which
are then received by the piezoelectric patch on the lower annular cylinder. Based on wavelet packet
decomposition, we investigate the correlation between the energy of the received signal and the
applied tension force. Finally, a prestressing force index is developed for monitoring prestressing
force using Shannon entropy. It is found that the index decreases with the increase in tension. The
proposed design and index are also sensitive to early monitoring of prestressing force and can be
used to monitor the entire prestressing process of steel strands.

Keywords: prestressed steel strand; prestress monitoring; energy saturation; piezoceramic transduc-
ers; wavelet packet energy; Shannon entropy

1. Introduction

Prestressed structures have the advantages of strong crack resistance, high stiffness,
high strength, and good shear capacity [1]. They are highly effective in reducing the cross-
sectional area, preventing cracking, and minimizing deflection, making them a preferred
choice for small to medium-span bridges [2]. However, during construction and service,
prestress loss occurs due to factors such as corrosion or long-term relaxation [3,4]. This
leads to decreased levels of prestress and an uneven distribution of prestress. Prestress
loss is a gradual process of internal manifestation of damage accumulation [5]. The loss of
prestress directly reduces the loading bearing capacity of the prestressed structure, resulting
in damage accumulation, resistance attenuation, and failure without warning [6]. Therefore,
prestress monitoring should be carried out so that the structure can be maintained in time
to prevent further catastrophic consequences [7].

With the advancement of long-term structural health monitoring (SHM), several tech-
niques have been utilized to identify prestress loss. These methods include impedance-based
methods [8,9], elasto-magnetic methods [8,9], and acoustoelastic methods [10,11]. These
methods currently cannot directly measure prestress along the beam [12]. Elasto-magnetic
methods can embed sensors in concrete and prestress, but they require pre-embedding.
Relevant research is still being explored due to the large size of the sensor [13,14]. Detecting
prestress near the anchor head may indicate any potential loss in prestress. Kleitsa et al. [15]
demonstrated that the propagation time and amplitude of ultrasonic waves can provide
insight into changes in contact pressure between the steel strand and the anchor head.
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Recently, there has been active research on techniques for structural health monitoring
(SHM) based on smart materials [16,17]. Piezoelectric materials, which are a type of smart
material, have the ability to convert electrical energy into mechanical energy. They can
serve as both actuators [18] and sensors [19]. In addition, piezoceramic transducers can
be easily embedded in a structure [20] or mounted on the surface [21]. Furthermore,
piezoelectric materials enable the active sensing method, which is effective in monitoring
concrete strength [22,23], structural damage [24,25], and bolt preload [26,27]. Gu et al. [28]
conducted early monitoring of concrete strength using embedded piezoelectric transducers.
Chen et al. [29] monitored the development process of concrete strength by utilizing
piezoelectric ceramic materials embedded in precast concrete blocks. Sharma et al. [30]
monitored the setting and curing process of freshly poured concrete. Kocherla et al. [31]
developed a technique for sensing the stress-induced localization of damage in the form
of discrete cracks in a concrete substrate using embedded PZT patches. Zhang et al. [32]
proposed an approach to monitor the crack growth process of reinforced concrete beams
using embedded piezoelectric aggregates. Wang et al. [33,34] investigated the correlation
between the torque of the bolt and the energy generated by the ultrasonic wave. They
also examined the relationship between the peak amplitude of the time reversal focusing
signal and the pre-tightening force of the bolt. The study has shown that the active sensing
method, based on piezoceramics, has the potential to monitor structural loosening states.
However, researchers have observed a phenomenon called “energy saturation” [35].

Due to microscopic roughness and unevenness at the contact surface, energy saturation
can be explained by the rough interface. In the field of contact mechanics, the G-W contact
model [36] and fractal contact theory [37] were proposed to determine the actual contact
area of the interface under load. It was found that fractal roughness parameters have a
significant effect on the actual contact area [35]. In addition, rough contact interfaces also
affect the energy dissipation of ultrasonic waves. Wang et al. [38] explained the inherent
mechanism of this effect. Since traditional linear acoustic methods, which are based on
wave energy dissipation, have limitations, there is a need for new methods or indices to
analyze the nonlinear characteristics of the signal and address the phenomenon of energy
saturation. Second-order acoustic nonlinearity has been identified and emphasized in the
field of ultrasonic health monitoring [39,40]. For example, Zhang et al. [41] compared the
linear wave energy dissipation (WED) method with the nonlinear vibration-acoustic modu-
lation (VAM) method and found that the VAM-based nonlinear method is more sensitive
for monitoring loosening. In addition, new damage indices (DIs) have been developed.
Wang et al. introduced a new entropy-based DI using the multiscale multivariate sample
entropy (MMSE) algorithm [42] and the multiscale permutation entropy algorithm [43]. By
extracting nonlinear features from stress wave signals, Jiang et al. [44] demonstrated that
the recursive entropy index could effectively mitigate energy saturation and fluctuation.
This enhancement improved the performance of the piezoceramic-enabled active sensing
method in early loosening monitoring.

Due to the high design value of bridge prestress, monitoring the entire range of
bridge prestress is undoubtedly a significant challenge. Zhang et al. [45,46] utilized the
piezoceramic active sensing method, which is based on time reversal and the wavelet
packet energy method, to monitor the prestress in the anchorage connection of the bridge.
Their study demonstrated a certain potential for monitoring small prestress values, but it
still falls short of the design value for bridge prestress.

In this paper, two proposals are suggested to solve the problem of monitoring bridge
prestress. (1) The contact area of the contact interface does not increase under a certain
preload force, which is influenced by the roughness of the contact interface. Therefore, a
“smart anchor washer” is designed to increase the roughness of the contact interface and
delay the saturation of signal energy. (2) Since the entropy method has shown potential
in analyzing the underlying complexity of time series signals, a new entropy-based DI
is developed to address the issue of signal energy saturation. The rest of the paper is
organized as follows: Section 2 introduces the design of the “smart anchor washer” and
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explains the basic principles of the methodology. Section 3 describes the experimental setup
and procedure. In Section 4, the energy of the received signal and the entropy-based DI are
calculated and demonstrated to be effective. Finally, Section 5 concludes the paper.

2. Principles
2.1. Smart Anchor Washer

The smart anchor washer consists of three parts: the middle, upper, and lower annular
cylinders, as shown in Figure 1. Marked with the red dashed line is the middle annular
cylinder, whose precise shape is depicted in the enlarged view on the right in Figure 1. In the
active sensing method, an ultrasonic wave is generated and propagated through the contact
interface. The signal energy carried by ultrasonic waves through the contact interface is
related to the actual contact area [35,47]. When the contact interface is compressed, the
transmitted energy will no longer increase. Therefore, the middle annular cylinder is
specially designed with semi-cylinders to prevent the saturation phenomenon. Two lead
zirconate titanate (PZT) transducers are bonded to the upper and lower annular cylinders,
respectively. The PZT1 patch on the upper annular cylinder functions as an actuator,
emitting the signal through the semi-cylinders. On the other hand, the PZT2 patch on the
lower annular cylinder serves as a sensor, receiving the signal.
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Figure 1. Schematic diagram of the smart anchor washer.

The upper and lower annular cylinders can also be used to prevent plastic deformation
of the anchor caused by stress concentration at the contact point. The material used for
the entire smart anchor washer is GCr15, which possesses high design strength and can
maintain elasticity under prestress tension. The contact area between the semi-cylinders,
the upper annular cylinder, and the lower annular cylinder increases as the stress levels
increase. Therefore, the smart anchor washer is installed between the anchor block and the
anchor plate to monitor the prestress of the bridge through the energy transmitted from the
contact area, as shown in Figure 2.
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2.2. Elastic Contact Theory between a Rigid Cylinder and a Plane

To establish the relationship between the contact area and the force F, it is essential
to analyze the contact model. According to classical Hertz contact theory, the contact area
between a rigid cylinder and an elastic half space can be simplified as a rectangle with a
length of L and a width of 2a [48], as illustrated in Figure 3.
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In the case of contact between a rigid cylinder and an elastic half-space (Figure 3), the
contact stress, p, distributed in a semi-elliptic cylinder is

p(x) = p0

√
1 − x2

a2 , x ≤ a (1)

where p0 represents the maximum contact stress, x denotes the radial distance between the
contact point and the contact center, and a represents half of the contact width.

Half of the contact width is determined by the following equation:

a =
√

Rd (2)

where R represents the radius of the cylinder and d represents the penetration depth.
The total force is calculated as follows:

F =

a∫
0

p(x)2Ldx =
πp0aL

2
(3)

where F represents the external force and L represents the contact length.
The order of magnitude of elastic deformation in the contact region is ε = d/2a. The

maximum contact stress is equal to

p0 =
E∗d
2a

(4)

where E* represents the effective elastic modulus, E∗ = E/(1 − ν2); E represents the
elasticity modulus, and ν denotes the Poisson’s ratio.

Substituting Equation (4) into Equation (3) gives

F =
π

4
E∗Ld (5)

The force is linearly proportional to the penetration depth d.
Substituting Equation (2) into Equation (5) yields

a =

√
4FR

πE∗L
(6)
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Given that the contact area is A = 2aL, the relationship between the contact area and
the force is as follows:

A = 4

√
RL

πE∗ ·
√

F (7)

It can be observed that the contact area, A, is directly proportional to the square root of
the external force, F. Therefore, the contact area can serve as an indicator of the magnitude
of the external force.

When an elastic wave propagates through an interface, a portion of the wave is
dissipated due to interface friction (Ωdissipated), another portion of the wave passes through
the contact interface (Ωpass), and the remaining portion is reflected (Ωre f lected). The incident
elastic wave can then be expressed as

Ω = Ωdissipated + Ωpass + Ωre f lected (8)

The relationship between the passing wave Ωpass, the contact area, and the external
force is as follows [41]:

Ωpass ∝ A ∝
√

F (9)

As shown in Figure 3, the wave energy that passes through the interface is received by
the PZT patch on the lower annular cylinder. As can be seen from Equation (9), the energy
of the incident wave remains unchanged with the increase in external force, and the energy
of the transmitted wave will increase with the increase in external force. This is because the
contact area also increases. Thus, the wave energy received by the lower annular cylinder
can be utilized to accurately measure the level of prestress tightness.

2.3. Wavelet Packet Energy Method
2.3.1. Wavelet Packet Decomposition

Wavelet packet decomposition (WPD), also known as optimal subband tree structur-
ing, is a further optimization of wavelet transform. On the basis of the wavelet transform,
both low-frequency and high-frequency subbands are decomposed at each level of signal
decomposition. A cost function is then minimized to calculate the optimal signal decom-
position path, which determines the decomposition of the original signal. The three-layer
wavelet packet decomposition tree is shown in Figure 4.
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Figure 4. Wavelet packet decomposition diagram.



Appl. Sci. 2024, 14, 641 6 of 14

By using wavelet packet decomposition, the original signal x(t) can be expressed as [49]

x(t) =
2j

∑
i=1

xi
j(t) (10)

where xi
j(t) represents the i-th subband of the j-th decomposition layer, and can be expressed as

xi
j(t) =

+∞

∑
−∞

ci
j,k(t)ψ

i
j,k(t) (11)

where ψi
j,k(t) represents the wavelet packet function and ci

j,k(t) represents the wavelet
packet coefficient.

The relationship between the j-th decomposition layer and the (j + 1)-th decomposition
layer is

xi
j(t) = x2i−1

j+1 (t) + x2i
j+1(t)

x2i−1
j+1 (t) = xi

j(t)
+∞
∑

k=−∞
h(k − 2t)

x2i
j+1(t) = xi

j(t)
+∞
∑

k=−∞
g(k − 2t)

(12)

where h(k) represents the low-pass filter, g(k) represents the high-pass filter, and k is the
translation parameter.

2.3.2. Wavelet Packet Energy and Shannon Entropy

The coefficients of the final wavelet packet layer are reconstructed, and the coefficients of
the reconstructed wavelet packet, which has the same length as the original data, are obtained.
The energy of the signal can be obtained by calculating it using Equations (13) and (14).

Ejm = ∥Sjm∥2 (13)

Etotal = ∑2j−1
m=0 Ejm (14)

where Sjm represents the reconstructed subband, m = 0, 1, 2 . . . 2j − 1.
In 1948, Shannon introduced the concept of information entropy as a means of quan-

tifying information [50]. In the field of nonlinear time series, it serves as a measure of
information uncertainty [51].

The relative energy of each subband can be calculated as

pjm =
Ejm

Etotal
(15)

Then, the Shannon entropy is calculated as follows:

Hj−Shannon = −∑2j−1
m=0 pjm ln

∣∣pjm
∣∣ (16)

The flowchart of the method proposed in this paper is illustrated in Figure 5. First,
the signal received by the PZT patch is decomposed using wavelet packets, and WPD
is performed from level 1 to level n. Then, the coefficients of the obtained subbands are
reconstructed to calculate the signal energy and the relative energy of the subbands. Finally,
the Shannon method is used to calculate wavelet packet entropy. The greater the entropy,
the greater the uncertainty, and the lower the stress level at the contact surface [52]. The
index used in this paper evaluates the tightness of prestressed steel strands.
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3. Experimental Setup

In order to verify the effectiveness of the proposed method, tension tests were carried
out on steel strands with a specifically designed frame. The test involved two steel strands,
a tension frame, a hydraulic jack, a laptop, and an NI multifunction data acquisition (DAQ)
device (NI USB-6366). The overall test setup is illustrated in Figure 6. The circular two-hole
anchor (YJM15-2) is used here, and its performance and technical indicators fully meet the
requirements of the Chinese National Standard GB/T 14370-2007 [53]. The smart anchor
washer was installed between the anchor and the tension frame. Two 1 mm thick PZT
patches were utilized: one was attached to the upper annular cylinder as an actuator, and
the other was attached to the lower annular cylinder as a receiver. They were used to emit
and receive signals labeled PZT1 and PZT2, respectively.
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The purpose of this paper is to address the issue of saturation in the energy transfer
process. Therefore, the maximum tensile force is controlled at 18 tons, which is the desig-
nated value for the prestressed steel strand. This value effectively ensures early monitoring
of the prestress levels in the strand. During the stretching process, a hollow hydraulic jack
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with a measuring range of 20 tons was used. The steel strands were stretched and tested at
one-ton intervals, up to the controlled limit of 18 tons.

In order to verify the reproducibility of the experiment, a total of five tests were
conducted. The signal transmission process of the PZT-based prestress monitoring system
is shown in Figure 7. Signal conversion is realized between the LabView program on the
laptop and the data acquisition device. Additionally, signal input and output are achieved
between the data acquisition device and the PZT patches on the tension device. The specific
operational process is as follows:
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A laptop is used to control the transmission and reception of signals. First, the
LabVIEW program on the laptop generated a linear sweep sine wave with a frequency
range of 50 kHz to 1 MHz. According to the Shannon sampling theorem, the sampling
rate should be greater than or equal to twice the highest frequency in the analog signal
spectrum. Therefore, the sampling rate is set to 2 MHz. The NI USB-6366 converted it
into an analog signal and then sent it to the PZT1. The signal was then transmitted via the
contact interface to the lower annular cylinder and received by PZT2. The NI USB-6366
converted the received signal into a digital format, which was then saved and analyzed
by the LabVIEW program. To ensure the independence of the test, the contact was fully
disengaged at the end of each test by unloading the stress level to zero and turning off the
power until the next test commenced.

4. Results and Discussion
4.1. Processing of Raw Data

In the experiment, the tension force is controlled by the hydraulic jack. The tension
forces for the five tests are presented in Table 1.

Table 1. The tension force of 5 tests.

Number of Tests
Tension Force (t)

1 2 3 4 5 6 7 8 9 10

1st 0 1.223 2.007 2.962 4.050 5.202 6.013 7.055 8.010 9.005
2nd 0 0.912 1.748 2.870 3.828 4.976 5.987 6.842 8.084 8.902
3rd 0 1.341 1.931 2.961 4.076 5.026 6.070 7.037 7.956 8.986
4th 0 0.774 1.870 2.929 3.981 5.041 6.014 7.111 8.104 8.979
5th 0 1.526 2.199 3.488 4.342 5.463 6.403 7.388 8.346 9.440

Number of Tests
Tension Force (t)

11 12 13 14 15 16 17 18 19

1st 10.110 11.085 12.033 13.210 14.175 15.275 16.070 17.140 18.010
2nd 9.792 10.782 12.077 12.927 13.807 14.937 15.814 16.863 17.917
3rd 10.011 11.011 12.191 12.991 14.006 15.014 16.011 17.131 17.969
4th 9.874 11.071 11.952 13.064 14.037 14.945 16.159 16.935 18.006
5th 10.345 11.382 12.261 13.264 14.401 15.361 16.396 17.238 18.306
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Due to the instability of oil pressure, the magnitude of each tension force varies
slightly. The results of the fifth test, with tension forces of 4 t, 8 t, 12 t, and 16 t, are shown
in Figure 8. As can be seen, the relationship between the received signals and the four
tension scenarios of the prestressing force is not immediately apparent. The magnitude of
prestress cannot be directly determined solely from the peak value of the received signal,
and the peak value of each received signal does not occur at the same time. There are
two possible reasons for this phenomenon: (1) different components of the wave have
different propagation velocities (typically, lower energy components have higher velocities,
and higher energy components have lower velocities); and (2) lower energy components
may propagate directly to the sensor, while higher energy components may experience
significant reflection and scattering at the interface before reaching the sensor. Therefore,
we calculated and compared the signal energies for each tension case, as shown in Figure 9.
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As described in Section 2.3, the signal received at each load level was subjected to
wavelet packet decomposition. Appropriate decomposition layers can preserve the main
features of the signal and reduce noise. As recommended by Wang et al. [54], the formula
L = int[log(N)] is used to select the appropriate decomposition layer, where N represents
the series length. The wavelet packet decomposition layer was set to 5. The energy value
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after decomposition at each load level was obtained by calculating Equation (14). The
relationship between prestress levels and wavelet packet energy was then described, as
shown in Figure 9a. When the tension force was small, the growth rate was high and
gradually slowed down with an increase in force. In general, the signal energy increases
as the tension force increases. This result is consistent with previous findings [35,38]. It
can be explained by the fact that the energy of the transmitted wave is proportional to
the contact area, and the actual contact area increases when greater tension is applied.
However, it is worth noting that this increase is not monotonic. The energy value at 13 t, as
measured in the third measurement, can clearly be identified as an outlier. This may be
due to measurement distortion, so we have excluded it from further analysis.

Figure 9b shows the energy distribution of the frequency subbands present in the fifth
layer after wavelet packet decomposition. It is evident that the energy of the signal between
0–600 kHz constitutes 98.5% of the total energy, with the majority concentrated around
100 kHz and 350 kHz. The energy of the signal with a frequency above 600 kHz accounts
for only 1.5% of the total energy. This indicates that while the energy of the signal is widely
distributed in the frequency domain, the high-frequency component of the signal is easily
attenuated, and most of the signal’s energy is concentrated in the low-frequency part.

We processed the raw data in Figure 9a by using the signal energy at a tension of 0 tons
as the reference point, in the form of an energy ratio. The relative energy ratio is illustrated
in Figure 9c. It can be observed that the trends of the signal energy ratios are essentially
the same. The values at the black circle markers in the figure may indicate interference
from the equipment and environment during the acquisition process and are labeled as
abnormal values. Therefore, in the subsequent analysis, we use the average energy ratio of
other measurement curves to replace it.

4.2. Data Fitting and the Index

The energy values of the five tests were averaged, and their mean value and standard
deviation were obtained, as shown in Figure 10a. As the tension increases, the energy
value gradually increases. Before the tension reaches 10 tons, the energy value increases
continuously. Although the tension value fluctuates after 10 tons, the curve still exhibits
a consistent upward trend. The mean energy value is fitted, as shown in Figure 10b. The
fitted curve demonstrates that the magnitude of the energy value is directly proportional to
the square root of the tension. As expected, it is in good agreement with Equation (9), and
the R-squared value of the fit is 0.9157. However, it is evident from the fitted curves that
the test results for 2–9 tons are lower, while the test results for 11–17 tons are higher. This
discrepancy may be affected by the accuracy of the testing equipment and environmental
interference. The aim of this paper is to propose a practical and universal testing method.
The details will be further refined and optimized to enhance testing accuracy in the future.
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Finally, an index H5-Shannon for prestress monitoring was introduced by calculating
the Shannon entropy using Equations (15) and (16). The results of five tests are shown in
Figure 11. Figure 11a–c display the results of the Shannon entropy for the entire frequency
range (0–1000 kHz), the low-frequency range (0–600 kHz), and the high-frequency range
(600–1000 kHz) calculated for the five trials, respectively. It can be observed that the entropy
results in the low-frequency range (Figure 11b) exhibit more random fluctuations, while
the entropy results in the high-frequency range (Figure 11c) demonstrate good linearity.
This is due to the shorter wavelength of the high-frequency component of the signal,
which enables it to better avoid external interference and provides strong anti-interference
capability. Therefore, we utilized the entropy results calculated in the high-frequency
range as an index, and the results obtained after processing its mean value are depicted in
Figure 11d.
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As shown in Figure 11d, H5-Shannon was high at low tension, implying high prestressing
force, and low at high tension, indicating low prestressing force. There is a good linear
relationship between the index and the prestressing force. The conclusion shows that as the
tension increases, the index gradually decreases, indicating that the prestress system is more
stable. The tension force in this paper reached 18 tons, which far exceeded the 16,256 N
tested by Zhang et al. [46]. However, it should be noted that the inevitable interference
of surrounding environmental factors affected the resulting curve for each tension level,
causing some degree of fluctuation. Nevertheless, the Shannon entropy and tension force
followed a linear trend, with resolution even at high force levels, making it suitable for
monitoring early prestressing force.

5. Conclusions

In this paper, we propose a smart washer and prestressing force index for monitoring
the prestressing force of steel strands. The problem of energy saturation was effectively
mitigated by installing a smart anchor washer on the anchor. During prestress tension tests,
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PZT patches were used on the upper and lower annular cylinders to excite and receive
signals transmitted through the contact interface. The received signals were quantized
using wavelet packet decomposition. It is evident from the results that as the tension
force increases, the energy of the received signal also increases. This finding aligns with
the theory that relates the passing wave to the contact area. The degree of prestressing
force was successfully evaluated by using Shannon entropy extracted from the signal
as the prestressing force index. The proposed method is low-cost, simple, and feasible,
and it allows for the monitoring of prestressing force in steel strands. It should be noted
that the method presented here is only applicable to anchored prestressing force in post-
tensioned anchorage systems and is not applicable to any general location along the layout
of prestressing tendons. The significant variation in test results may be attributed to the
control of tension force during the test and the design precision of the smart anchor washer.
Based on the method proposed in this paper, the testing accuracy is expected to be further
improved in the future. Furthermore, the research will focus on analyzing the difference in
prestress in each steel strand using an array of PZT transducers.
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