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Abstract: As the world enters an aging and super-aged society, the application of advanced technology
in assistive devices to support the daily life of the elderly is becoming a hot issue. Among them,
electric wheelchairs are representative assistive devices for the walking support of the elderly, and
their structural form is similar to AGV and AMR. For this reason, research is being introduced and
underway to guarantee the right to voluntarily move or improve the convenience of movement for
the elderly and severely disabled people who have difficulties in operating a joystick for operating
an electric wheelchair. Autonomous driving of mobile robots is a technology that configures prior
information on the driving environment as a map DB and operates based on it. However, active
driving assistance technology is needed because wheelchairs do not move in a limited space, but can
move to a place without a prior map DB or vehicle boarding depending on the passenger’s intention
to move. Therefore, a system for estimating the moving position and direction of the wheelchair is
needed to develop a driving assistance technology in the relevant driving environment. In order to
solve the above problem, this study proposes a position and direction estimation algorithm suitable
for active driving of a wheelchair based on a UWB sensor. This proposal is an algorithm for estimating
the position and direction of the wheelchair through the fusion of UWB, IMU, and encoder sensors.
In this proposal, it is difficult to design an active driving assistance system for wheelchairs due to
low accuracy, obstacles, and errors due to signal strength in the position and direction estimation
with UWB sensors alone. Therefore, this study proposes a wheelchair driving position and direction
estimation system that fuses the dead recording information of a wheelchair and the UWB-based
position estimation technique based on sensors applied in IMU and encoders. Applying quantitative
verification to the proposed technique, the direction estimation accuracy of the wheelchair of about
15.3◦ and the position estimation error average of ±15 cm were confirmed, and it was verified that
a driving guide for active driving was possible when the sensor system proposed in a mapless
environment of the wheelchair was installed at a specific destination.

Keywords: position estimation; sensor fusion; ultra-wide band positioning; electronic wheelchair
direction estimation

1. Introduction

Since the 21st century, life expectancy has increased with the development of science
and medical technology, and the aging of the population has become a social issue through-
out the world due to the decline in the fertility rate due to the global economic downturn
and low growth [1]. Against this social background, the silver industry, healthcare mar-
ket, and care service market to support them are continuously growing. As the elderly
population increases, most of them are burdened with long-distance walking due to their
physical aging, and the advanced technology of assistive devices to guarantee their right
to move is becoming a hot topic. Wheelchairs are used as assistive devices for those who
have difficulties in walking normally due to innate or acquired reasons [2]. In response to
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this demand, the wheelchair market size is expected to grow by 7.40% annually to reach
$9.5 billion by 2032, of which the market size of electric wheelchairs accounts for more
than 50% [3]. Here, 58.9% of users of electric assistive devices such as electric wheelchairs
experienced accidents, of which 34.5% were involved in crashes [4]. Although it depends
on the degree of disability among people with disabilities such as cognition, movement,
and sensation, they generally have difficulties in fine manipulation of the joystick used for
electric wheelchair operation [5].

As a result, research is being conducted to assist wheelchair convenience and collision
stability by applying it to wheelchairs due to the advancement of indoor autonomous
driving technology used in AGVs (Automated Guided Vehicles) and AMRs (Autonomous
Mobile Robots), which have recently become a technical topic following the advent of the
fourth industry [6].

Based on research on applying the autonomous driving technology of mobile robots
as wheelchairs, wheelchairs capable of autonomous driving are used to help wheelchair
users move only in limited spaces such as hospitals [7]. Due to the support of wheelchairs
capable of autonomous driving in indoor spaces, users who complain of difficulties in
wheelchair operation can use them without any manipulation. Thus, it is a hot issue
because it can prevent collisions caused by inexperience in operation [8]. However, for
current autonomous driving technology, prior data are essential to actively move to the
destination based on the current position through the pre-map information [9]. Therefore,
the current indoor autonomous driving technology cannot utilize autonomous driving in a
mapless environment because it is difficult to create a route for driving to the destination
through position estimation without prior map information [10].

Unlike autonomous robots, wheelchairs are not limited to the space of use, but move
various indoors/outdoors with the user’s means of transportation. Thus, there is a limit
to configuring all driving environments as a map DB. Therefore, the current autonomous
driving system can be used in some environments where a map exists, but it is difficult
to use it in most outdoor environments and mapless environments. Therefore, current
autonomous driving can support indoor movement with a map, which is the main use
space for wheelchairs, but it is difficult to assist in long-distance travel or moving to other
activity areas [11]. Most wheelchairs move outdoors through a vehicle that can be used for
wheelchair boarding and enter and exit the building by getting in and out of the main active
space, such as the entrance of the building or the entrance of the housing complex, but it
is difficult to hold a map in a pre-space with high volatility and a lack of feature points,
such as the entrance of a hospital or the entrance of a housing complex [12,13]. Therefore,
it is difficult to apply the current autonomous driving technology in the case of active
driving at the entrance of a building without prior map information. Therefore, the current
self-driving wheelchair is used as an autonomous driving device in a specific building,
which is difficult to support when moving to various spaces. Therefore, in order to solve
the above problem, this study proposes a position and direction estimation method for
driving assistance technology that guides the position and direction to the destination of the
wheelchair for active driving of the intelligent wheelchair at the entrance of a space where
the current autonomous driving system is difficult to apply, such as mapless environments.

Research and development of active driving assistance technology in mapless situa-
tions is being used in docking technologies such as AGVs and cleaning robots [14]. Laser
guidance-based technology is a method in which a laser emitted from a robot receives a
reflected laser through a reflector mounted at a specific point and estimates its position
through triangulation based on the measured distance [15]. However, if there is an obstacle
between the laser and the reflector, the distance cannot be measured, and the measurement
accuracy is reduced due to the influence of weather such as rain and fog [16,17]. Therefore,
this is not a suitable technology for intelligent wheelchairs used outdoors and in places
where environmental variables occur and coexist with people. For this reason, the technol-
ogy is not suitable for use as an active driving assistance technique for wheelchairs that
move with people. In the case of driving assistance systems through QR codes, they are
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mainly used for docking technologies because of their high accuracy in close proximity
compared to other technologies [18,19]. However, in the case of QR codes, the measure-
ment distance varies depending on the measurement camera or H/W, but in general, if the
measurement distance is relatively short compared to other technologies and is not perpen-
dicular to the camera and QR code, the measurement error increases, and the QR code must
be attached to the floor or ceiling, making it unsuitable for the intelligent wheelchair system
targeted in this study [20,21]. In the case of a driving system through ultrasonic sensors, the
ultrasonic sensor at a specific point is mounted to receive the launched data, measure the
distance, estimate the position through triangulation, and use it for driving assistance tech-
nology [22]. However, it is difficult for multiple modules to transmit and receive at the same
time due to the interference caused by overlapping signals from different sensors, which
are strongly influenced by the measurement distance caused by obstacles in the ultrasonic
sensor [23,24]. Therefore, it is not a suitable technology for use in intelligent wheelchairs
because it is difficult for multiple intelligent wheelchairs to transmit and receive signals at
the same time. Position estimation techniques such as Wi-Fi/Bluetooth/Zigbee and others
use distance-based triangulation to calculate positions using the characteristics of constant
attenuation of radio waves in space according to distance [25]. The RSSI (Received Signal
Strength Indication) method has a problem of increasing position error due to difficulties
in measuring accurate signal strength because of differences in the characteristics between
antenna and front-end radio frequency (RF) and has lower accuracy than ToA (Time of
Arrival) based on arrival time in an outdoor environment where many people exist due to
low permeability [26]. Therefore, it is not a suitable technology as a position estimation
system for driving assistance for intelligent wheelchairs.

Therefore, this study proposes a position and direction estimation system based on
UWB (ultra-wide band) with relatively high permeability and various bandwidths to
measure distance based on the arrival time of radio waves in order to solve the problem
mentioned above [27]. In the case of UWB sensors, it has the advantage of being able
to estimate the position regardless of changes in the topography after being installed
at a fixed position, and it is being installed in various mobile devices such as mobile
phones. In the future, it is expected to be able to access mobile devices without a separate
installation, and because accessibility increases, it is suitable for use as a position estimation
device [28]. However, the existing single UWB sensor-based estimation technology has
the disadvantage that the position estimation through only UWB sensors is difficult to use
as a driving assistance technology due to its low accuracy and difficulty in estimating the
direction [29,30].

Therefore, it is necessary to improve the existing position and direction estimation
system for the development of a driving assistance system for the wide use of autonomous
driving technology of wheelchairs. In this study, sensors such as encoders and IMU
that can implement position estimation are applied to reduce noise and outliers and
improve positioning accuracy in the existing UWB sensor-based position estimation method.
Through this, this study proposes a position and direction estimation system with a level
of accuracy that can assist driving through fusion with existing UWB sensor-based position
estimation data based on dead reckoning suitable for wheelchair environments.

2. Main Subject

UWB is a low-power ultra-wide band-based wireless communication technology
that enables distance measurement and data transmission and reception. However, it is
limited because high noise and outlier data are included to be used as position estimation
for driving assistance rather than general position estimation. Therefore, to overcome
these limitations, this study generally uses a single UWB sensor fused with encoder and
IMU sensors, which have high accuracy when measuring at short distances, and the
shortcomings of the data, including high noise and outliers, can be improved. Based on this,
this study proposes a sensor fusion-based position and direction estimation system that can
actively implement a driving assistance system in mapless situations for wheelchair users.
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2.1. Sensor System for Active Driving Assistance
2.1.1. UWB

UWB is an ultra-wide wireless communication technology that enables distance mea-
surement and data transmission and reception over a bandwidth of 500 Mhz or more. It is
possible to measure distance through the transmission time or transmission time difference
information rather than the existing RSSI method of measurement, and it is easy to use in
various environments due to high obstacle permeability because it uses a measurement
method through radio waves. However, when estimating positions through a single UWB
sensor, the accuracy is not high because of the problem of strong outliers, due to the influ-
ence of multiple paths caused by diffraction and reflection of radio waves and noise through
the transmission and reception of radio waves. Therefore, to solve this problem, various
filters such as EKF are used to increase accuracy by removing outliers and noise [31,32].
However, the single sensor-based method has difficulty correcting data distortion through
obstacles during driving, and it is difficult to use as a driving assistance system because
delays occur when suppressing noise strongly to increase accuracy. Therefore, in this study,
a UWB sensor-based position and direction estimation system suitable for a wheelchair
environment is proposed. In order to solve the problem of a single UWB sensor, a posi-
tion and direction estimation system for driving assistance is designed, entailing position
estimation using multiple sensors rather than position estimation through a single sensor.

2.1.2. IMU

In this study, the IMU sensor was used to correct the direction data of the UWB
sensor. In the case of direction estimation through the UWB sensor, data tremors caused
by the radio wave reception strength and obstacles to the UWB sensor data occur, and the
UWB sensor-based direction estimation can cause strong errors. Therefore, the direction
estimation was corrected through angular velocity data for IMU sensors with a high
short-range measurement accuracy. IMU sensors are usually mounted at the center of the
robot drive shaft and used to measure the robot direction. They consist of acceleration,
geomagnetic, and angular velocity sensors, and assuming that the robot moves in a plane,
the angle of the robot is limited to the yaw axis, which can be calculated from angular
velocity and geomagnetic sensors. However, in the case of geomagnetism, the noise caused
by iron or structures that are heavily affected by the electromagnetic field is strong, and
it is difficult to use when considering the electromagnetic field through the motor [33].
Therefore, the estimation in this study used only angular velocity data. However, in the case
of the angular velocity data, it is difficult to know the initial direction and has a drift error
in which errors accumulate over time. Therefore, in this study, the direction of improving
the shortcomings through fusion with the UWB sensor was estimated.

2.1.3. Encoder

An encoder sensor was used to correct the position data of the UWB sensor applied in
this study. The encoder sensor is mainly mounted on the wheel of the robot to measure
the change in movement, such as the rotation of the wheel, and to calculate the speed or
moving path of the wheelchair. Encoder sensor data are mainly used to calculate short-
range driving routes because they have high accuracy in calculating instantaneous wheel
rotation speed. Since this sensor has a relatively high short-range measurement accuracy
compared to other sensors, it was used in this study to correct the position estimation error
of the UWB sensor. However, the position where the data are accumulated through the
encoder sensor makes it difficult to estimate the initial position and the data have a drift
error in which errors due to slip and friction are accumulated. Therefore, in this study, the
shortcomings were improved through fusion with the UWB sensor.

2.2. Proposed Position Estimation System for Active Driving Assistance

The single UWB sensor-based position and direction estimation method has difficulty
correcting data distortion caused by obstacles during driving, and delays occur when noise
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is strongly suppressed to increase the accuracy. For this reason, it is difficult to use as
a driving assistance system, and in the case of dead reckoning such as IMU/encoder, it
generates data in the form of a driving record rather than initial position identification.
This makes it difficult to apply it to position and direction estimation because it causes
a drift error because of initial position identification and data accumulation. Therefore,
this study proposes a system as shown in Figure 1 in order to perform the position and
direction estimation for driving assistance technology development. Noise in the UWB
sensor data is removed through the data pre-processing process proposed in this study to
suppress strong noise.
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The active driving assistance algorithm to the waypoint proposed in this paper requires
direction and position information for active driving from the current position of the
wheelchair. For this purpose, the yaw value of the IMU sensor data and the direction
data from the UWB sensor are combined in the form of a complementary filter to estimate
the direction information. The reason for this is that the real-time orientation information
estimation of the wheelchair has an error due to the slip of the wheelchair’s encoder
information, so the error can be improved by estimating the yaw value of the IMU sensor,
and the drift error caused by the yaw integration process can be improved by the position-
change amount calculated with the UWB.

The position information estimation can basically use the position value estimated by
the UWB sensor. However, the distance error of the UWB sensor system can be improved
by installing many sensor nodes, but the type proposed in this paper has an error range of
10~30 cm, and it is difficult to estimate the change according to the amount of instantaneous
rotation of the wheelchair, so we propose a method to update the distance information
to the waypoint by fusing the change amount of the IMU sensor and the encoder sensor
attached to the wheelchair with the EKF algorithm.

Among the methods for fusing sensor data, the complementary filter-based sensor
fusion, AI-based sensor data fusion method, Kalman filter, and particle filter-based sensor
data fusion method are representatively used [34–37]. In the case of complementary filters,
sensors are fused through mutual compensation between each data source, and they are
utilized when the characteristics of each sensor are clear. AI-based sensor fusion mainly
designs neural networks by learning from large amounts of data when it is difficult to
define the characteristics of data collected from sensors [38]. Therefore, they are effective
in deriving results through probabilistic decisions based on large databases, mainly in
object recognition and estimation or inference with unclear features. However, AI-based
fusion methods are computationally intensive when processing data compared to other
algorithms and require a lot of data for training. The Kalman filter is a sensor fusion
algorithm that fuses each sensor based on a system model and iteratively performs state
prediction and measurement updates to estimate results based on real-time sensor data.
Particle filters update their measurements by iterating through resampling and prediction
based on probability.
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Particle filters have the advantage of less computation compared to AI algorithms,
but since they perform fusion based on probability, they require a larger amount of sensor
data to be resampled compared to the Kalman filter algorithm. The use of particle filters
compared to Kalman filters is not suitable for the use of UWB/IMU/encoder sensors in
this paper. AI-based sensor fusion methods can be effective, but when the amount of data
is small, the relationships among the data are distinct, such as the UWB/IMU/encoder
sensor used in this paper, and the modeling is relatively easy to implement, sensor fusion
techniques using complementary filters and Kalman filters do not have a large error range
compared to AI-based sensor fusion methods. Considering the resources required for the
design and computation of both sensor systems, this paper proposes a sensor fusion system
using a complementary filter for direction information estimation and a Kalman filter for
position information estimation.

Therefore, the fusion in this study was based on the Kalman filter. Since the sensor
system to be fused currently has nonlinearity, it should be carried out based on algorithms
such as EKF, UKF (unscented Kalman filter), and CKF (cubature Kalman filter), which are
expanded Kalman filter algorithms. In this study, sensor fusion was performed through
EKF, which is suitable for intelligent wheelchairs with lower computation than CKF and
UKF, by evaluating new measurement data to suppress the noise included in the data and
correct the result by estimating new results [39].

2.2.1. UWB-Based Object Estimation Technique

The data collected from the UWB module have high noise and may include strong
outlier data due to the influence of multiple paths caused by diffraction, reflection, etc. of
radio waves due to unexpected obstacles [40]. Therefore, data pre-processing is needed to
remove noise and outliers for implementing precise UWB sensor-based position estimation.
Noise and outliers are removed through the data pre-processing process presented in this
study. Then, the position and direction angle are estimated through the position estimation
and direction angle estimation algorithm considering the outdoor getting on/off space.

Pre-Processing of UWB Sensor Data

The data collected from the UWB sensor generally include high outliers and strong
noise due to the noise generated from the multiple paths caused by diffraction and reflection
of radio waves because of obstacles and the intensity of radio reception. Therefore, since the
collected UWB sensor data show strong outliers and high noise, errors in the Kalman filter
covariance calculation and prediction process can be added to the sensor fusion system
through the Kalman filter. For this reason, pre-processing is required. Therefore, various
filter theories are used to remove noise from such data, and representative methods include
average filter, median filter, and exponential smoothing filter [41–43].

The average filter reduces noise through the principle of averaging after data collection,
but it is not suitable for use in the pre-processing of the UWB sensor because it calculates the
average including the outliers of the UWB sensor. The median filter collects a large number
of data and uses intermediate values to remove noise. However, there is a problem that
various measured values other than outliers are cancelled as intermediate values because
of the nature of the median filter, even though there is a strong advantage in the outliers. In
this study, since the UWB sensor was used to estimate the position of a moving wheelchair,
the median filter, which may cancel the data obtained during movement, is not suitable
for sensor pre-processing. In the case of the exponential smoothing filter, it is a filter that
accumulates and calculates the previous value and the current value with a constant index.
However, it is not strong against outliers like the previous average filter. In addition, since
this is a filter that is calculated by continuously accumulating the previous values, it is
affected by outliers and delays in the previous values. Therefore, it is not suitable as a
pre-processing process for the UWB sensor. Figure 2 shows the data pre-processing flow
chart proposed in this study, and when data are input, the data are first selected and stored
based on Qbu f f er with n sizes. Then, the stored data are copied to Sbu f f er to calculate the
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median value. In order to remove strong outliers and noise in Sbu f f er, data that do not
have noise greater than or equal to a weight α in the median value are stored in Mbu f f er.
Then, the average is calculated based on the data remaining in Mbu f f er. Therefore, since the
average is derived by removing outlier values of a certain value or more after calculating
the intermediate value for each data, the disadvantage of the average including outliers
of the average filter can be removed and the average of the cancelled value of the median
filter can be calculated. For this reason, this study proposes this pre-processing for the
UWB sensor data.
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UWB Positioning

The position estimation system using the UWB sensor basically consists of a number
of fixed nodes (ANs, anchor nodes) and mobile nodes (TNs, tag nodes) that identify the
installation position accurately. In general, the method of estimating the position using the
UWB sensor is implemented using a triangulation method, and three straight distances are
required for this. However, since it is difficult to install ANs at both ends of the entrance
and exit of the wheelchair getting on/off space, as proposed in this study, the position is
estimated by installing two ANs at both ends of the entrance door, as shown in Figure 3.
Therefore, this study proposes a position plan consisting two ANs in consideration of the
anchor environment mounted at the entrance of the building under the assumption that
the position of the ANs and the position of the TN mounted on the wheelchair are known.

The rj in Equation (1) is the distance on the plane and is calculated through the UWB
sensor distance R2

j , the height ZAj of AN, and the height ZM of TN. Equation (2) is the
X-coordinate in the plane and Equation (3) is the Y-coordinate in the plane. The coordinates
of the wheelchair are calculated based on the obtained TN positions.

rj =

√
R2

j −
(

ZAj − ZM

)2
(1)

XTN =
r2

1 − r2
2 + a2

2a
(2)
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YTN =
√

r2
1 − x2 (3)
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(b) UWB sensor TN position estimation.

Estimation of the UWB Direction Angle

In order to estimate the direction angle, at least two TNs must exist in a wheelchair,
and the direction angle of the wheelchair is estimated based on the position of the TN
installed on the wheelchair. Figure 4 shows the process of estimating the direction angle
based on the position of the TN measured from the two ANs mounted at both ends of the
entrance.
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The relative direction estimation of the wheelchair is performed through Equation (4).
θDe f ault is the UWB angle installed in the existing wheelchair and θUWB is the direction
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angle of the wheelchair. Through this, the direction angle can be estimated from the
UWB sensor.

θUWB = ATAN2
(

(Y2 − Y1)

(X2 − X1)

)
+θDe f ault (4)

2.2.2. Dead Reckoning

The position data measured from the UWB sensor show errors when measuring the
amount of change in a short distance due to the reception strength of obstacles and radio
waves. Therefore, in order to correct the amount of change in such a short distance, the
amount of change over time is calculated by performing dead reckoning based on the IMU
and encoder sensors, which have the strength of the short-range change. Based on this, this
study compensates for the drift error, which is a disadvantage of dead reckoning based on
IMU and encoder sensors, using the UWB sensor data. Based on this, this study proposes a
method for compensating the short-range error in the UWB sensor data.

IMU Dead Reckoning

The use of the IMU sensor data proposed in this study assumes that the wheelchair
moves in the 2D plane and uses only the angular velocity sensor data on the yaw axis
instead of the geomagnetic sensor in consideration of the electromagnetic field generated
from the motor. Equation (5) shows the calculation of the direction of the wheelchair at
time t in the angle change ∆θGyro(t) measured between time t − 1 and t from the yaw axis
angular velocity of the IMU. Therefore, the amount of change in the angle over time can be
calculated through the IMU.

θGyro(t) = θGyro(t−1) + ∆θGyro(t) (5)

Encoder Dead Reckoning

The wheelchair has a wheel structure, and mechanical dead reckoning according to
the structure must be performed. Both wheels of the electric wheelchair used in this study
are equipped with encoder sensors to measure the rotational speed of the wheel. Figure 5
shows the process of mechanical modeling of wheeled mobile robots.
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The speed and the amount of coordinate changes of the mobile robot are calculated by
Equations (6) and (7). Equation (6) calculates the speed of the robot through the velocity VR
on the right wheel of the robot and VL on the left wheel. Equation (7) calculates the X-axis
position change, ∆XEN , and Y-axis position change, ∆YEN , through the robot direction, θt,
and the robot speed, Vrobot. Based on this, the position change of the robot over time is
calculated.

Vrobot =
VR + VL

2
(6)[

∆XEN
∆YEN

]
=

[
cosθt −sinθt
sinθt cosθt

][
Vrobot

0

]
dt (7)

2.3. Proposed Sensor Fusion Technique for Active Driving Assistance

Position estimation using a single UWB sensor results in a strong error due to the
obstacles and the reception strength of radio waves. Therefore, the direction also has a
strong error in estimating the direction through the position estimated based on the UWB
sensor. Since this is difficult to use as a direction estimation for active driving assistance,
the direction is estimated with the fusion technology based on the yaw angular velocity
data and the direction data calculated from the UWB sensor and complementary filter on
the IMU sensor. Based on this, this study proposes an EKF sensor-based fusion method
with the UWB sensor-based position estimation data by performing dead reckoning on the
encoder sensor.

Figure 6 represents a schematic diagram of the proposed sensor fusion technique for
active driving, showing the process of estimating the direction and position using the fusion
of UWB/encoder/IMU sensors. The sensor fusion technique for active driving assistance
proposed in this study is largely carried out in three processes. First, the direction of the
wheelchair is calculated based on the complementary filter. After that, the amount of the
wheelchair X-axis position change, ∆XEN , and the amount of the Y-axis position change,
∆YEN , are calculated through the calculated direction and encoder sensor data. Finally, the
position of the wheelchair is calculated by fusing the calculated position change and the
UWB position data.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 21 
 

fusion of UWB/encoder/IMU sensors. The sensor fusion technique for active driving as-
sistance proposed in this study is largely carried out in three processes. First, the direction 
of the wheelchair is calculated based on the complementary filter. After that, the amount 
of the wheelchair X-axis position change, ∆𝑋ாே, and the amount of the Y-axis position 
change, ∆𝑌ாே, are calculated through the calculated direction and encoder sensor data. 
Finally, the position of the wheelchair is calculated by fusing the calculated position 
change and the UWB position data.  

 
Figure 6. Schematic diagram of the proposed sensor fusion for active driving assistance. 

There are two problems when calculating the angle based on the angular velocity 
value of the IMU. First of all, since the angle calculated by accumulating the angular ve-
locity as an absolute angle cannot be obtained at present, only the difference between the 
angle of the starting point and the measurement point can be calculated if the angle of the 
wheelchair at the starting point is not known. The second is the drift error caused by ac-
cumulating angular velocity values to measure the angle [44]. Therefore, in this study, the 
angle of the wheelchair calculated from the UWB sensor and the angle of the wheelchair 
measured from the IMU sensor are fused using Equation (4) in order to solve these two 
problems. The data measured from the UWB sensor include high noise, but there is no 
drift error because it is not a cumulative calculation. The acceleration data measured from 
the IMU sensor have less noise, but drift error occurs. In order to implement the fusion 
based on the characteristics of these two data types, this study proposes a method using 
a complementary filter. The complementary filter is usually used when the two data types 
have mutually secure frequencies, and the UWB sensor data have low-frequency noise, 
and the angular velocity obtained with the IMU sensor have high-frequency noise. Since 
each data type is fused through filters of different frequencies using the complementary 
filter, the UWB and IMU sensor data with different characteristics are fused and utilized. 
As shown in Equation (8), the UWB sensor data and IMU angular velocity sensor data can 
be fused. Based on the weight of the complementary filter, 𝛽, the angular velocity 𝜃௎ௐ஻ 
measured from UWB and the angular velocity ∆𝜃ீ௬௥௢(௧) of the yaw axis measured from 
IMU are fused to calculate the angle of the current wheelchair, 𝜃௧. Based on this, Equation 
(7) is implemented to calculate the amount of ∆𝑋ாே and Y-axis position change, ∆𝑌ாே, of 
the wheelchair.  𝜃௧ = (1 − 𝛽)൫∆𝜃ீ௬௥௢(௧) × ∆𝑡 + 𝜃௧ିଵ൯ + 𝛽 ×  𝜃௎ௐ஻ (8) 

EKF is an algorithm that calculates the covariance of sensors through past and new 
measurement data and estimates the results by fusing each sensor according to the system 
model. This is often used to calculate estimates by fusing sensor data based on data that 
are difficult to measure precisely due to a lot of noise from each sensor and supplementing 
the shortcomings of each sensor [45]. Therefore, EKF is used in this study to remove noise 
included in the data and estimate the result of fusing the sensors. 

The sensor fusion algorithm presented in this study estimates the position and direc-
tion of the wheelchair by fusing the amount of real-time position data, ∆𝑋ா௡ and ∆𝑌ா௡, 

Figure 6. Schematic diagram of the proposed sensor fusion for active driving assistance.

There are two problems when calculating the angle based on the angular velocity
value of the IMU. First of all, since the angle calculated by accumulating the angular
velocity as an absolute angle cannot be obtained at present, only the difference between
the angle of the starting point and the measurement point can be calculated if the angle of
the wheelchair at the starting point is not known. The second is the drift error caused by
accumulating angular velocity values to measure the angle [44]. Therefore, in this study,
the angle of the wheelchair calculated from the UWB sensor and the angle of the wheelchair
measured from the IMU sensor are fused using Equation (4) in order to solve these two
problems. The data measured from the UWB sensor include high noise, but there is no
drift error because it is not a cumulative calculation. The acceleration data measured from
the IMU sensor have less noise, but drift error occurs. In order to implement the fusion
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based on the characteristics of these two data types, this study proposes a method using a
complementary filter. The complementary filter is usually used when the two data types
have mutually secure frequencies, and the UWB sensor data have low-frequency noise,
and the angular velocity obtained with the IMU sensor have high-frequency noise. Since
each data type is fused through filters of different frequencies using the complementary
filter, the UWB and IMU sensor data with different characteristics are fused and utilized.
As shown in Equation (8), the UWB sensor data and IMU angular velocity sensor data
can be fused. Based on the weight of the complementary filter, β, the angular velocity
θUWB measured from UWB and the angular velocity ∆θGyro(t) of the yaw axis measured
from IMU are fused to calculate the angle of the current wheelchair, θt. Based on this,
Equation (7) is implemented to calculate the amount of ∆XEN and Y-axis position change,
∆YEN , of the wheelchair.

θt = (1 − β)
(

∆θGyro(t) × ∆t + θt−1

)
+ β × θUWB (8)

EKF is an algorithm that calculates the covariance of sensors through past and new
measurement data and estimates the results by fusing each sensor according to the system
model. This is often used to calculate estimates by fusing sensor data based on data that
are difficult to measure precisely due to a lot of noise from each sensor and supplementing
the shortcomings of each sensor [45]. Therefore, EKF is used in this study to remove noise
included in the data and estimate the result of fusing the sensors.

The sensor fusion algorithm presented in this study estimates the position and direc-
tion of the wheelchair by fusing the amount of real-time position data, ∆XEn and ∆YEn,
previously calculated by the encoder sensor; the direction, θt, calculated by fusing the angle
data measured from the IMU and UWB sensors using a complementary filter; and the
positions XUWB and YUWB calculated from the UWB sensor.

Equation (9) is a step of predicting the position and direction of time t in the system
model A for considering a wheeled mobile robot system and calculates the predicted
value x̂t of time t based on the estimated value x̂t−1 of time t − 1. Equation (10) is a
process of obtaining Pt, which is an error covariance prediction value of time t, based on
the system noise Q and system model A based on the error covariance Pt−1 estimated at
time t − 1. Equation (11) is a process of calculating the Kalman gain Kt, a coefficient that
determines how much sensor measurements are to be reflected based on the measurement
matrix H, sensor noise R, and error covariance P. Equation (12) is the final estimation
value and calculates an estimated value by multiplying the value measured with the UWB
and IMU sensors by the Kalman gain K. Equation (13) is a process of estimating and
reflecting the current error covariance based on the calculated Kalman gain and prediction
error covariance.

A =


1 0 dt 0
0 1 0 dt

0
0

0
0

1 0
0 1

, x̂t = Ax̂t−1 (9)

Q =


0.01 0 0 0

0 0.01 0 0
0
0

0
0

10 0
0 10

, Pt = AtPt−1 AT
t + Q (10)

R =


10 0 0 0
0 10 0 0

0
0

0
0

0.01 0
0 0.01

, Kt = Pk HT
t

(
HtPk HT

t + R
)−1

(11)
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z =


XUWB
YUWB

∆XEN
∆YEN

, x̂t = x̂t + Kt(z t − h(x̂t)) (12)

Pt = (1 − KtH)Pk (13)

3. Experiments and Results

In order to verify the position and direction angle estimation system for driving assis-
tance in a mapless environment proposed in this study, experiments for the before and after
applying the UWB sensor data in the pre-processing, the direction angle estimation using a
complementary filter, and the sensor fusion position estimation system were conducted.

3.1. Configuring the Experimental Environment
3.1.1. Experimental Environment

Three experimental environments were configured for quantitative verification of
the position estimation algorithm for driving assistance proposed in this study. First of
all, since the UWB sensor collects data containing strong outliers and noise, they require
pre-processing. In order to compare the distance data before and after the application of
the pre-processing algorithm proposed in this study, the experimental environment was
configured as shown in Figure 7. An environment of a straight space without obstacles
was created, and for performance evaluation, distance data before and after pre-processing
were compared by applying one AN and TN. As shown in Figure 7, it is composed of a
straight distance space without obstacles to proceed with the experiment at 1m intervals
from 1 m to 5 m.
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experimental environment.

This study proposes a UWB sensor-based direction estimation technology to assist in
active driving to the destination of an intelligent wheelchair. However, since the direction
estimation is less accurate with only a single UWB sensor, this study proposed a sensor
fusion technology based on a complementary filter for the direction data from UWB and
IMU sensors. The improved UWB direction estimation technique proposed in this study
is a method of fusing the direction estimation data using the UWB sensor and the IMU
sensor yaw angular velocity data proposed in this study using a complementary filter.
Therefore, the second experimental environment, as shown in Figure 8, was configured for
quantitative evaluation of the proposed complementary filter-based sensor fusion algorithm.
The direction data were collected through an intelligent wheelchair platform, and an
experimental environment was constructed to compare direction estimation according
to the UWB sensor position and UWB/IMU sensor data using a complementary filter.
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The experimental environment was configured to check the direction estimation accuracy
compared to the actual position by mounting a camera at the bottom of the wheelchair
through rotation at a predetermined position, as shown in Figure 8.
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Finally, for active driving assistance to the destination of an intelligent wheelchair,
this study proposed a UWB sensor-based position estimation technology. However, since
the position estimation using a single UWB sensor is less accurate, a method of fusion
based on the UWB/IMU/encoder sensors was proposed. Therefore, for the quantitative
evaluation of the sensor fusion position estimation algorithm proposed in this study, an
experiment was conducted through an experimental environment as shown in Figure 9. The
experimental environment was configured to compare the results of the position estimation
through an algorithm that suggests moving the designated path by attaching ANs to both
ends of the door, just as ANs are attached to both ends of a narrow entrance door of a
hospital or building. Two ANs were mounted at a height of 200 cm at 350 cm intervals, and
the driving path was 200 cm wide and 300 cm long. For quantitative comparison, a camera
was mounted at the bottom of the wheelchair to compare the actual position data with the
position data estimated in the experiment to confirm its accuracy.
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3.1.2. Experimental Platform

For the quantitative evaluation of the theoretical verification proposed in this study, as
shown in Figure 10, the intelligent wheelchair used in the experiment consisted of a PC for
calculation and UWB, encoder, and IMU sensors for position estimation. The DWM1000
module of Decawave was used as the UWB sensor and two modules were installed at 65 cm
intervals, at a height of 96 cm and 20 cm in front of the drive shaft in the horizontal direction.
The UWB module exchanges distance data with each AN every 15 Hz period. A rotary
encoder module with a resolution of 3600 was used, which also transmits data to a PC at a
rate of 15 Hz. The IAHRS RB-SDA-v1 of ROBOR was used as the IMU sensor with a high
accuracy using its own filter, and data were collected in a 15 Hz cycle to design all data
cycles from each sensor based on 15 Hz.
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3.2. Verification of the UWB/IMU/Encoder Fusion Position Estimation
3.2.1. Verification of the Proposed UWB Data Pre-Processing

Since the distance information data have strong outliers and noise in the UWB sen-
sor, data pre-processing is required, and an experiment was conducted to compare pre-
processing and post-processing of the distance information data in the UWB sensor by
applying the pre-processing algorithm proposed in this study. The experiment was con-
ducted by collecting data at 15 Hz intervals for 30 s in the environment presented in Figure 7.
As a result of the experiment, it was confirmed that the outlier removal weight α = 8 cm of
the pre-processing algorithm and the average number of sample data n = 10 were ideal.
Figure 11 shows the experimental graph, and it was verified that the noise and outliers of
the data graph were reduced according to the application of pre-processing. Therefore, it
was verified that the distance data were stably acquired regardless of the strong outliers
and noise of the UWB sensor data.

Table 1 shows the comparison of data before and after pre-processing, and through
this, the performance of the pre-processing algorithm can be confirmed. In the case of the
raw data, the deviation PP (peak to peak) between the maximum and minimum values
is large and the SD (standard deviation) is high, whereas in the case of the filtered data,
which are the data after pre-processing, it was verified that both the deviation and standard
deviation of the maximum and minimum values were smaller than that of the raw data.
Therefore, it was verified that the influences of the noise and outliers were reduced through
the pre-processing algorithm proposed in this study.
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Table 1. Comparison of data before and after pre-processing.

Raw Data Filtered Data

MAX MIN PP SD MAX MIN PP SD

1 m 1.28 0.90 0.38 0.044 1.07 0.96 0.11 0.015
2 m 2.28 1.96 0.32 0.032 2.07 2.02 0.04 0.007
3 m 3.31 3.01 0.30 0.029 3.09 3.04 0.04 0.006
4 m 4.30 3.95 0.34 0.033 4.07 4.02 0.05 0.008
5 m 5.340 4.92 0.41 0.041 5.08 4.99 0.08 0.015

3.2.2. Verification of the Proposed Direction Angle Estimation Algorithm

Since the single UWB sensor-based direction angle estimation algorithm proposed
in this study shows strong errors due to data distortion from obstacles and radio wave
reception strength, a method of supplementing it using a complementary filter on the yaw-
axis direction data of the IMU sensor was proposed. As shown in Figure 8, an experiment
was conducted to measure the direction data through in-place rotation from 90◦ to −90◦.
The in-place rotation was rotated by 3◦ per second, and the experiment confirmed that
the weight β = 0.03 in Equation (6), a complementary filter formula, was ideal, and the
data were updated every 15 Hz cycle. For quantitative comparison of the experiment,
the measurement was performed by mounting a camera at the bottom of the wheelchair
scaffold and comparing it with the reference position drawn every 30◦. The graph of
the angle estimation experiment results is shown in Figure 12, and through this, it is
possible to confirm that the direction angle algorithm fused with the UWB/IMU sensors is
closer to the actual value after applying a complementary filter than the direction angle
estimated only with the UWB sensor. Table 2 shows the comparison before and after the
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complementary filter is applied, and in the case of direction estimation based on a single
UWB sensor, an average error of 6.18◦ and an error of up to 28.37◦ were verified, and an
average error of up to 15.30◦ was confirmed through the UWB/IMU sensor-based fusion.
It was verified that this showed an error of about 18% less than the direction estimation
through only a single UWB sensor, and the maximum error decreased by 53%. It verified
that the proposed complementary filter-based sensor fusion direction estimation algorithm
showed less error than the single UWB sensor-based direction estimation and confirmed
that the driving assistance system could be determined as a designable level because it was
updated in real time.
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Table 2. Angle estimation experimental error.

Raw Fusion

Maximum Error 28.37 15.30
Average Error 6.18 5.09

3.2.3. Verification of the Proposed UWB/IMU/Encoder Fusion Position
Estimation Algorithm

For the quantitative verification of the sensor fusion-based position estimation algo-
rithm proposed in this study, the experiment was conducted in an experimental environ-
ment as shown in Figure 9. The experimental graph is shown in Figure 13, which compares
the results of the three position estimation methods. The position data estimated only from
the UWB sensor data show high noise and strong outliers, and the position estimation
through the encoder has drift errors in which errors accumulate over time. It was confirmed
that the fusion data estimated with the method proposed in this study are more stable than
the UWB and encoder sensor-based estimation methods and do not show drift errors in
which errors accumulate over time.

Table 3 shows the comparison of the reference position for each position estimation
method, and the data estimated from the raw UWB have errors between 10 and 50 cm
and show high variance. The data measured with the encoder show drift errors in which
errors accumulate over time, confirming that the error increases over time, and in the case
of the fusion data implemented by the method proposed in this study, stable position
estimation and an error of 15 cm or less were verified. Therefore, it was verified that
there was no problem in implementing the driving assistance system in the wheelchair
getting on/off space proposed in this study. In the case of the pre-processing algorithm,
it was confirmed that the outliers and noise of the UWB sensor data were removed after
applying the pre-processing. In the case of the direction angle estimation through the
complementary filter, it was confirmed that the direction estimation with reduced mean
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and maximum errors was possible compared to the value estimated only with the UWB
sensor. In the case of the sensor fusion position estimation using EKF, it was confirmed that
it was possible to estimate the position stably compared to the existing raw UWB sensor
data, and there was no drift error, unlike the position estimated based on the encoder
sensor. Therefore, the position and direction estimation system proposed in this study
verified that the position estimation algorithm proposed by improving the shortcomings
and accuracy of a single UWB sensor showed a level of accuracy capable of implementing
an active driving assistance system.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 21 
 

 
Figure 13. Position estimation experimental graphs. 

Table 3 shows the comparison of the reference position for each position estimation 
method, and the data estimated from the raw UWB have errors between 10 and 50 cm and 
show high variance. The data measured with the encoder show drift errors in which errors 
accumulate over time, confirming that the error increases over time, and in the case of the 
fusion data implemented by the method proposed in this study, stable position estimation 
and an error of 15cm or less were verified. Therefore, it was verified that there was no 
problem in implementing the driving assistance system in the wheelchair getting on/off 
space proposed in this study. In the case of the pre-processing algorithm, it was confirmed 
that the outliers and noise of the UWB sensor data were removed after applying the pre-
processing. In the case of the direction angle estimation through the complementary filter, 
it was confirmed that the direction estimation with reduced mean and maximum errors 
was possible compared to the value estimated only with the UWB sensor. In the case of 
the sensor fusion position estimation using EKF, it was confirmed that it was possible to 
estimate the position stably compared to the existing raw UWB sensor data, and there was 
no drift error, unlike the position estimated based on the encoder sensor. Therefore, the 
position and direction estimation system proposed in this study verified that the position 
estimation algorithm proposed by improving the shortcomings and accuracy of a single 
UWB sensor showed a level of accuracy capable of implementing an active driving assis-
tance system.  

Table 3. Position estimation experiment results. 

Reference Raw UWB Encoder Fusion 
(0, 0) (0, 0) (0, 0) (0, 0) 

(0, 150) (11, 154) (14, 166) (−8, 155) 
(0, 300) (1, 291) (51, 325) (−12, 296) 

(100, 300) (112, 280) (136, 298) (103, 295) 
(200, 300) (199, 271) (253, 261) (207, 296) 
(200, 150) (193, 156) (189, 110) (205, 147) 
(200, 0) (189, 22) (144, −24) (200, 12) 
(100, 0) (103, 18) (41, 10) (99, 7) 

4. Conclusions and Future Research Direction 

Figure 13. Position estimation experimental graphs.

Table 3. Position estimation experiment results.

Reference Raw UWB Encoder Fusion

(0, 0) (0, 0) (0, 0) (0, 0)

(0, 150) (11, 154) (14, 166) (−8, 155)

(0, 300) (1, 291) (51, 325) (−12, 296)

(100, 300) (112, 280) (136, 298) (103, 295)

(200, 300) (199, 271) (253, 261) (207, 296)

(200, 150) (193, 156) (189, 110) (205, 147)

(200, 0) (189, 22) (144, −24) (200, 12)

(100, 0) (103, 18) (41, 10) (99, 7)

4. Conclusions and Future Research Direction

In this study, a study of a position estimation system for developing driving assistance
technology for mapless spaces such as wheelchair getting on/off spaces that are difficult
for autonomous driving technology to navigate was conducted. In order to implement a
high-accuracy position estimation system, this study was conducted to estimate a high-
accuracy position and direction by fusing UWB/IMU/encoder sensors. As a result of
fusing the data of each sensor, the low-accuracy problem of the general UWB sensor-based
position estimation was corrected through the data from the IMU and encoder sensors
built into the electric wheelchair, and based on this, the position and direction of 15 cm and
15.3◦ or less were estimated. Since the position and direction can be updated by receiving
each sensor’s data in real time, it is expected that the driving assistance system can be
implemented using the position estimation method proposed in this study. In order to
implement a position estimation system based on a UWB sensor, which is characterized by
noise and outliers, pre-processing is required to reduce the impact of noise and outliers in
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the sensor data. In this paper, encoder and IMU sensor-based data pre-processing is used
to estimate the odometry of a wheelchair to improve the accuracy of a single UWB sensor.
In addition, it is expected that the accuracy of the UWB sensor-based position estimation
system proposed in this paper can be further improved through the fusion of LiDAR and
camera sensors. In the future, research will be conducted to ensure the right to move
by assisting the operation ability of those who have difficulties in operating wheelchairs
through the process of getting on/off wheelchair vehicles and implementing a driving
assistance system in the entrance.
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