
Citation: Krbalek, M.; Krbalkova, M.

Elucidating Super-Compressible

States in Inner Structure of Vehicular

Flow. Appl. Sci. 2024, 14, 600.

https://doi.org/10.3390/

app14020600

Academic Editor: Suchao Xie

Received: 29 October 2023

Revised: 1 January 2024

Accepted: 5 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Elucidating Super-Compressible States in Inner Structure of
Vehicular Flow
Milan Krbalek 1,*,† and Michaela Krbalkova 1,2,†

1 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,
120 00 Prague, Czech Republic

2 Faculty of Transport Engineering, University of Pardubice, 530 01 Pardubice, Czech Republic;
michaela.krbalkova@upce.cz

* Correspondence: milan.krbalek@fjfi.cvut.cz
† These authors contributed equally to this work.

Abstract: The article deals with the open questions in the theory of vehicular headway modeling.
Specifically, the question of the existence of anomalous constellations in vehicular traffic micro-
structure, in which the rate of fluctuations (measured by the stochastic compressibility) exceeds
the fluctuation level of systems with non-interacting elements. The solution to this open problem
is converted into the mathematical format working with the so-called balance particle systems,
where seeking relevant relations is more straightforward and thus significantly easier. Presented
research has shown that unit compressibility represents (despite popular opinion) the upper limit
only for particle systems, in which there is no attractive interaction between the particles. In the
article, the specific system is constructed in which the presence of an attractive force component will
cause higher fluctuations than in the Poisson systems of non-interacting elements. This means that
traffic constellations with higher compressibility (so-called super-compressible constellations) can be
explained either by a discrepancy between the empirical traffic flow and the mathematical model
used, or by the presence of attractive forces acting between individual vehicles. Using empirical
vehicular data (measured on two parallel freeway lanes under reconstruction), we show that super-
compressible states occur even though overtaking is prohibited. This means, therefore, that these
super-compressible states arose without a doubt due to the mutual attraction of successive vehicles.
In addition, the article shows that the presence of the aforementioned attractive forces appears
predominantly in the fast lane, and only in situations where the traffic density is relatively low. At
higher densities, the two freeway lanes are markedly synchronized, the opportunity for a sporty style
of driving vanishes and the reason for changing lanes disappears. Under these circumstances, the
attractive force component vanishes, which finally leads to the transition of the entire traffic system
back to standard sub-compressible states.

Keywords: freeway traffic; headway distribution; vehicular headway modeling; statistical
compressibility; particle systems; empirical traffic data analysis; statistical rigidity

1. Introduction and Prior Art

The physical laws of the movement of a group of vehicles on roads and freeways have
been studied since the 1930s, when Professor Greenshields made his famous traffic flow
measurements and presented the first analysis of traffic data. One can start talking about
continuous traffic research since the nineties of the last century, when traffic modeling
experienced a rather unexpected boom. For example, at this time, the famous cellular
traffic models (e.g., [1–3]) saw the light of day, the simplicity of which is admired even
by contemporary traffic engineers and physicists. The initial strong concentration on the
macroscopic description of vehicular traffic (see [4,5]) was supplemented over time by an
area called vehicular headway modeling (VHM)—[6]. Research in the field of VHM is,
roughly speaking, mainly focused on understanding and explaining non-trivial properties
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of the inner structure of the traffic flow and on revealing their dependence on macroscopic
traffic parameters.

Among the basic physical quantities of the VHM area, we include the instantaneous
speed of individual vehicles, the mutual distance of succeeding vehicles (spatial clear-
ance/headway) and the time gaps between the passage of two successive vehicles (tempo-
ral clearance/headway). However, all these quantities have an obvious stochastic nature,
and therefore, it is necessary to look at them (from a mathematical point of view) as random
quantities. The search for statistical distributions (probability densities) of these random
variables is frequent and still popular in the physics of vehicle traffic. The specific nature of
traffic flow—in particular, the fact that the main control factor is the driver’s brain—makes
most of the elementary VHM problems not solvable by means of simple analogies with
similar physical systems. Also, the distribution of basic statistical quantities mostly (with a
few exceptions) does not belong to traditionally used distribution families. The extremely
strong repulsive force action between vehicles (induced by avoiding a collision with a
previous vehicle) causes a significant digression from the world of classical physics systems.
Therefore, even though some sub-questions in the field have already been successfully
answered, there are still a number of open problems in the VHM that are heretofore waiting
to be solved. This article discusses one such problem.

The historical progress in the VHM discipline is synoptically summarized in the survey
study [6]. It is clear that after the initial attempt to model the micro-structure of the traffic
flow with the help of textbook distribution families, the research has focused on revealing
the deeper essence of the investigated issue. Over time, a comprehensive methodology was
developed [7] for evaluating vehicle-by-vehicle data, as well as a mathematical technique
enabling the effective detection of fundamental universalities in the inner structure of
vehicular streams [8].

This article attempts to unravel one of the well-known mysteries of traffic micro-
structure, which both traffic engineers and traffic physicists encounter on various occasions.
For traffic engineering tasks, the aforementioned mystery can be formulated relatively
straightforwardly (e.g., in [9–11]): For what reason do standard estimation techniques
fail (under certain specific traffic conditions), although in other cases, they estimate the
statistics of vehicular microscopic quantities very accurately?

However, the same problem can also be formulated from a physical point of view (like
in [6,12,13]): Why do vehicles in the fast lane (on two-lane freeways) form clusters with
completely different statistical properties than vehicles in the main lane, despite the fact
that the values of all macroscopic quantities are identical in both lanes?

The mathematical formulation of the cited anomalous behavior could be formulated as
follows (see [7,14]): For what reason do we occasionally detect traffic states that violate the
generally accepted premise that vehicular dynamics generate so-called sub-compressible
constellations only? How is it possible that the degree of disorder of these states is greater
than the disorder of the Poisson systems, which are characterized by negligibly small
interactions between the elements of the system, which implies the maximum possible
freedom in the evolution of the system? How is it possible that a vehicular system can
exhibit higher fluctuations than Poisson systems?

In fact, all three of these obscurities are very closely related, and moreover, it seems
they have the same cause. In order to explain these ambiguities, it is necessary to convert the
entire problem into an idealized mathematical structure, reformulate the anomalies found
into a quantitative form, and solve the entire task by an apparatus of mathematical/physical
modeling. This is exactly what this article is trying to present.

1.1. Vehicular Stream Micro-Structure: Prior Art

In this part of the text, we try to roughly summarize the current state of the art in the
field of statistical analysis of traffic micro-quantities (quantities associated with individual
vehicles, i.e., non-aggregated quantities). The physics of traffic ([4,15]) in the flow of time
came to the conclusion that the statistics of traffic quantities are strongly sensitive to the
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current values of traffic macroscopic quantities (traffic density ϱ, traffic intensity I and
average speed of the traffic sample V). And indeed, the mean values of the selected
micro-quantities depend quite directly on the aforementioned macroscopic values, which
is more or less trivial knowledge. A much more interesting finding is the fact that also the
characteristics of higher orders (variance, typically) are strongly dependent on the location
of the data sample in the so-called fundamental diagram, which is the two-dimensional
graph of the binary relation between intensity and density (see [16]). A typical shape of
such a graph is shown in Figure 1.
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Figure 1. Fundamental diagram of vehicular traffic—schematic representation of binary relation
between traffic density ϱ and intensity I, extracted from typical empirical data samples. Ω symbolizes
a small sub-region with similar values of macroscopic quantities, where empirical data can be
considered homogeneous.

It also soon became apparent that with a thoughtful way of analyzing empirical traffic
data (when data extracted under different traffic conditions are not mixed), the hypothesis
that vehicle speeds are normally distributed has been statistically confirmed several times
(e.g., [17]). This means that the instantaneous speed V of vehicles (with realization v)
analyzed in a small sub-region Ω (see Figure 1) is distributed with a probability density

q(v) =
1√
2πσ

e
− (v−V)2

2σ2 , (1)

which implies that the average value EV = V and the variance DV = σ2, both of them
depending on traffic density and intensity.

Much more interesting, however, are questions regarding the spatiotemporal arrange-
ment of vehicles on roadways. Complex traffic dynamics (controlled by the decision-
making processes in the driver’s brain) generate extremely interesting variants of the inner
arrangement of a vehicular system. Surprisingly, some of them have no analogy to any of
the classical physical systems. This is mainly due to a significant force repulsion, the main
reason for which is the attempt to avoid a collision with other vehicles, predominantly with
the preceding vehicle.

Common variants of the inner structure of a one-dimensional system can only be
found in two special variants of the vehicular stream. The first of them is a situation where
the traffic density is very low and therefore nothing forces the drivers to interact with each
other. Such a situation, then (from a mathematical point of view), represents a so-called
Poisson system, which is characterized by a total absence of interactions between elements
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of the system. In this type of system, the interval frequency NL (i.e., the number of particles
occurring in an interval of fixed length L) follows the Poisson distribution

P[NL = k] =
(µL)k

k!
e−µL; k = 0, 1, 2, . . . , (2)

where P[NL = k] stands for probability that in an interval of length L there is k ele-
ments/particles/vehicles. The mutual distances between neighboring particles in the
Poisson system are then subject to the exponential distribution

g(x) = Θ(x)λe−λx, (3)

where Θ(x) represents the Heaviside unit-step function. With regard to the above-mentioned
properties, the Poisson system is understood as a system with the maximum possible free-
dom of movement, i.e., with the maximum degree of statistical fluctuations. Respective
traffic states have been discussed in the earlier works [6,18].

A completely different version of a particle system is an ensemble with an absolutely
perfect arrangement of elements, in which statistical fluctuations do not occur. It is a
deterministic system, whose distribution of distances follows the Dirac distribution

g(x) = δ(x − µ), (4)

which, in fact, describes equidistantly arranged one-dimensional ensembles (with mutual
distance between neighbors equal to µ). Generalized function δ(x) is the Dirac delta
impulse. The real vehicular system can approach the ideal Dirac system (see [19]), namely
in a situation when the traffic density increases and mutual inter-vehicle interactions cause
a transition into a highly correlated state, in which all vehicles move with approximately
the same speed and headway, analogously to the motion of a solid block.

Apart from the two aforementioned marginal states, which can be described by
textbook-types of distribution classes, in other cases, vehicles are grouped into statis-
tically less expected constellations [6,20]. In some cases, the inner structure of vehicular
samples even exceeds the limits that one-dimensional particle systems seem to have.

Although during the years when research in the field of VHM has been going on (and
is still in progress), an overwhelming amount of different types of statistical description
for the traffic micro-structure appeared, and over time it became clear that the relevant
statistics must necessarily meet at least a minimum of theoretical or empirical assumptions.
We speak about the criteria for admissibility. Let us briefly recall them here.

1.2. Criteria for Admissibility of Analytical Headway Statistics

The goal of this subsection is to mention certain universal attributes of vehicular
headway statistics. Principally, regardless of the specific analytical form of the interaction
forces/rules acting in the traffic flow, it is easy to see that their range is either short
or medium. This refers to the fact that the group of vehicles that the driver takes into
account in their decision-making process is either single-element or has only a few elements.
Mathematically, such systems can be understood as quasi-Poisson systems. However, in
quasi-Poisson systems, the statistic of distances between neighboring elements (probability
density function) always belongs to the class B of so-called balanced distributions (as
proven in [21]). Balanced distributions are characterized by the fact that their asymptotic
course (x → +∞) is negatively exponential. To be specific,

lim
x→+∞

ln g(x)
x

∈ (−∞, 0). (5)

For details regarding the class B, please see Appendix A.1.
Already in the early days of the physics of traffic (see Ref. [6] and references therein),

the authors of various studies pointed out that the probabilities of short inter-vehicle



Appl. Sci. 2024, 14, 600 5 of 21

distances are extremely low, or zero. The reasoning was straightforward, as follows.
The effort not to cause a mutual collision forces the driver to maintain a certain safe
distance from the bumper of the preceding vehicle, i.e., not allowing space clearances
shorter than a certain critical value (clearance threshold), as claimed in initial research—
e.g., [22]. Let us denote this threshold with the symbol x0. So, drivers were actually
forbidden from entering the critical area [0, x0]. This led to the logical statement that the
probability densities for clearances are shifted, i.e., they satisfy the equality g(x) = Θ(x −
x0)g(x). Many studies then tried to detect this threshold x0 (representing in fact the smallest
measured gap between vehicles) from empirical data. And since the threshold detection
task is very complex, the results showed quite contradictory values. The investigations
confirmed the hypothesis that the greater the amount of measured data, the smaller the
threshold. This hypothesis has been then confirmed several times, and in some studies
(e.g., [6] and references therein), the detected threshold was barely distinguishable from
zero. Mathematical extrapolation of these considerations leads to the following reasoning.
If the amount of analyzed data grows to infinity, then the threshold x0 tends toward
zero. From here, it is only a step to finding out that the empirical distribution g(x) is
indeed non-zero everywhere on (0,+∞), but at the same time, g(x) drops enormously
sharply (if x → 0) to zero. This trend can be expressed mathematically (like in [7]) by the
following definition

(∀n = 0, 1, 2, 3, . . .) : lim
x→0+

x−ng(x) = 0. (6)

If the function meets this condition, we say that it has a plateau at the origin.
To conclude, theoretically acceptable headway distribution g(x) should have a plateau

at the origin and belong to B.

2. Vehicular Spatiotemporal Micro-Quantities—Classification and Extraction from
Empirical Data

Vehicular headways and their various alternatives represent key micro-quantities in
traffic flow theory. They characterize how vehicles are positioned on the road or how
they pass a given detector. Usually, they used to be defined less formally, like the time
between two successive vehicles passing the same point on the same lane. However, here,
we are trying to classify the vehicular micro-quantities more precisely and multifariously.
A typical set of unaggregated traffic data obtained via magnetic induction double loops
contains the following records:

• τ
(in)
k is the time instant when a front bumper of the kth car has intersected a detector line;

• τ
(out)
k is the time instant when a rear bumper of the kth car has intersected a detector line;

• vk represents the instantaneous speed of the kth vehicle;
• ℓk stands for the length of the kth vehicle;

Furthermore, additional data obtained by image processing methods are:

• ξ
(front)
k is the position of the front bumper of the kth car at a fixed time;

• ξ
(rear)
k is the position of the rear bumper of the kth car at a fixed time;

With the help of these detector records, specific variants of spatiotemporal micro-
quantities can then be defined as follows. Typically, the time headways/clearances are intro-
duced by means of the respective relations

tk := τ
(in)
k − τ

(in)
k−1 , zk := τ

(in)
k − τ

(out)
k−1 . (7)

Analogously, spatial headways are then defined by

sk := ξ
(front)
k−1 − ξ

(front)
k (8)
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and spatial clearances (gaps) read

rk := ξ
(rear)
k−1 − ξ

(front)
k . (9)

Graphically, all these quantities are visualized in Figure 2.
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Figure 2. Microscopic characteristics of traffic flow obtained with the help of a magnetic double-loop
detector (time clearance zk and time headway tk) or by image processing methods (space gap rk and
space headway sk).

From a mathematical point of view, all these micro-quantities represent, in fact, random
variables, and therefore their analytical description should be mediated via corresponding
statistical distributions (probability density functions or distribution functions). Their
detection, prediction, and investigation of their temporal evolution is the cornerstone of
the field of VHM.

3. Conversion of the Vehicular Stream to the Standard Physical System

The entire problem of kinematics and dynamics of the traffic system on a one-lane
road can be quite naturally converted into the language of a classic one-dimensional
system [15,20,23]. Once we exclude from our considerations the part of the road that
is occupied by vehicles, i.e., if we reduce the vehicles to being dimensionless, then the
traffic system can be viewed as a multi-particle system of mutually interacting elements,
which is systematically disturbed by stochastic noise, the level of which is controlled
by the coefficient ε of the so-called statistical resistivity. If its value is zero, the system is
subjected to the maximum possible noise, which naturally leads to the highest fluctuations
of the relevant descriptive characteristics. On the contrary, if ε increases beyond all limits,
then the system becomes absolutely resistant to fluctuations and converges therefore to a
deterministic system.

Mutual interactions in the system, which are of a two-body nature, can then naturally
be described by a force dominated by repulsion preventing collisions [14,24]. In a system
with a large number of particles—which is the case of vehicular traffic—it can then be
assumed, without loss of generality, that forces between distant elements in the system
are negligible. We are talking about a system with medium-ranged (or short-ranged)
interactions, where the interaction is reduced to a few (or one) nearest neighbors only.
Although in traffic models, dynamics description used to be introduced in a very complex
manner (see for example Table 2.2 in [24]), it turns out that the most distinctive force factor
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is a strong repulsion from the rear bumper of the preceding car [24]. Usually, the relevant
force is described by a relation

Fk ∝
(

ξ
(rear)
k−1 − ξ

(front)
k

)−2
. (10)

Effectively, this is a kind of analogy to the famous relationships of Isaac Newton and
Charles-Augustin de Coulomb. In addition, some expert studies have shown that under
certain circumstances, the traffic system can be credibly modeled by a thermodynamic gas
(see explanation in Ref. [25], in which the law of action and reaction is fulfilled. In such a
system, the force potential corresponding to the force description (10) is

φk ∝ r−1
k . (11)

Above that, the studies [23,26–28] have shown that in a homogeneous system of
identical particles whose dynamics are driven by the same force description, spatial and
time headway distributions can be derived from the potential φ(x). Especially, in the case
of short-ranged potentials, the probability density for the nearest neighbor distance is of
the form

g(x) = AΘ(x)e−βφ(x)e−λx, (12)

where β ∝ ε, λ > 0, and the constant A = A(β, λ) assures the proper normalization.
Provided that the potential φ(x) is strictly repulsive (like in formula (11)), which

means mathematically that

φ(x) ∈ C1(0,+∞); (13)

∀x > 0 : φ′(x) < 0; (14)

lim
x→+∞

φ(x) = 0; (15)

lim
x→0+

φ′(x) = −∞; (16)

lim
x→+∞

φ′(x) = 0; (17)

one can prove (see the diploma theses [29,30]) that g(x) ∈ B holds, and∫ +∞

−∞
x g(x) dx = 1 =⇒

∫ +∞

−∞
x2g(x) dx ≤ 2. (18)

This implies that random variable X—distributed via (12) with a strictly repulsive
potential and scaled to unit average value—has always variance less than or equal to one.
This is the key insight for the next part of the text.

We remark that for special choices of potentials φ(x) = 0, φ(x) = − ln(x) or φ(x) = x−1,
we obtain the well-known exponential distribution (3), Gamma distribution

g(x) = Θ(x)
λβ+1

Γ(β + 1)
xβ e−λx, (19)

or two-parametric generalized inverse Gaussian distribution (GIG)

g(x) =
√

λ Θ(x)
2
√

β
K−1

1 (2
√

βλ) e−
β
x −λx, (20)

respectively. Here, Ka(x) stands for the Macdonald function of order a. Furthermore, the
GIG density function (20) has—in contrast to the Gamma distribution (19)—a plateau at
the origin, which is a great benefit.
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4. Empirical Headway Distribution

Since the GIG distribution (20) meets both the empirical and theoretical criteria for ad-
missibility, it can be therefore used in relevant procedures estimating headway distributions
gauged on real freeways. Indeed, papers [11,12,23,31] show the successful applicability of
such an approach. However, although the estimation procedure based on the GIG distribu-
tion is completely fruitful when applied to data measured on the main freeway lane, the
fast lane data fail frequently. In the region of lower traffic densities, the deviations between
the empirical course and the theoretical description are relatively large, as visualized in
Figure 3.
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Figure 3. We plot values of metrics measured between the histogram of empirical clearances and
the theoretical prediction (20). Statistical estimations of parameters β, λ have been obtained by
maximizing the statistical likelihood (MLE). The graphs clearly show a sharp decrease in the quality
of the MLE estimates for the fast lane and traffic densities lower than 25 vehicles per kilometer. For
the remaining cases, the quality of the estimates is basically constant.

This means that although the model settings used correspond well with the reality of
traffic flow in the main lane, the same is not true for the vehicular stream in the fast lane.
Moreover, it is clearly visible from Figure 3 that for densities more than 25 vehicles per
kilometer the statistical estimates are equally plausible in both lanes. This is due to the
fact that for higher traffic densities (when changing lanes does not bring any competitive
advantage) both lanes are synchronized and their dynamics follow practically the same
rules. Therefore, the inconsistency between the lanes is detected only if the overtaking
maneuver provides some competitive advantage for sporty drivers.

5. Conversion to the Purely Mathematical Formalism

The kinematics of the described real problem can quite naturally be transferred to the
world of random variables and their distributions. For these purposes, one of the suitable
and highly effective instruments is the theory of balanced particle systems.

The motivation for introducing the particle systems is the rigorous description of
one-dimensional systems of infinite length on which dimensionless particles (vehicles,
pedestrians, agents) are stochastically distributed. The system follows the rule of simple
exclusion, which means that two agents can not occupy the same location and, owing to
the above-mentioned unidimensionality, they can be uniquely numbered. The reference
agent is usually denoted by the index k = 0 and numbering then proceeds chronologically.
The entire system is understood as a stochastic system, i.e., the given state of the system is
always described by probabilistic instruments. Although there are many ways by which a
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given system can be described statistically, the most common variants are the following
sets of random variables.

• Random locations Λ0, Λ1, Λ2, . . . ;
• Random headways R0,R1,R2, . . . ;
• Random multi-headways X0,X1,X2, . . . ;
• Interval frequencies NL for any L > 0;

The mathematical meaning of these quantities is clearly shown in Figure 4.

R0

L

R1 R2

X1

X2

X3

Location Λ

Figure 4. Graphical interpretation of initial random variables describing an arbitrary particle system.
Green bullet represents the reference particle indexed by k = 0. Other particles are visualized by
orange bullets. Arrows represent mutual distances. Blue box of a length L symbolizes how the
interval frequency NL is enumerated.

Random headways Rk with realizations rk represent a distance between the agents in-
dexed by k and k + 1. Random multi-headways Xk with realizations xk represent a distance
between the reference agent and its kth neighbor. Interval frequency NL is understood
as the number of agents occurring in the open interval (0, L). The associate probabilistic
inquiry reads P[NL = n] = ? and answers the question of what the probability is that
exactly n agents lie in the interval.

Statistical description of headways/multi-headways is mediated by probability den-
sities hk(r) ∼ Rk and gk(x) ∼ Xk,, respectively. A particle system is called balanced if all
densities hk(r) belong to the distribution class B. If it is additionally assumed that the
random variables Rk : k ∈ N are pairwise independent, then

gk(x) = ⋆k
i=0 hi(x) (21)

holds, where ⋆ symbolizes a convolution. Since the class B is alpha-stable, the result of the
convolution belongs to class B, i.e., gk(x) ∈ B. The alpha stability brings many advantages
in the corresponding analytical derivations.

For the purposes of modeling the traffic stream micro-structure, it can be assumed that
the statistical distribution of gaps between succeeding cars is described by the same proba-
bility density. Under this circumstance, the common density h(x) is called the generator of
the balance particle system.

In mathematical disciplines that deal with the issue of one-dimensional systems, a
quantity called statistical rigidity plays a key role. According to [7,32–34], statistical rigidity
∆(L) is a continuous function describing the rate of fluctuations of the interval frequency
NL and its dependence on the length of the interval (0, L). Specifically:

∆(L) =
∞

∑
k=0

(k − L)2P[NL = k]. (22)

The course of this function shows a marked linear asymptote, whose slope (statistical
compressibility χ) and intercept (statistical deflection δ) reflects the intensity of mutual
correlations between the agent’s locations. Above that, the theory of balanced particle
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systems has proven that the compressibility of systems with uncorrelated neighboring
headways is equal to the variance of random variables Rk, i.e.,

µ1 = 1 =⇒ ∆(L) = 1 + D(Rk) · L +
9µ2

2 − 4µ3 − 9µ2

6
+ o(L2) (L → +∞), (23)

where µk =
∫ +∞
−∞ xk h(x) dx is the kth momentum of all Rk. It means that for compressibility,

one can read χ = D(Rk) = µ2 − 1.

Poissonian Particle System—Mathematical Attributes

As discussed earlier, a physical system is classified as Poissonian if the individual
elements do not interact with each other in any way. Then—from a mathematical point of
view—the occurrence of particles is of a purely random matter, and therefore, the interval
frequency obeys the Poisson distribution (2). From here, it can be straightforwardly proven
that the generator of such a system is an exponential function (3). Provided that we are
concentrated on the scaled version of the system (as assumed in Equation (23)), then

P[NL = k] =
Lk

k!
e−L, E(NL) = L, D(NL) = L (24)

and
h(x) = Θ(x)e−x, µ1 = 1, µ2 = 2. (25)

Accordingly, for statistical rigidity of the Poissonian system, ∆(L) = L holds, which
means that the Poissonian system has a compressibility equal to one.

If mutual interactions between agents are negligible, such a system quite naturally
represents a certain boundary variant of a particle system. In other alternatives of particle
systems where agents cooperate, mutual interaction suppresses the level of randomness,
causing the rigidity ∆(L) to decrease (for a fixed value of L). Thus, while the compressibility
of the Poisson system is equal to one, the compressibility of other systems is expected to be
lower. We are talking about so-called sub-compressible systems (or states of one system).

6. Analysis of Compressibility for Empirical Traffic Samples

Vehicular traffic data samples analyzed in this paper have been gauged over 90 days
at the two-lane freeway circuit D0 (located near Prague, Czech Republic) using induction
double-loop detection technology. Statistical rigidity extracted from the empirical data
samples (by applying the 3 s unification procedure explained in Ref. [14]) shows non-
trivial dependence on traffic density and reveals fundamental differences between the two
freeway lanes.

While the states of the traffic system recorded in the main lane are exclusively sub-
compressible, in the fast lane, the same property is fulfilled only for higher values of traffic
density (see Figures 5 and 6). For traffic samples measured for the free phase of the fast-lane
stream, the linear asymptote of statistical rigidity rises steeper than that calculated for
Poisson systems. Its compressibility is therefore greater than one. Such states are called
super-compressible. Note that the region of super-compressible states corresponds to regions
where the statistical estimation procedures have been much less successful (see Figure 3).
This coincidence, as will be seen later, is not accidental.

For clarity, we show in Figure 7 how the statistical compressibility changes depending
on the traffic density. While most main-lane states are sub-compressible, at lower traffic
densities in the fast lane, the compressibility exceeds the Poissonian border and the resulting
states are therefore super-compressible. For robustness, we also mention here that super-
compressible states have been recorded not only in freeway data samples but also in data
measured inside cities. In Figure 8, it is confirmed that urban compressibility clearly follows
the trend observed on European freeways.

To conclude, vehicular stream sometimes exhibits apparent illogicality, as it generates
states in which the rate of fluctuations (here described by the tool of statistical rigidity) is
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significantly higher than is common for systems with absolute freedom of agent’s move-
ment. And it is precisely these states that are estimated very imprecisely/unreliably even
by the well-established estimation procedures. What is the real cause and what is the origin
of these states?

Figure 5. We plot a graph of the statistical rigidity ∆(L) extracted from main-lane traffic data. Behavior
of functions is visualized for traffic densities specified in the legend. For comparison purposes, we
also plot the rigidity of the Poisson system. This figure was taken from Ref. [14]. Reproduced with
permission from Krbálek et.al. Physica A, published by Elsevier 2022.

Figure 6. We plot a graph of the statistical rigidity ∆(L) extracted from fast-lane traffic-data. Behavior
of functions is visualized for traffic densities specified in the legend. For comparison purposes, we
also plot the rigidity of the Poisson system. This figure was taken from Ref. [14]. Reproduced with
permission from Krbálek et.al. Physica A, published by Elsevier 2022.
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Figure 7. The figure depicts the evolution of the statistical rigidity in different freeway lanes. This
figure is replicated from the article [14]. Reproduced with permission from Krbálek et.al. Physica A,
published by Elsevier 2022.

Figure 8. The figure depicts the evolution of the statistical rigidity in main/fast lanes inside cities.
Urban data were measured in the city of Vyškov in the Czech Republic.

7. Theoretical Derivations and Practical Consequences

In particle systems in which only the nearest neighbors interact (the so-called short-
ranged interaction), it holds (as proved in the paper [23]) that the probability density for
the distance between the succeeding particles has the form (12). If a purely repulsive
potential (13)–(17) is chosen for such a system, then the following two findings result from
the relation (18). If the analyzed clearances are scaled to a unit mean value, then their
variance will never exceed the unit value. Furthemore, the statistical compressibility of
such a system then acquires only values from the semi-closed interval (0, 1], whereas the
unit value χ = 1 corresponds exclusively to the non-interaction variant of a system, i.e., the
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Poisson system. To summarize, it is proven analytically that all systems with short-ranged
repulsive potential are sub-compressible or uni-compressible.

However, Figures 7 and 8 show—beyond any doubt—that some constellations of
traffic alignment are super-compressible. Three possible explanations follow from the
aforementioned considerations:

1. Under certain conditions, the vehicular flow represents a medium-ranged system, which
means that the driver takes into account the behavior of several of his predecessors. This
would violate the assumption of the short-ranged nature of inter-vehicular interactions.

2. In standard traffic interactions, force repulsion is only a partial interaction factor. If
the nature of the traffic flow allows it, drivers also use attractive control components.
Particularly, these components are evident at lower traffic densities for more sporty
drivers, who quite naturally line up in the fast freeway lane.

3. Under certain conditions, the whole concept of the particle model fails because the
basic assumption about the conservation of the number of particles in the system is
violated. If the traffic density is lower, sporty drivers change lanes to a greater extent,
which causes a significant deviation from the basic premise of the theoretical concept
used.

But we can eliminate the first of the above justifications. Numerical analyses of particle
systems show that an increase in the interaction range causes a decrease in the statistical
rigidity values, which leads to lower compressibility values. Thus, by strengthening
the interaction, the sub-compressible state cannot be flipped into the region of super-
compressible states.

However, it is not possible to decide between the other two options based on theoretical
considerations alone. This is well reasoned in [14], which admits both variants of the
explanation. If it is not possible to decide theoretically, a suitable traffic experiment should
be used to solve this open problem.

Super-Compressible Versions of Gig Distribution

By analytical means, it is quite easy to show that the two-parametric generalized
inverse Gaussian distribution (GIG) of the form (20) is sub-Poissonian in all circumstances
when β > 0. This fully corresponds to the fact that the function (20) was created by
substituting a purely repulsive potential φ(x) = x−1 into the general Formula (12).

If, instead of purely repulsive forces, we choose a dynamics that appropriately com-
bines attractive and repulsive trends, the situation changes significantly. However, combin-
ing the two potentials must reflect the realistic nature of inter-vehicular interactions, i.e.,
for short clearances, the repulsion must significantly exceed the attractive force. Attraction,
on the other hand, can manifest itself for long gaps between succeeding vehicles. Such
requirements are met, for example, by the force description of the shape

Fk = − const1

ξ
(rear)
k−1 − ξ

(front)
k

+
const2(

ξ
(rear)
k−1 − ξ

(front)
k

)2 . (26)

This means that for a variant of homogeneous systems, one can write

F(r) = −const1 · r−1 + const2 · r−2, φ(r) = const1 · ln(r) + const2 · r−1. (27)

For dynamics of this type, the resulting probability density is then a function

g(x) =
1
2

(
λ

β

) α+1
2

K−1
α+1

(
2
√

βλ
)

Θ(x) xαe−
β
x −λx. (28)

This function represents a rarely used version of the GIG distribution. This is a three-
parameter family of distributions that can—provided that the parameters are appropriately
set—exhibit variances greater than one. However, such a circumstance can only occur if
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α < 0. Then, if such a function plays the role of the generator in a particle system, this
system is super-compressible.

If we use the function (28) as the kernel in the MLE procedure estimating empirical
clearance courses, such a procedure is significantly more successful than in the case cited
in Section 4. Indeed, in Figure 9, we show not only that the presence of a third parameter
increases the credibility of the estimation procedure (which is an expected consequence of
the increase in the number of estimated parameters), but in particular, we point out that
the metric measured between the optimal choice of the function g(x) and the empirical
histogram shows no significant trend. Thus, the function g(x) replicates reliably even
histograms that have been extracted from super-compressible traffic states. This implies
that the presence of an attractive force component substantially improved the quality of
the estimation. From the analysis of fitting results, it follows that attractive impulses are
detected only in the fast lane and only if the competitive style of driving has a chance to be
realized. Undoubtedly, this chance decreases with increasing traffic density when there is
no room for sporting maneuvers.
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Figure 9. Gray crosses and pink plus signs show the quality of the estimates that have been performed
using three-parametric estimations that allow for the existence of super-compressible states. To
highlight the quality of such estimates, we re-plot the original estimates (blue and green curves)
based on the sub-compressibility assumption—see Figure 3.

8. Statistical Compressibility in Two Lanes Separated

The data that we analyze in this section (2.35 mils events in total) were gauged during
reconstruction works of Czech Expressway D1 (direction from Přerov to Brno) near city
Vyškov during June, July, and August 2016, i.e., before COVID-19. The originally four-
lane highway was narrowed and a barrier was installed between the fast and main lanes
(in the direction toward Brno) to prevent vehicles from changing lanes. In the area of
reconstruction, the maximum permitted speed was reduced to 80 km per hour. Here,
three sets of radars (Wavetronics SmartSensor HD), having an accuracy: 0.1 s for time
measurements and 1 km/h for velocity measurements, have been located—as visualized
in Figure 10. For purposes of measurements, a 16-kilometers-long segment near the
reconstruction area has been chosen (see the Radar 2 in Figure 10). Detectors 3 and 4
represent an optimal choice for our intentions.
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Figure 10. Schematic representation of a freeway segment where the discussed traffic experiments
were implemented.

Data required for the following statistical analyses have been processed with the help
of the standard 3 s unification procedure. This means that only data from the same segment
of the fundamental diagram (i.e., with similar values of traffic density and intensity) were
evaluated together. Subsequently, data samples of inter-vehicular clearances have been
re-scaled to a mean value equal to one. The data pre-processed by the above procedure
have been then subjected to statistical estimations based on the minimum distance method
(MDE). Specifically, we have used the metric

κ(α, β, λ) =

(∫
R
|H(x)− G(x|α, β, λ)|2 dx

)1/2
(29)

measuring the L2 distance between empirical cumulative distribution functions H(x) and
G(x|α, β, λ) which are associated with the empirical histogram h(x) of clearances and
density (28), respectively. The result of such statistical testing is the finding that the
proposed three-parameter GIG model replicates the real courses of the histogram functions
h(x) very convincingly and, moreover, relatively independently of the traffic density and
the selected traffic lane. Thus, the distribution (28) represents a compact and robust tool for
describing the traffic micro-structure of the traffic stream. But this is a relatively well-known
fact (see [6,11,12,20,23]).

However, our main objective in this part of the text is to analyze the compressibility of
vehicular traffic in reconstruction areas.

To be specific, we intend to use empirical data to decide

• Whether the safety precautions enforced by reconstruction constraints suppress the
presence of super-compressible traffic states;

• Whether super-compressible states occur only in the fast lane as they do when there
are no traffic restrictions;

• Whether, when the maximum speed of vehicles in the reconstruction area is sharply
limited, the quantitative differences between the fast and slow lanes disappear.

For completeness, we add that samples containing trucks were excluded from the
analysis. The presence of trucks would fundamentally change the behavior of the entire
system, as understandable.

Subsequently, the interval frequency NL has been analyzed in the same segmentation
way as the random variable R in the previous part of the article. Significant emphasis
has been put on the asymptotic behavior of statistical rigidity ∆(L). Individual values of
rigidity enumerated for values L lying between 1 and 10—i.e., beyond the area L ∈ (0, 1) of
the curvilinear trend of rigidity—have been subjected to standard regression analysis. The
slope of the obtained regression line is understood as an empirical value of the statistical
compressibility of the traffic sample and is denoted by χemp.
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In Figure 11, one can spot the evolution of the statistical compressibility depending on
traffic density in both lanes. The results of the analysis clearly show that even a physical
barrier preventing vehicles from changing lanes did not erase the differences between the
fast lane and the main lane. The substantial difference between the two compressibilities,
which has been detected in previous research on two-lane freeways, is also clearly visible
in the new data. And since these deviations can no longer be explained through the
argument of increasing/decreasing the number of vehicles, this deviation must be a direct
consequence of the different decision criteria of individual drivers in the two lanes. The
second (rather surprising) finding is the fact that super-compressible states occur not only
in the fast lane but also in the main lane. And since the super-compressible states indicate
(in accordance with theoretical derivations) the presence of an attractive force component,
it can now be argued that the interaction forces (which represent the physical transcript
of the decision-making processes running in the driver’s brain) are mixed. This means
that the repulsive force preventing collisions is also accompanied by an attractive force
that corresponds to the driver’s effort to shorten the distance to the preceding vehicle.
These findings are all the more surprising because the speed is limited to the same value in
both lanes.

Figure 11. Empirical values of statistical compressibility χemp detected in traffic data measured in an
area where traffic flow was significantly restricted due to reconstruction works. Data samples from
the main (right) and fast (left) lanes were analyzed separately. Both lanes were separated by a barrier
preventing lane−changing. The speed was limited to 80 km/h.

Thus, we find that although both traffic lanes are technically set to identical parameters,
the driver’s brain does not choose the appropriate lane completely at random. On the
contrary, drivers make spontaneous decisions based on their own driving style. It seems
that more sporty drivers choose the fast lane to a greater extent, which is then reflected in
an increased compressibility value. The consequence of this division is the fact that the
statistical fluctuations of the traffic micro-quantities recorded in the fast lane are significantly
more striking. The difference between the two lanes is also clearly visible in Figure 12,
where a shift towards higher speeds is visible in the fast lane.
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Figure 12. Statistical distribution of vehicular speeds in individual traffic lanes. The velocities have
been analyzed for traffic densities between 18 and 23 vehicles per kilometer.

9. Discussion and Conclusions

The article discusses atypical states in the micro-structure of the vehicular traffic
system that seem to disrupt ingrained ideas about one-dimensional systems with maximum
fluctuation rates. These states, which were found in empirical traffic data recorded at lower
traffic densities, exceed the fluctuation rate of the Poisson systems, in which the freedom of
particle movement is not restricted in any way, and which were intuitively suspected to be
the upper limit for the fluctuation rate.

The experimentally detected anomalies were transformed by mathematical reformat-
ting into the language of so-called balance particle systems. Within the framework of
the relevant theory, the detected properties are much better quantified and the reasons
for their occurrence are also more straightforwardly determined. In this way, it has been
found that anomalous traffic states represent (from a mathematical point of view) so-called
super-compressible states whose statistical compressibility (i.e., the slope of statistical
rigidity) exceeds the unit value. By combining the physical background of the problem
and the mathematical apparatus of balanced particle systems, it has been proven that
super-compressible states in a closed system can occur only if an attractive force component
acts between the particles of the system.

And since freeway flow analysis cannot rule out that the detected anomaly is caused
by a large percentage of vehicles changing lanes during overtaking maneuvers, a traffic
experiment was performed in which overtaking maneuvers were completely forbidden.
For this purpose, the section of the freeway where the reconstruction work was taking
place was chosen. The physical barrier between the narrowed lanes then served as an ideal
overtaking blocker. The analysis of the measured data then convincingly revealed that
super-compressible states occur even when the traffic streams are fully isolated.

To conclude, this study demonstrated that the repulsive force effect (which is a typical
leading factor in all traffic models) is accompanied by a weaker inter-vehicular attraction,
which has its origin in the competitive nature of sporty drivers. According to the results of
this study, such an attractive force depends on the reciprocal value of the clearance, while
the repulsive force depends on the reciprocal value of the square of the clearance. From
a comparison of the mathematical nature of both dependencies, it is clear that for short
clearances the repulsive impulses preventing collisions prevail, while for large clearances,
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the dominant component is the attractive force corresponding to the effort to catch up with
the preceding vehicle.

However, it is important to note that this mixed nature of interactions can only be
fully manifested for lower traffic density. Once the density reaches a threshold value (about
25 vehicles per kilometer), then the attractive component disappears and the flow in both
streams becomes significantly synchronized.

To summarize, the added value of this article is the detection and explanation of
anomalous traffic states that are quite common in all multi-lane traffic systems. As far as
the authors of this article are aware, these states have never been relevantly investigated
before. The presented research is based on relatively strong theoretical foundations, as
it is based on a time-tested traffic model, which enables an analytical solution of the
respective stationary states. In addition, the research is supported by a robust mathematical
theory. As a current weak point of the research, we understand the limitation of the
interpretation of the results to homogeneous traffic systems, i.e., systems composed only of
passenger vehicles. The extension of the research to heterogeneous systems will be a logical
continuation of the recent research.
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Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable.

Data Availability Statement: Research data analyzed in this paper are subject to a publication
embargo. The data provider reserves the right not to provide the data to third parties.

Acknowledgments: We would like to thank The Road and Motorway Directorate of the Czech
Republic for providing vehicular data discussed in our article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations and Symbols
The following abbreviations/symbols are used in this manuscript:

VHM Vehicular headway modeling
E Expectation of random variable
D Statistical variance
⋆ Functional convolution
P[A] Probability of event A
N = {1, 2, 3, . . .} Set of natural number
R Set of real number
B Class of balanced densities
Θ(x) Heaviside unit-step function
X , Y , Z Random variables with realisations x, y, z
µk(X ) k–th Momentum of random variable X
Λ0, Λ1, Λ2, . . . ; Random locations
R0,R1,R2, . . . ; Inter-vehicular headways with realisations r0, r1, r2, . . .
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X0,X1,X2, . . . ; Inter-vehicular multi-headways with realisations x0, x1, y2, . . .
NL Interval frequency with parameter L > 0
Ka(x) Macdonald’s function of order a
F(x) Interaction force
φ(x) Interaction potential
∆(L) Statistical rigidity
χ Statistical compressibility
tk Time headway
zk Time clearance
sk Space headway
rk Space clearance (gap)
vk Vehicle velocity

Appendix A

Appendix A.1. Class of Balanced Densities

A function g(x) : R → R is called a balanced density (balanced density function) if fulfilling
the following axioms:

1. Piece-wise continuity: g(x) ∈ PC(R), i.e., g(x) is piece-wise continuous on R;
2. Non-negativity of the range: Ran(g) ⊂ ⟨0,+∞), i.e., g(x) is non-negative;
3. Non-negativity of the support: supp(g) ⊂ ⟨0,+∞), i.e., g(x) = Θ(x)g(x);
4. Lebesgue integrability: g(x) ∈ L(R), i.e., g(x) is Lebesgue integrable;
5. Balancing tail: ∃ω > 0 so that

∀α > ω : lim
x→+∞

g(x)eαx = +∞, (A1)

and
∀α < ω : lim

x→+∞
g(x)eαx = 0. (A2)

The parameter ω is called a balancing index. The class of balanced densities is denoted
by B. The balanced density g(x) will be referred to as the normalized (balanced) density if∫

R g(x) dx = 1. Therefore, every normalized density can be understood as the probability
density function of a certain continuous random variable. Moreover, according the balancing
criterion, density function g(x) is balanced (with the balancing index equal to ω > 0) if and
only if

lim
x→+∞

ln g(x)
x

= −ω. (A3)

Representatives of the set B are, for example, exponential distribution, Erlang dis-
tribution, Gamma distribution, inverse Gaussian distribution, and generalized inverse
Gaussian distribution. Contrarily, log-normal distribution or normal distribution does not
belong to B.

Appendix A.2. Point Scenario of the Research

In this section, we summarize all the basic steps that were carried out within the
presented research.

1. Statistical analysis of inter-vehicle clearances gauged on Dutch and Czech freeways.
The collection of data samples would be carried out before the outbreak of the
COVID-19 epidemic.

2. Detection of anomalous areas of the fundamental diagram.
3. Analysis of the statistical rigidity and compressibility. Delimitation of the areas of

super-compressible states.
4. Linking the thermodynamic traffic model with the theory of balance particle systems.
5. A mathematical proof of the key theorem of this paper. This theorem proves that in

systems with a pure inter-particle repulsion, the compressibility is always less than or
equal to one.
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6. Formulation of three admissible justifications for the existence of super-compressible
states in the traffic micro-structure.

7. Elimination of one of these three justifications by means of numerical simulations of
the thermodynamic traffic model [23].

8. Design and implementation of a traffic experiment, with the help of which it is
possible to decide which of the two remaining effects causes the supercompressibility
of traffic data.

9. Evaluation of traffic-flow data gauged in a region of reconstruction work.
10. Determination of the definitive justification for the existence of anomalous traffic states.
11. Interpretation of the findings in the terminology of the driver’s decision-making process.
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