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Featured Application: This article proposes a novel graphical approach for the the assessment
of parallelism of biomarker tests that takes into consideration situations where parallelism is
partially lacking. The new approach expands on earlier observations and criticism of the limi-
tations of statistical methods included in the guidelines of regulatory authorities. Researchers
in the field concur on emphasising the importance of ensuring the accuracy and reliability; a
pertinent point which still remains to be addressed. To this purpose, two primary computa-
tional approaches are discussed: (a) statistical assessment and (b) visual assessment. Statistical
methods, such as regression analysis and parallelism/non-parallelism indexes, offer precision
and objectivity, making them suitable for large datasets and high accuracy requirements. They
can detect subtle differences in parallelism that may be missed by visual assessment. However,
they assume a linear relationship between analyte concentration and assay response, which may
not always hold true. Visual assessment relies on interpreting graphs or charts depicting the
biomarker–concentration–response relationship. It is intuitive and can quickly identify gross
deviations from partial parallelism, making it useful for screening biomarker assays. Visual
assessment may detect non-parallelism due to confounding factors that statistical methods might
miss. The graphical method proposed here suggests using partial parallelism plots, which visually
depict the relationship between biomarker concentration and assay response for each sample.
These plots enable the identification of non-parallelism caused by analytical issues or confounding
factors. They assist in determining the optimal range of dilutions for each sample and provide
a language that is easily understood by researchers, regulatory authorities, and technicians. For
regulatory authorities, this document provides valuable insights into the assessment of partial
parallelism for biomarker tests. It highlights the need for both statistical and visual assessment
methods to evaluate parallelism accurately. The proposed use of partial parallelism plots can aid
in visualising and understanding the relationship between biomarker concentration and assay
response. By considering these plots during the evaluation of biomarker assays, regulatory author-
ities can ensure the accuracy, reliability, and suitability of these tests as trial outcome measures
and for clinical use.

Abstract: Demonstrating parallelism in quantitative laboratory tests is crucial to ensure accurate
reporting of data and minimise risks to patients. Regulatory authorities make the demonstration of
parallelism before clinical use approval mandate. However, achieving statistical parallelism can be
arduous, especially when parallelism is limited to a subrange of the data. To address potential biases
and confounds, I propose a simple graphical method, the Partial Parallelism Plot, to demonstrate
partial parallelism. The proposed method offers ease of understanding, intuitiveness, and graphical
simplicity. It enables the graphical assessment of quantitative data risk when parallelism is lacking
within a defined range. As parallelism may not be consistent across the entire analytical range,
the plots focus on partial parallelism. The method can readily be programmed into graphical
applications for enhanced interactivity. By providing a clear graphical representation, the method
allows researchers to ascertain the presence of parallelism in laboratory tests, thus aiding in the
validation process for trials and clinical applications.
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1. Introduction

In clinical medicine, precise determination of the concentration of a given compound
is essential. For instance, in the case of suspected heart attack, the concentration of specific
biomarkers must be determined accurately in a blood sample of the patient to support the
diagnosis. Inaccurate mathematical calculations based on laboratory measurements may
lead to erroneous biomarker concentrations and misdiagnosis. Therefore, mathematical
calculations are heavily relied upon in daily clinical and laboratory practices, but it is crucial
to ensure that the underlying assumptions of these calculations are satisfied. This report
addresses one such assumption, namely parallelism.

Demonstration of parallelism is crucial for the accuracy of any test based on calculating
sample concentration from a standard curve [1]. However, it has been noted that there
is no widely adopted universal strategy for assessing parallelism in bioassays. Without
assurance of parallelism, investigators are unable to calculate reliable estimates for serum
antibody concentrations [1]. To address this issue, it has been suggested to visually compare
the slope of logistic-log curves, for which a series of excellent examples have been provided.
The authors cautioned against purely statistical assessments of parallelism, as the methods
of computation are complex, not readily available in software packages, prone to error
unless interpreted correctly, and overly sensitive to negligible departures from parallelism
when model precision is high. Furthermore, no guidance was provided on how to interpret
the data in cases where there is partial non-parallelism, which may make it challenging for
users to determine the appropriate course of action. Notwithstanding this constraint, the
parallelism plots initially proposed [1] continue to serve as a valuable graphical tool for
evaluating parallelism in laboratory tests, and their significance has been acknowledged
in subsequent research. According to this authoritative perspective [2], the experimental
validation of parallelism remains a challenging and pivotal aspect in the validation of
bioanalytical methods to this day, an assertion that was reiterated in a highly influential
white paper [3].

Regulatory authorities impose strict requirements for the approval of an assay, in-
cluding the demonstration of parallelism. As per the latest guidelines by the Food and
Drug Administration (FDA) and European Medical Agency (EMA), parallelism is defined
as “Parallelism demonstrates that the serially diluted incurred sample response curve is
parallel to the calibration curve” [4]. The guideline provides explicit laboratory instructions
for conducting the study, involving the dilution of a high-concentration study sample to
at least three concentrations with a blank matrix. However, the interpretation of results
becomes more ambiguous. The guideline states that the consistency of back-calculated
concentrations between samples in a dilution series should not exceed a 30% coefficient of
variation (CV). Nevertheless, it is essential to carefully monitor the data, as results meeting
this criterion may still indicate trends of non-parallelism. In cases where the sample does
not dilute linearly, a predefined procedure for reporting results should be established. In
this report, I propose a simple graphical approach for such a procedure, as it may offer
greater intuitiveness and be less susceptible to the limitations previously recognised in
purely numerical methods [1,2].

The concept of parallelism may appear simple at first glance, but it can be difficult
to understand upon further examination. Additionally, numerically driven, statistical
representations of parallelism may not be intuitive for individuals without a statistical
background. This lack of understanding can be problematic for regulatory authorities and
mixed expertise panels tasked with making decisions in laboratory-based research.

2. The Range of Accuracy and Effect Size in the Assessment of Laboratory Tests

Experimental evidence indicates a significant impact of the lack of parallelism on
the quantification of neurofilaments, a well-established biomarker for neurodegenera-
tion [5,6]. The FDA and the EMA approved the use of two novel drugs based on laboratory
results quantifying neurofilaments. A state-of-the-art randomised controlled trial (RCT)
demonstrated a reduction in neurofilament blood levels as proof of efficacy for a novel
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disease-modifying treatment in multiple sclerosis [7], and another RCT [8] lead to rapid
FDA approval for the antisense oligonucleotide tofersen to treat amyotrophic lateral scle-
rosis. However, neither study considered the possibility of partial non-parallelism of
neurofilaments. Although not currently relevant in studies with large effect sizes, such
as [7,8], non-parallelism becomes more pertinent in studies with smaller effect sizes, such
as those encountered in the large number of trials on Alzheimer’s disease which employ
biomarkers as an outcome measure.

Accepting that parallelism is a vital factor in the evaluation of laboratory tests for
biomarkers, it needs to be acknowledged that parallelism is just one among several other
factors influencing test reliability [9]. Pum emphasised that analytical and clinical specificity
and sensitivity are additional critical factors [2]. Various biological and technical factors,
such as matrix effects, variations in biomarker metabolism, or variations in laboratory test
procedures, can also influence the accuracy of laboratory tests for biomarkers. A large
international consortium underscored the importance of using high-quality samples [10].
Furthermore, prospective experimental evidence highlighted that the inter-laboratory
reproducibility and technician skills are other key factors affecting test outcomes [11].

Assessing the range of accuracy of laboratory tests for biomarkers is a complex task
that depends on multiple factors in addition to parallelism. It is crucial to be aware of these
factors and to critically evaluate laboratory tests to determine their suitability as diagnostic
tools and trial outcome measures in medicine.

3. The Definition of Parallelism and Partial Parallelism

The term parallelism, in its simplest definition, describes the relationship between
the concentration of an analyte (such as a biomarker) in a sample and the signal produced
by the reference standard of the laboratory test used to measure that analyte as earlier
introduced [1,2]. When the relationship between concentration and signal is linear, paral-
lelism is said to be present. Hence, the other term used in the literature for parallelism is
linearity. This is important because it means that the laboratory test accurately reflects the
concentration of the analyte in the sample and, therefore, provides a reliable measurement
of the biomarker.

However, if there is non-parallelism (i.e., a non-linear relationship between concentra-
tion and signal), the accuracy of the laboratory test may be compromised. This can occur if
there is interference from other substances in the sample, or if the laboratory test is not able
to accurately detect the analyte, for example, at higher concentrations. This is a frequent
problem with biomarker assays requiring use of a non-linear standard curve, as reviewed
theoretically in [2] and demonstrated experimentally in [5].

In order to test for linearity, a regression analysis is performed to determine the slope
of the line of best fit. The formula for the slope of the line is:

slope =

n
∑

i=1
(xi − x̄)× (yi − ȳ)

n
∑

i=1
(xi − x̄)2

(1)

where

xi is the concentration of the biomarker in the sample;
yi is the signal produced by the test used to measure the biomarker;
n is the number of data points;
x̄ is the mean concentration of the biomarker;
ȳ is the mean signal produced by the laboratory test.

If the slope is not significantly different from 1 (i.e., if |slope − 1| ≤ SE where SE is the
standard error), then parallelism is present. The values of xi are the given concentrations
(i.e., ng/mL, pg/mL, g/L), and formula (1) uses those values to calculate the slope of the
line of best fit, which represents the relationship between the concentration of the analyte
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and the signal produced by the laboratory test, as detailed in an entire book chapter [9]. It
follows that for biomarker assays with proof of linearity, a parallelism coefficient close to
1 indicates that the patient sample and standard curve have similar slopes:

Parallelism coefficient =
Slope of Patient Dilution
Slope of Standard Curve

(2)

In absence of linearity, determination of parallelism was defined for bioassay dilution
curves in absence of a standard curve by a logistic-log model in which the signal for the
test are optic densities (OD) as:

OD = d +
a − d

1 + ( dilution
c )b

(3)

where

a is the upper asymptote of the curve of the OD at a theoretical infinite concentrations;
d is the lower asymptote of the curve of the OD at a theoretical zero concentrations;
b is a curvature parameter;
c is the symmetry point of the sigmoid.

Linear transformation of the curve is achieved through a logistic function where
ODmin and ODmax correspond to bespoke upper and lower asymptotes as

Logit(OD) f s = log
(

OD − ODmin
ODmax − OD

)
(4)

The formula can be reduced to express a partially specified logit model introduced
in [1]:

Logit(OD)ps = log
(

OD
ODmax − OD

)
(5)

The visualisation of this approach is illustrated in Figure 1. Clearly, none of these
curves in Figure 1A meet the criteria for linearity as defined at the onset of this section.
Only bespoke logistic-log transformation permits to demonstrate parallelism (Curves 1–4
in Figure 1B) and lack of parallelism (Curve 5 in Figure 1B). The logistic-log transformation
is the basis for the statistical analysis of a dilution series intended to facilitate visualisation
as intended [1].

Relative dilutioni = 100 ×
(

actual sample dilutioni
maximum dilution in series

)
(6)

where i indicates the dilution step. Finally, Plikaytis et al. used Generalised Linear Models
(one-way analysis of covariance) for determination of parallelism.

In summary, parallelism is described as a critical aspect of the analytical test validation
in the context of analytical linearity (i.e., regression analysis (Formula (1)), parallelism
coefficient (Formula (2))) and non-linearity (i.e., a logistic-log model (Formulas (3)–(5))). The
logistic-log transformation ensures that the test can accurately measure the concentration
of the biomarker over a range of concentrations [1]. Overall, the choice of method for
assessing parallelism depends on the data distribution (i.e., linear or nonlinear).
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Figure 1. Comparison of logistic-log curves and their fully specified logit-log transformed coun-
terparts. (A) Lines 1 and 2, logistic-log curves with identical slopes and asymptotes; Lines 3 and
4, logistic-log curves with identical slopes and different asymptotes; Line 5, logistic-log curve with
different slope and asymptotes. (B) Corresponding straight lines formed by using the fully specified
logit-log transformation. [Reproduced with permission from [1]].

4. Graphical Presentations of Parallelism

Graphical presentations of parallelism can provide a visual representation of the
accuracy and reliability of laboratory tests for biomarkers. Graphical presentations can
help healthcare providers and researchers to rapidly (i.e., at a glance) identify potential
issues with biomarker tests, such as interference from other substances in the sample or
limitations with the analytical sensitivity of the test. They can also be useful for comparing
the accuracy of different laboratory tests for the same biomarker.

One common graphical presentation of parallelism is the parallelism plot, which
involves plotting the signal produced by the laboratory test on the y-axis and the concentra-
tion of the biomarker on the x-axis. A seminal example from the literature was presented in
Figure 1. If the lines are parallel, it suggests that the laboratory test accurately reflects the
concentration of the biomarker in the sample and that parallelism is present.

One development in the biomarker field, since the introduction of the logistic-log
transformation [1], has been the use of calibrated and quality controlled protein standard
curves. Consequently, reported biomarker concentrations are derived from the curve
between the symmetry point (c as defined for Formula (3)), but never from the asymptotes.
The lower asymptotes (d) indicate non-measurable data. This is either because the detection
limit of the assay is insufficient or because there is nothing there to be measured. For the
upper asymptote (a), the concentration of the biomarker is too high to be estimated reliably.
Extrapolation is not permitted. Sample dilution is required. Taken together parallelism of a
biomarker is therefore only determined for

(xstd
i , ystd

i ),∈ {1, . . . , nstd}, where y ̸= a ∨ d (7)

Table 1 shows the data used for calculation of the graphical presentation of the curves
in Figures 2 and 3. The first step of the data transformation used for the graphical presenta-
tion of the partial parallelism plots is to adjust the calculated concentration at each dilution
step (i) as follows:

zi = xstd
i × i (8)

This is followed by normalisation of each value of the transformed series to the value
for the lowest dilution step (i.e., dilution 1:1, Table 2) as

z̄i =
zi
z1

(9)
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Table 1. Raw data for the doubling dilution curves used for Figures 2 and 3.

Dilution Standard Sample-A Sample-B

1:1 10 8 4
1:2 5 4 6
1:4 2.5 2 5
1:8 1.25 1 4

1:16 0.625 0.5 3
1:32 0.3125 0.25 1.5
1:64 0.15625 0.125 0.75
1:128 0.078125 0.0625 0.375
1:256 0.0390625 0.03125 0.1875
1:512 0.01953125 0.015625 0.09375

Figure 2. Conventional presentations of a doubling dilution curve for demonstration of parallelism
between a standard and a sample. This graph illustrates how the concentration of a compound
(y-axis) decreases with subsequent dilution steps (x-axis) either presented as a continuous variable on
(A), a linear scale as used in [12], and (B) on the logarithmic scale derived from Formula (5) [1]. The
standard curve (cross, dotted grey line) and dilution curves (Sample-A, open square, dashed grey
line; Sample-B, open circle, black line).
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Figure 3. Graphical comparison of the partial logistic presentation on the x-axis only [1] in
(A) switched for a categorical variable in (B). For any test, the standard (cross, dotted grey line)
is used as the main comparator. In this example, the dilution curve for Sample-A (open square,
dashed grey line) is parallel to the standard curve. There is a small offset on the y-axis between
the standard and Sample-A because the starting concentration for Sample-B was less than for the
standard. In contrast, the dilution curve for Sample-B (open circle, black line) is not parallel to
the standard. For Sample-B, there is an increase in the concentration with the first dilution step.
For dilution steps 1:4 to 1:16, the concentration in Sample-B reduces to a lesser degree than for the
standard. After Dilution Step 1:32, there is parallelism between Sample-B and the Standard, but this
is not clearly visible with this format of graphical presentation.

Overall, graphical presentations of parallelism are an important tool for evaluating the
accuracy and reliability of laboratory tests for biomarkers, but there are important practical
limitations to their interpretability. The next section will illustrate how this can be overcome
in a standardised way which will simplify the interpretation of the graphical presentation.
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Table 2. Transformed data from Table 1 as needed to develop the partial parallelism plots shown in
Figure 4. Abbreviations: Standard = Std, Sample-A = a, Sample-b = b. The horizontal bar above the
abbreviation (e.g., Std) indicates the normalised values.

Dil. Std1 A1 B1 Std2 A2 B2

1:1 10 8 4 1 1 1
1:2 10 8 12 1 1 3
1:4 10 8 20 1 1 5
1:8 10 8 32 1 1 8

1:16 10 8 48 1 1 12
1:32 10 8 48 1 1 12
1:64 10 8 48 1 1 12

1:128 10 8 48 1 1 12
1:256 10 8 48 1 1 12
1:512 10 8 48 1 1 12

1 Data of concentrations from Table 1 multiplied by dilution step from series (i.e., 5 × 2 = 10, 2.5 × 4 = 10, etc.) as
summarised in Formula (8). 2 Data normalised to concentration at lowest dilution step of the series (i.e., 10

10 = 1,
etc.) as summarised in Formula (9).

Figure 4. (A) illustrates that the parallelism between the Standard and Sample-A is visually more
intuitive compared to Figure 2. For this presentation, the value of the concentration was corrected by
multiplication with the dilution. The offset on the y-axis between the Standard and Sample-A is
explained by the difference in concentration. This can be a problem for the graphical representation
if this difference is very large. Therefore, in example (B), all values were normalised to the baseline
concentration. Now parallelism between the Standard and Sample-A is illustrated by the overlay
of the horizontal lines at the y-axis value of one. The consequence of the absence of parallelism for
Sample-B in the initial dilution steps leads to an overestimation of a factor of ≈12.5 once parallelism
is achieved after a dilution of 1:32.
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5. Partial Parallelism Plots

In a partial parallelism plot, the laboratory test results are plotted against each other
on the x- and y-axes. A line of unity is then added to the plot to represent perfect parallel
agreement between the measurements. The slope of the line, normalised to the first dilution
step of the standard curve, is zero with an intercept of one. Therefore, a horizontal reference
line at once permits the comparison of the slope of the samples to visually analyse the
degree of parallelism for the biomarker in question. If the line of unity (horizontal reference
line) is significantly different from the slope of the line of best fit for the sample, it suggests
that partial parallelism is absent.

One advantage of partial parallelism plots is that they can be used to assess paral-
lelism between samples over a limited, thought to represent the clinically useful, range of
concentrations. This can provide a more practical evaluation of parallelism as relevant for
routine healthcare practice.

As a first step towards this goal, Figures 3 and 4 introduce the graphical representation
of the line of unity. The result of normalisation for subsequent dilution steps (Formula (7)) is
shown graphically for the data from Table 1. In this presentation, there is a similar graphical
pattern for the plots in Figure 3A,B. The difference between the two plots can be seen on
the x-axis. Note that the x-axis in Figure 3A is log based. Whilst mathematically correct,
this presentation does not make for an easy laboratory, clinical, or health authority-tuned
assessment of the biomarker concentration. A much more common notation is the dilution
step as used on the categorical scaled x-axis in Figure 3B. A limitation of both graphical
presentations is that it cannot readily be seen that parallelism between Sample-B and the
line of unity is only achieved after a dilution step of 1:32.

The graphical presentation can be improved to better visualise when parallelism is
achieved. Figure 4A gives a graphical representation of the same two plots as in Figure 3,
adjusted for the dilution steps. For generalisation, the intercept is normalised to one at the
baseline in Figure 4B. This graphical presentation is the basis for the development of partial
parallelism plots.

The term partial parallelism plot shall be defined as a defined range of biomarker
concentrations for which parallelism between sample and standard can be demonstrated.
In laboratory practice, parallelism may only be achieved after a certain dilution step because
of, for example, a matrix effect (Table 3). Figure 5A illustrates a theoretical situation with a
small matrix effect which persists up to a dilution of 1:4 (see vertical reference line). The
graphical presentation for a mildly stronger matrix effect persisting up to a dilution of 1:8
is shown in Figure 5B.

Importantly, lack of parallelism can also be present at later stages of the dilution curve
(Table 4), for example, because the concentration of the biomarker is below the detection
limit of the assay (i.e., d in Formula (3)). Figure 6A shows the graphical presentation for
lack of parallelism after a dilution step of 1:128. It would be physically impossible to see
the developing lack of parallelism with the curves presented in Figure 3. Finally, Figure 6B
illustrates the presence of partial parallelism between a dilution of 1:8 to 1:128. At lower
or higher dilution steps there is non-parallelism. Again, this pattern cannot be visually
extracted from the graphical presentation in Figure 3.
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Figure 5. These two examples show that parallelism is achieved after (A) a dilution of 1:4 and (B) a
dilution of 1:8. The data are from Table 3.
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Figure 6. These two examples shows that parallelism is lost after (A) a dilution of 1:128. Finally,
(B) illustrates that parallelism was only achieved between a dilution of 1:8 to 1:128. Data are from
Table 4.

Table 3. Raw and transformed data for the partial parallelism plots shown in Figure 5A,B. Subsequent
steps of data transformation are indicated by the superscript in the Table (e.g., Std1, Std2, etc.). The

numbers for Std2 and B2 were used to draw Figure 5.

Dil. Std B Std1 B1 Std2 B2

(A)
1:1 10 9 10 9 1 1
1:2 5 8.1 10 16.2 1 1.8
1:4 2.5 4.05 10 16.2 1 1.8
1:8 1.25 2.025 10 16.2 1 1.8

1:16 0.625 1.0125 10 16.2 1 1.8
1:32 0.3125 0.50625 10 16.2 1 1.8
1:64 0.15625 0.253125 10 16.2 1 1.8

1:128 0.078125 0.1265625 10 16.2 1 1.8
1:256 0.0390625 0.06328125 10 16.2 1 1.8
1:512 0.01953125 0.031640625 10 16.2 1 1.8
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Table 3. Cont.

Dil. Std B Std1 B1 Std2 B2

(B)
1:1 10 1 10 1 1 1
1:2 5 1.1 10 2.2 1 2.2
1:4 2.5 0.7 10 2.8 1 2.8
1:8 1.25 0.4 10 3.2 1 3.2

1:16 0.625 0.2 10 3.2 1 3.2
1:32 0.3125 0.1 10 3.2 1 3.2
1:64 0.15625 0.05 10 3.2 1 3.2

1:128 0.078125 0.025 10 3.2 1 3.2
1:256 0.0390625 0.0125 10 3.2 1 3.2
1:512 0.01953125 0.00625 10 3.2 1 3.2

Table 4. Raw and transformed data for the partial parallelism plots shown in Figure 6A,B. The

numbers for Std2 and B2 were used to draw Figure 6.

Dil. Std B Std1 B1 Std2 B2

(A)
1:1 10 2 10 2 1 1
1:2 5 1 10 2 1 1
1:4 2.5 0.5 10 2 1 1
1:8 1.25 0.25 10 2 1 1

1:16 0.625 0.125 10 2 1 1
1:32 0.3125 0.0625 10 2 1 1
1:64 0.15625 0.03125 10 2 1 1

1:128 0.078125 0.015625 10 2 1 1
1:256 0.0390625 0.006 10 1.536 1 0.768
1:512 0.01953125 0.0001 10 0.0512 1 0.0256

(B)
1:1 10 2 10 2 1 1
1:2 5 1.5 10 3 1 1.5
1:4 2.5 0.9 10 3.6 1 1.8
1:8 1.25 0.5 10 4 1 2

1:16 0.625 0.25 10 4 1 2
1:32 0.3125 0.125 10 4 1 2
1:64 0.15625 0.0625 10 4 1 2

1:128 0.078125 0.03125 10 4 1 2
1:256 0.0390625 0.01 10 2.56 1 1.28
1:512 0.01953125 0.002 10 1.024 1 0.512

6. Examples from the Literature

In a test comparison study [12], parallelism was investigated for allopregnanolone
in saliva samples from pregnant women. The sample dilution curves were plotted as in
Figure 2A (Figures 1 and 2 in [12]). The conclusion was that the first kit (pg/mL) requires
a minimal dilution of 1:5 for an acceptable mean percentage parallelism of 104.3%. The
authors accepted that the second kit’s test performance met the criteria for parallelism.
Using the partial parallelism plot approach, Figure 7A illustrates a lack of parallelism for the
first kit. The interpretation of Figure 7A is different to the proposed 1:5 dilution to achieve
parallelism [12]. For the second kit, (ng/mL) partial parallelism can be achieved for a
dilution range from 1:1 to 1:16, as illustrated by the two vertical reference lines in Figure 7B.
At higher dilutions, there is a floor effect of the data suggesting that the test has reached
its lower detection limit; hence, the incorrect overestimation of higher concentrations with
ever more dilution steps.
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Figure 7. Literature example for allopregnanolone quantified by ELISA from saliva samples anal-
ysed [12]. (A) Lack of parallelism for Kit 1. The maximum error occurs at a dilution step of 1:8 with
an ≈8-fold overestimation of the concentration of allopregnanolone (B) Partial parallelism between a
dilution of 1:1 to 1:16 (red vertical reference lines). In this example, a horizontal black reference line
is given at y = 1 which illustrates that there is also a problem with the standard in (B), most likely
diluted beyond the analytical detection limit of the assay.

There are situations where it is desirable to quantify the same substance from different
types of samples. Consequently, an Enzyme-Linked Immunosorbent Assay (ELISA) was
developed for measurement of luteinizing hormone (LH) from whole blood, serum, cell
extracts, cell culture medium, and pituitary gland extracts [13]. Averaged LH data on the
parallelism experiments for these five different sample sources were provided in Tables 6 to
10. Based on these data, Figure 8 shows good partial parallelism for a dilution range from
1:1 to 1:4. After that, near perfect parallelism appears to be lost. The conclusion could be
that the concentrations of LH cannot anymore be calculated reliably for comparison from
different sources. But the deviation from one on the y-axis are only minimal (≤0.2 units).
Therefore, in this example, partial parallelism persists up to a dilution of 1:32. After a
dilution step of 1:64 the detection limit of the assay is reached for all sample sources.
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Figure 8. Literature example for luteinizing hormone quantified by ELISA from different sources [13].
At first glance, near perfect parallelism weakens after a dilution step of 1:4 (dotted vertical reference
line). The error for partial parallelism is, however, minimal (≈0.2 units). Therefore, partial parallelism
can be accepted for a dilution range of 1:1 to 1:32 (closed red vertical reference lines).

Lack of parallelism has also been reported explicitly [14]. These authors clarify in the
abstract poor “dilution linearity” attributed to “presence of a matrix effect and/or different
immunoreactivity of the antibodies to the recombinant standard and the endogenous
analyte”. The partial parallelism plot in Figure 9 is based on the raw data provided in
Table 2 in [14]. Consistent with the author’s conclusion, this graph convincingly shows
absence of parallelism.

Figure 9. Literature example for reported lack of parallelism for erythroferrone quantified by ELISA from
human serum samples [14]. Note that in this example an inverse logarithmic scale was used compared to
what was presented in Figure 2B. This choice was based on the uneven dilution steps reported for this
experiment. For clarity, each data point was labelled with the corresponding dilution step.
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Finally, an example for perfect partial parallelism is shown in Figure 10. This example
is based on an ELISA for quantification of human insulin (uU/mL) for a dilution range
of 1:1 to 1:8 [15]. The data for the partial parallelism plot were taken from Table 4 in [15],
which also details that Samples A to D were based on plasma samples with exogenous
insulin added (dashed lines in Figure 10) and high endogenous insulin (dotted lines in
Figure 10). Note that the range of the y-axis presented in Figure 10 is very narrow at only
1 uU/mL insulin (range 0.95 to 1.05 uU/mL). Both spiked (samples with exogenous insulin
added) and native samples are perfectly parallel to the standard (solid horizontal reference
line at y = 1).

Figure 10. Literature example for perfect parallelism for insulin quantified by ELISA from human
plasma samples [15]. The error for partial parallelism is negligible (<0.01 units).

Taken together, partial parallelism plots are a useful graphical method for evaluating
the accuracy of calculating the biomarker concentration from a sample based on a biomarker
standard curve for a defined range of concentrations. Therefore they can provide a more
practical evaluation, which is also easy to understand, and can help identify potential
sources of non-parallelism.

7. Relationships between Confounds and Parallelism

The relationship between confounds and parallelism in laboratory tests is an impor-
tant topic, as confounds can have a significant impact on the accuracy and reliability of
laboratory tests. By definition, confounds are variables that can affect the results of lab-
oratory tests but are not directly related to the biomarker being measured. It has been
noted that frequent examples of confounds include chemical stability of the biomarker,
repeated freeze–thaw cycles, gender, height, weight, renal function, medication use, and
co-morbidities such as diabetes mellitus [9].

Protein biomarker studies have shown that the presence of confounds, including
sample preparation and storage, can impact the degree of parallelism between laboratory
tests as earlier stated [5,10]. The relationship between confounds and parallelism can be
expressed mathematically using regression equations as

y = β0 + β1x + ϵ (10)



Appl. Sci. 2024, 14, 602 16 of 19

where y is the signal produced by the laboratory test, x is the concentration of the biomarker
being measured, β0 is the intercept, β1 is the slope, and ϵ is the error term. Consequently,
confounds can be added to equation (10) as additional independent variables:

y = β0 + β1x + β2c + ϵ (11)

where c represents a confounding variable. The impact of the confound on the parallelism
between laboratory tests can be assessed by comparing the slopes of the regression lines
with and without the confound. The need for testing this has been highlighted in a recent
white paper [3].

It is important for researchers and healthcare providers to be aware of the potential
impact of confounds (c) on the accuracy and reliability of the biomarker tests. Laboratories
should take steps to minimise the impact of confounds, including controlling for them in
statistical analyses or by stratification of the analyses by confounding variables.

Overall, the need for research studies to include testing for confounds for their rela-
tionship with the degree of parallelism in biomarker tests has been recognised, but not yet
been implemented systematically in the literature.

8. Discussion

The practical advantages of partial parallelism plots for biomarker tests has been
illustrated statistically and graphically. Application of partial parallelism plots to real
biomarker data has revealed the strength of the approach compared to alternatives which
were reviewed and discussed with regard to their historical development. The assessment
of partial parallelism is an essential step in the validation of laboratory tests, as it determines
whether the assay produces accurate and reliable results. There are two primary methods
for statistical and graphical assessment. Each method has its own benefits and limitations.

Statistical assessment, such as regression analysis and the calculation of parallelism
and non-parallelism indexes, provides a quantitative measure of the degree of parallelism
between two or more samples as discussed [1,2]. These methods are precise and objective,
making them ideal for the assessment of large datasets or when a high level of accuracy is
required. Additionally, statistical methods can detect subtle differences in parallelism that
may be missed by graphical assessment.

However, statistical methods also have limitations. They assume that the assay follows
a linear relationship between the concentration of the analyte and the response of the assay.
This may not always be the case, as assays may exhibit non-linear responses at high or
low concentrations. For example, the FDA and EMA guidelines state that “Parallelism is a
performance characteristic that can detect potential matrix effects.” [4]. A limitation of this
definition is that it does not consider (i) the possibility of compound aggregate release or
modifiable epitope masking in immunoassays [5]. Additionally, it was highlighted that sta-
tistical methods may not detect non-parallelism due to confounding factors, such as matrix
effects or interference by endogenous substances, the CV, and the critical difference [16].
Statistical methods are also not necessarily easily comprehensible to many of the parties
involved in appraisal of a biomarker test.

Visual assessment, on the other hand, relies on the interpretation of graphs or charts
that depict the relationship between the concentration of the biomarker and the response of
the assay. This method is very intuitive and can quickly identify gross deviations from par-
tial parallelism, making it useful for screening biomarker assays for technicians, lay people,
and regulatory authorities. Additionally, graphical assessment may detect non-parallelism
due to confounding factors that are not detected by statistical methods. This includes, for
example, a drop in the analytical sensitivity which affects a biomarker and test standard
curve similarly (see Figure 7B). There are many chemical and biological reason to the lack
of parallelism [17]. The major contributors to non-parallelism are related to interference or
a mismatch with the capture antibody (or surface), the detection antibody, the surrogate
reference material, the endogenous analyte, and specific and non-specific interactions. For
optimal graphical presentation of the concentration range where parallelism applies in a
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test, a “raw signal” approach was proposed which includes a four parameter logistic regres-
sion curve fitting. The “raw signal” approach is similar to the Figure 3B. Present proposal
of partial parallelism plots, as presented in Figures 5–9, should be interpreted as a further
simplification of the “raw signal” approach. Individual researchers from all backgrounds
and regulatory authorities may also find an advantage in the simplified pattern recognition
of the partial parallelism plots. Importantly, both approaches emphasise that parallelism
does not need to extend over the entire analytical range of a given test.

However, graphical assessment also has limitations. It is subjective and may vary
depending on the experience and expertise of the assessor. Additionally, graphical assess-
ment may not detect subtle deviations from partial parallelism that may affect the accuracy
and reliability of the assay. One such factor relates to confounds and was expressed as the
CV. In such a situation where the graph may not be clear cut, the visual approach can be
improved by showing the parameters obtained from the fits, including the R-square values.
Another improvement is the option to zoom into specific regions of the partial parallelism
plots. One example was presented in Figure 8. After zooming in, it becomes visibly clearer
that the data distribution is more random for the dilution steps 1:2 to 1:16 than for the
following dilution steps which clearly demonstrate deviation from parallelism, even if the
CV initially improves. Providing this level of interactivity will be a valuable improvement
of the method for digital applications making use of proposed partial parallelism plots.

Taken together, both statistical and graphical assessment methods have their own
benefits and limitations in the assessment of partial parallelism for biomarker tests. A
combination of both methods may provide a comprehensive assessment of the degree
of partial parallelism and the presence of non-parallelism due to analytical issues or
confounding factors.

9. Conclusions

In conclusion, the introduction of partial parallelism plots as a tool for assessing
parallelism in biomarker tests holds great promise. These plots offer a clear visualisa-
tion of the relationship between biomarker concentration and assay response for each
sample, enabling the identification of non-parallelism arising from analytical challenges
or confounding factors. Emphasising the importance of determining the optimal range
of dilutions for each sample, these plots provide a language that is easily interpretable,
ultimately leading to the attainment of accurate and reliable results. As such, incorporating
partial parallelism plots into the validation process of quantitative laboratory tests is an
essential step to ensure their appropriateness for clinical medicine, bolstering confidence in
their utility.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/app14020602/s1, Supplementary data are provided in form of an
Excel sheet with two tabs for raw data and partial parallelism plot calculations. Table S1: Raw Data for
Real-Life Examples: The first tab of this Excel sheet provides comprehensive details of the raw data
used to generate the Figures based on real-life examples. Each row corresponds to an individual data
point, and the first author’s name is referenced for the source of the data. The columns are structured
as follows: (a) Dilution Steps (String Variable): This column represents the dilution steps used in the
experiments. (b) Dilution Steps (Numeric Variable): This column provides the numeric representation
of the dilution steps. (c) Sample Description: This column provides information about the samples
used in the experiments. (d) Numeric Values for Y-axis (Column 1): The first column containing
numeric values used for the Y-axis in the Figures. (e) Numeric Values for Y-axis (Column 2—Optional):
An optional second column containing additional numeric values for the Y-axis. Following the raw
data presentation, each example is followed by a section detailing the conversion of the Y-axis values
into values suitable for the partial parallelism plots (PPP plot calculations) presented in this paper.
Table S2: Compact Format for PPP Plot Calculations: The second tab of the Excel sheet contains the data
organised in a concise 5-column format, specifically designed for easy export into a comma-separated
file (.csv). This format is suitable for generating graphical representations used in the present article.
The columns are arranged as follows: (a) Author’s first name and year of publication. (b) Dilution

https://www.mdpi.com/article/10.3390/app14020602/s1
https://www.mdpi.com/article/10.3390/app14020602/s1
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Steps (String Variable): This column represents the dilution steps used in the experiments. (c) Dilution
Steps (Numeric Variable): This column provides the numeric representation of the dilution steps.
(d) Sample Description: This column offers a brief description of the samples. (e) Numeric Values
for Y-axis (Column 1): The first column containing numeric values used for the Y-axis in the Figures.
(f) Numeric Values for Y-axis (Column 2—Optional): An optional second column containing additional
numeric values for the Y-axis. The section containing PPP plot calculations serves as a template for
readers to conduct their own calculations. It is crucial to verify the accuracy of the dilution steps
and ensure that the reference for the “normalised” fields remains unchanged during the process. By
presenting the raw data and providing a user-friendly template for PPP plot calculations, this Excel
sheet aims to enhance reproducibility and facilitate further research in the field.
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