
Citation: Wang, Y.; Xu, H.; Shen, H.;

Wang, G.; Wang, Z. A Study on the

Effect of Gear Hobbing Process

Parameters on the Residual Stress of

the Tooth Root. Appl. Sci. 2024, 14, 597.

https://doi.org/10.3390/app14020597

Academic Editor: César Vasques

Received: 13 December 2023

Revised: 31 December 2023

Accepted: 5 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Study on the Effect of Gear Hobbing Process Parameters on the
Residual Stress of the Tooth Root
Yazhou Wang *, Huike Xu, Hao Shen, Gang Wang and Zhen Wang

School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
xuhuike_lut@163.com (H.X.); 13919935375@163.com (H.S.); wangg_lut@163.com (G.W.);
wangzhen_lut@163.com (Z.W.)
* Correspondence: wangyzh@lut.edu.cn

Abstract: The root residual stress during gear machining has a significant impact on the bending
fatigue performance of the gear. The process parameters of gear hobbing (hob speed, axial feed
speed, and radial cutting depth) directly affect the residual stress of the tooth root. To investigate
the relationship between the process parameters of hobbing and the residual stress of the tooth
root respectively, an analysis of an orthogonal and single factor was conducted in the hobbing
experiment, taking into account the interactions among factors, which revealed the influence rule
and primary–secondary relationship of the process parameters on the residual stress of the tooth
root. The importance coefficients of the process parameters on the residual stress of the tooth root
were calculated using the Least Absolute Shrinkage and Selection Operator (LASSO) method. The
results indicate that the residual tensile stress at the tooth root increases with an increase in the hob
speed and axial feed speed within the selected range but decreases with an increase in the radial
cutting depth. The influence of the process parameters on the residual stress of the tooth root can be
ranked as follows: hob speed (importance coefficient 0.460), axial feed speed (importance coefficient
0.278), and radial cutting depth (importance coefficient 0.262). This research provides a basis for
improving the residual stress of the tooth root and enhancing the anti-fatigue manufacturing of gears,
thus holding significant research value.

Keywords: gear hobbing; process parameters; root of the tooth; residual stress

1. Introduction

The gear is a crucial component in transmitting motion and power, and its performance
directly impacts the service life, reliability, and overall performance of major equipment [1].
The manufacturing process for a high-performance gear formation is mainly divided into
two main steps: semi-finishing gear machining and finishing gear grinding [2]. Hobbing,
as the initial processing step from a blank tooth to a gear, plays a vital role in determining
the quality and performance of the gear. Residual stress is a critical factor affecting gear
performance. Residual tensile stress will promote crack initiation and reduce the bending
fatigue strength of the tooth root, while residual compressive stress can enhance the bending
fatigue strength of the tooth root by slowing down crack propagation [3]. Therefore, if the
residual compressive stress could be either preset at the tooth root or reduced by improving
the process parameters of hobbing, it would significantly contribute to increasing the
bending fatigue life of the gear.

In recent years, there have been numerous studies conducted on the residual stress of
the gear grinding process in gear finishing technology. Liang et al. [4] studied the distribu-
tion pattern of residual stress in the helical bevel gears of heavy vehicles under different
grinding parameters and calculated the residual stress of helical bevel gear grinding based
on the mechanothermal coupling finite element simulation method. The findings revealed
that the convex surface of the gear, parallel to the grinding direction, exhibited the lowest
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residual compressive stress, and tensile stress occurred on the tooth surface, while com-
pressive stress was observed on the subsurface during the grinding process. Wang et al. [5]
proposed a calculation model for residual stress in spiral bevel gears based on generative
grinding and discovered that different grinding parameters at each point on the spiral
bevel gear, under the same grinding conditions (grinding speed, generative speed, grinding
depth), affected the distribution of residual stress on the tooth surface. Yi et al. [6] adopted
the thermo-elastoplastic coupling structural analysis method, considering the tangential
grinding force and grinding parameters, to calculate the residual stress distribution caused
by the movement of the heat source, and their results indicated that residual stress would be
generated along the profile when the grinding temperature exceeded 300 ◦C. Wang et al. [7]
established a model for the tooth surface of face gear grinding based on the machine tool
structure and the meshing mechanism with a large radius disc wheel. The findings revealed
that the residual stress in face gear grinding is influenced by the grinding contact width,
grinding contact length, and the number of dynamic effective grinding edges. Yu et al. [8]
proposed a method, based on motion analysis of form grinding and a thermodynamic
coupling finite element simulation calculation, to calculate the residual stress on the tooth
surface of spur gear form grinding and analyzed the correlation law between the grinding
parameters and the residual stress. The results indicated that the grinding wheel feed depth
increasing resulted in a decrease in residual tensile stress on the tooth surface during form
grinding. Xiao et al. [9] established a grinding model considering the position of abrasive
particles and analyzed the distribution of residual stress during grinding, finding that both
feed speed and cutting depth had an impact on the profile and axial residual stress. It can
be seen from the above that different grinding process parameters have different effects
on the residual stress of the gear, and the process parameters are an effective method for
controlling residual stress. The existing research results also show that appropriate resid-
ual stress can be obtained by selecting appropriate process parameters, so as to improve
the fatigue life of parts [10]. In particular, improving the residual stress of parts through
machining is an effective method for realizing anti-fatigue manufacturing [11].

In terms of the aspect of the first processing process of tooth making, several scholars
have conducted research on the influence of machining parameters on surface residual
stress. Gao et al. [12] studied the effect of machining parameters on the surface residual
stress by establishing a simulation model of friction disk gear pinion shaping. After
optimizing the machining parameters by this method, the residual compressive stress at the
tooth base increased by 203.13%, which significantly improved the fatigue life of the friction
disk gear. Zachert et al. [13] examined the tangential, radial, and axial residual stresses
of large gears during milling through different processing parameters and revealed that
milling speed, feed rate per tooth, and milling width all affected the residual stresses on
gears. Ueda et al. [14] explored the residual stress in the tooth shape direction during ultra-
high-speed hobbing, and the results indicated that when Vc < 800 m/min, the residual
tensile stress increased with the cutting speed; nevertheless, when Vc > 1000 m/min,
the residual compressive stress dominated and increased with the cutting speed. These
findings demonstrate that process parameters significantly impact the residual stress of
gears during the first machining process from the tooth embryo to the gear.

Analytical methods and finite element simulation methods are commonly used to
study machining residual stress. However, these methods simplify the coupling factors
of actual machining and cannot cover all the actual conditions, which will significantly
impact the research results. Therefore, the most intuitive way to obtain real machining
results is through the experimental method. Niu et al. [15] conducted a study on the
influence of process parameters on machining residual stress using experimental methods
and analyzed the formation law of machining residual stress. Wu et al. [16] investigated
the impact of different process parameters on the residual stress of machining through
the experimental method and analyzed the conditions for obtaining residual compressive
stress. Wu et al. [17] studied the mapping relationship between process parameters and
residual stress using experimental methods. These examples demonstrate that the test
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method has been widely utilized in examining the relationship between process parameters
and residual stress.

In conclusion, existing research on residual stress in gears primarily focuses on the
influence of grinding process parameters on the residual stress of the gear during the final
machining and rarely considers the influence of process parameters on the residual stress
in the first machining process of gear making. Therefore, it is crucial to investigate the
influence of process parameters on the residual stress in the first process of tooth making.
Gear hobbing is the first process of gear making, and the residual stress of the tooth root
is the key factor affecting the performance of the gear. As a consequence, this paper aims
to explore the influence rule, relationship, and interaction between gear hobbing process
parameters and root residual stress through experimental analysis. The findings from
this study will serve as a foundation for enhancing root residual stress and improving the
manufacturing technology of gears to withstand fatigue.

2. Kinematic Relation of Gear Hobbing

Gear hobbing machining is based on the principle of a generating method, and the
tooth shape is formed by the meshing movement between the hob and the workpiece.
The gear hobbing movement is equivalent to the meshing movement of the gear pair
with staggered axes, including the rotation of the hob and the generative motion of the
workpiece. The principle diagram of gear hobbing is shown in Figure 1a [18]. Reference [19]
clearly explains the spatial relative position and motion relationship between the hob and
workpiece during hobbing machining, as shown in Figure 1. OhXhYhZh is the fixed
coordinate system of the hob, which rotates continuously with the hob around the Xh
axis during the machining process; O1X1Y1Z1 is the hob installation coordinate system,
which rotates an installation angle δ around the Y2 axis relative to the tool frame coordinate
system according to the gear helix angle and hob thread lift angle; O2X2Y2Z2 is the tool
rest coordinate system, parallel to the table coordinate system O3X3Y3Z3, which is the
stationary reference coordinate system of the hobs and workpieces, respectively; OgXgYgZg
is the fixed coordinate system of workpieces, which rotates around the Zg axis with the
hob linkage during the hobbing process [19].
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Figure 1. (a) Principle diagram of hobbing [18]; (b) schematic diagram of spatial relative position and
motion relationship between hob and gear [19,20].

The process parameters of gear hobbing can determine the relative motion relationship
between the hob and gear during machining. The parameters are shown in Table 1, and the
calculation formulas for each parameter are shown in Equations (1)–(5).
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Table 1. Relative position and motion parameters of hob and workpiece space.

Parameter Name Parameter Symbol Parameter Name Parameter Symbol

Hob speed ωh Hob rotation phase angle φ
Axial feed f Axial feed velocity v

Hob radial mounting distance ρ Hob mounting angle δ
Axial feed displacement ζ Phase angle of gear rotation ψ

dh is the pitch diameter of the hob, dg is the pitch diameter of the gear, and the radial
installation distance ρ of the hob is

ρ =
dh + dg

2
(1)

In order to ensure that the hob helix direction coincides with the gear tooth direction,
the hob installation angle δ is the algebraic difference between the gear helix angle β and
the hob helix lift angle λ:

δ = β − λ (2)

The hob axial feed rate and feed speed are a pair of related process parameters.
Determine the axial feed rate f (mm/r) (the axial feed distance of the hob in one rotation of
the table) during the process design, and then determine the axial feed speed v (mm/min)
according to the rotation speed of the hob and the table. N is the number of hob heads, and
Z is the number of gear teeth.

v =
N
Z

ωh f (3)

As a function of the hob’s axial displacement ζ and gear rotation phase angle ψ with
respect to hob rotation phase angle φ, the relation is shown in Equations (4) and (5). When
the hob is rotating, the ζ displacement is fed along the axis of the gear, and the “+” is
taken when the process is straight-rolling, and the “−” is taken when the process is reverse-
rolling. F is the axial feed speed. The workpiece that is relative to the hob synchronously
rotates at ψ angle, including the development angle ψg and differential angle ψd of the
two components:

ζ = ± F
2πωh

φ (4)
ψ = ψg + ψd

ψg = λ
|λ|

N
Z φ

ψd = ζ
|ζ|

f tan β
πωhdg

(5)

According to the analysis of the kinematic relation of gear hobbing, there are three
types of working motions involved: the rotary motion of the hob, the feed motion of the
hob along the shaft of the gear, and the rotary motion maintaining the meshing relationship
between the gear and the hob. The above formula indicates that the rotary motion of the
gear is dependent on the rotary motion of the hob, so it can be treated as a variable with the
hob speed. Reference [21] analyzed the cutting conditions of a radial–axial feed strategy in
gear hobbing machining, revealing that increasing the cutting times (radial cutting depth),
cumulative cutting length, and average cutting length would result in a higher tool load.
This also indicates that the depth of radial cutting in hobbing machining will also affect the
machining quality of the gear. Therefore, it can be concluded that the hob speed, axial feed
speed, and radial cutting depth are the primary parameters affecting the hobbing process.

Due to the gear transmission system tending to be lightweight, the bending strength
of the tooth root becomes a critical constraint, and the fatigue fracture of the tooth root is
actually more hazardous than the failure of the tooth surface. Additionally, the residual
stress plays a significant role in affecting the bending fatigue performance of the tooth
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root. Therefore, the hobbing machining experiment focuses on investigating the impact
of three process parameters (hob speed, axial feed speed, and radial cutting depth) on the
residual stress of the tooth root.

3. Experimental Process and Method of Gear Hobbing
3.1. Experimental Conditions

The gear hobbing machine used in this study is a KE180-type gear hobbing machine
from Kashifuji Company in Japan. The processing is carried out by means of sequential
rolling. The machining test device and machining process are shown in Figure 2, the gear
model and the processed gear are shown in Figure 3, and the basic parameters of the
hob and gear are shown in Table 2. The gear material is 20CrMnTi, which has excellent
high-temperature strength, prominent thermal stability, and remarkable fatigue resistance.
The material is widely used in mechanical transmission gears in agriculture, automobile,
marine, and aerospace industries [22,23], and the chemical composition [22] is shown
in Table 3.
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Table 2. Basic parameters of hob and gear.

Hob Parameter Gear Parameter

The normal module 1.5 Module 1.5
Normal pressure angle 20◦ Pressure angle 20◦

Number of heads 1 Number of teeth 59
Angle of thread rise 3◦3′ Spiral angle 0◦

Outside diameter 32 mm Tooth width 28
Length 50 mm

Direction of thread dextrorotation

Table 3. Tempering chemical component of 20CrMnTi for test (mass score, %).

C Si Mn S p Cr Ni Cu Ti

0.17–0.23 0.17–0.37 0.80–1.10 ≤0.035 ≤0.035 1.00–1.30 ≤0.030 ≤0.030 0.04–0.10

3.2. Test Scheme

According to the analysis of the kinematic relationship of hobbing machining in
Section 2, the machining parameters (hob speed, axial feed speed, and radial cutting depth)
were only changed during the experiment to explore the law of the influence of hobbing
machining technology on the residual stress of the tooth root. Orthogonal test is a commonly
used test optimization analysis method. The advantages of orthogonal experimental design
include small experimental size and comprehensive experimental results, but the multi-
level study on a single factor is not intuitive and comprehensive. Single-factor experimental
design can compensate for the shortcomings of orthogonal experimental design, as the
effect of different levels on a factor can be visually observed [24]. Therefore, for this
experiment, both the single-factor experimental design and the orthogonal experimental
design were used, with three factors and four levels in each case. The orthogonal test
scheme is shown in Table 4, and the single-factor test scheme is shown in Table 5.

Table 4. Orthogonal experiment scheme.

Test Number Hob Speed/
(r·min−1)

Axial Feed Velocity/
(mm/min)

Radial Cutting Depth/
(mm)

1

450

2 0.84375
2 2.75 1.125
3 3.5 1.6875
4 4 3.375

5

600

2 1.125
6 2.75 0.84375
7 3.5 3.375
8 4 1.6875

9

750

2 1.6875
10 2.75 3.375
11 3.5 0.84375
12 4 1.125

13

900

2 3.375
14 2.75 1.6875
15 3.5 1.125
16 4 0.84375
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Table 5. Single-factor experiment scheme.

Test Number Hob Speed/
(r·min−1)

Axial Feed Velocity/
(mm/min)

Radial Cutting Depth/
(mm)

1 450

3.5 1.125
2 600
3 750
4 900

5

900

2

1.125
6 2.75
7 3.5
8 4

9

900 3.5

0.84375
10 1.125
11 1.6875
12 3.375

3.3. Residual Stress Measurement

(1) Measurement Position Determination

According to the analysis, when the load acts on the highest point of the meshing zone
of a single pair of teeth, the bending stress generated by the tooth root is the largest. The
dangerous cross-section of the bending stress of the tooth root can be determined by the 30◦

tangent method [25]. The dangerous cross-section of the bending stress of the tooth root
is shown in Figure 4. The residual stress on the tooth root has a significant impact on the
bending fatigue performance of the tooth root. When the gear is meshing, the superposition
of the residual stress at the tooth root and the contact stress is more likely to produce
bending fatigue [26]. Therefore, the residual stresses of the gear root were characterized by
measuring the residual stresses of the contact point position on the gear with a 30◦ tangent.
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(2) Residual Stress Measurement

Residual stress measurement methods usually include drilling method (destroying
the workpiece), strain gauge method, X-ray method, and other technologies, among which
X-ray diffraction method is the most convenient and reliable, and it does not undermine
the workpiece residual stress measurement method. The measurement method used in this
study is the isotropic fixed ψ method [28].
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In the study, DS-21L laboratory high-power X-ray residual stress tester was used to
measure the residual stress at the root of the gear hobbing machining. The measuring
instrument has automatic peak searching and positioning functions, which only need to fix
the gear to prevent the gear from rolling during the measurement process. The measuring
device and measuring scheme for residual stress at the root of gear are shown in Figure 5.
The settings of important parameters for measuring residual stress at the root of the tooth
are shown in Table 6. It should be noted that all gears in the machining test have undergone
error detection and meet the machining accuracy requirements.
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tooth root).

Since the surface of the root of the gear after hobbing is not smooth and flat, there are
numerous hobbing marks [29,30], which make the measurement position inevitably affected
by the machining tool marks. Therefore, in order to ensure the accuracy of the results, three
positions of A, B, and C were selected for measurement along the outer circle of each gear
at a distance of 120◦, and the average value as the root residual stress of this gear was taken;
considering the phenomenon of stress release, the middle position of each measurement
position is selected as the measurement point. Reflection or absorption may occur during
the measurement process, which may affect the measurement result. Therefore, absorbing
materials were used at the measurement position to block the reflection, thereby eliminating
the influence of reflection on the measurement result [31].

Table 6. Settings of important parameters for measuring residual stress at root.

Parameter Name Parameter Parameter Name Parameter

Target material Cr, Ka Wave length 2.291
Tube voltage 60 kV Bragg cape 156.41◦

Tube current 50 mA Beta Angle number 9
Minimum spot size 0.1 mm Maximum beta sngle 25◦

X-ray elastic constant S1 = 1.28 × 10−6 MPa−1

S2/2 = 5.92 × 10−6 MPa−1 Executive standard ASTM-E915-2010
EN15305-2008 [32]



Appl. Sci. 2024, 14, 597 9 of 17

4. Results and Discussion
4.1. Orthogonal Test Analysis

Through the analyses of the above methods, the residual stress measurement results
of the tooth root in the orthogonal test are shown in Table 7.

Table 7. Orthogonality experiment results for residual stress at tooth root.

Parameter Name Parameter Parameter Name Parameter

1 35.77 9 243.43
2 48.13 10 259.53
3 145.97 11 52.03
4 195.87 12 221.13
5 200.07 13 73.67
6 159.07 14 147.43
7 220.27 15 185.07
8 227.47 16 212.97

Before the scientific tests, four levels of hob speeds, axial feed speeds, and radial
cutting depths were selected in advance, as shown in Table 8. The significant degree of
influence of each gear hobbing parameter on the residual stress at the root of the tooth was
compared by range R. The analysis results are shown in Table 9, and the main effect trend
is shown in Figure 6. The greater the range R is, the more significant the influence of the
process parameters on the residual stress of the tooth root is. It can be concluded that the
importance of the process parameters on the residual stress of the tooth root is, successively,
hob speed, axial feed speed, and radial cutting depth. In each process parameter range,
the best process parameter combination is low hob speed, low axial feed speed, and small
path cutting depth. Just as the results of the analysis of factors affecting the quality of gear
hobbing in reference [33], it is believed that the process parameters having a greater impact
on the quality of gear hobbing are hob speed, axial feed speed, and radial cutting depth.
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Table 9. Range analysis of residual stress of tooth root during hobbing.

Hob Speed/
(r·min−1)

Axial Feed Velocity/
(mm/min)

Radial Cutting Depth/
(mm)

k1 106.43 138.23 114.96
k2 201.72 153.54 163.60
k3 194.03 150.83 191.08
k4 154.78 214.36 187.33
R 95.28 76.13 76.12

In order to further quantify the importance of various process parameters on the
residual root stress, the Least Absolute Shrinkage and Selection Operator (LASSO) is used
to evaluate the process parameters. LASSO [34] is a statistical method for feature selection,
which has the advantages of more efficient feature selection, better robustness, and stronger
interpretation in data importance analysis. It is widely used and has significant effects
in process parameter feature importance analysis, which could also provide the feature
importance value. Therefore, LASSO is selected to analyze the importance of the process
parameters of hobbing to the residual stress of the tooth root.

In the LASSO [35] algorithm, for the sample data set D = {xi, yi}, i = 1, 2, 3, . . . , n, the
linear regression model is shown in Formula (6):

yi =
p

∑
j=1

β jxij + εi (6)

β =
(

β1, β2, . . . , βp
)T define the LASSO evaluation as Formula (7):

⌢
β = argmin

 n

∑
i=1

(
yi −

p

∑
j=1

β jxij

)2
, s.t.

p

∑
j=1

∣∣β j
∣∣ ≤ t (7)

t ≥ 0 is the adjustment parameter, and
⌢
β is the least squares method, which through

the control of the value achieves the objective function’s least squares results.

Restrict the condition function s.t.
p
∑

j=1

∣∣β j
∣∣ ≤ t as a penalty function, and add the regular

term to the objective function, as shown in Formula (8).

⌢
β N(λn) = argmin

 n

∑
i=1

(
yi −

p

∑
j=1

β jxij

)2

+ λn

p

∑
j=1

β j

 (8)

λn ≥ 0 is the penalty coefficient (regularization coefficient); therefore, the weight
meeting the objective function can reflect the importance of the feature:

LFI(i) = β j, j = 1, 2, 3, . . . , p (9)

As shown in Figure 7, the importance values of hob speed, axial feed speed, and radial
cutting depth to the residual stress at the root of the tooth are, respectively, 0.460, 0.278, and
0.262, and the analysis results are consistent with the range analysis results.
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Since the measurement of residual stress in the tooth root is conducted after machining,
the influence of the interaction between the process parameters must be considered. Based
on the test results presented in Table 7, the influence of the interaction of gear hobbing
process parameters on the residual stress at the root of the tooth is obtained, as shown
in Figure 8. In the figure, the horizontal coordinate is the two-way combination of three
process parameters: hob speed, axial feed speed, and radial cutting depth, and the vertical
coordinate is the residual stress value of the tooth root. If the residual tensile stress that
is generated during gear machining exceeds 150 MPa, it may affect the performance.
Therefore, the value of the residual stress is divided from 150 MPa in this study, so that
the influence of the process parameters on the residual stress of the tooth root can be more
clearly distinguished.
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According to the findings presented in Figure 8a, under the interaction effect of the hob
speed and axial feed speed on the residual stress of tooth root, the residual tensile stress is
lowest in the range of 2–2.75 axial feed speed when the hob speed is low. With the increase
in hob speed and axial feed speed, the residual tensile stress will increase. The reason
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is that the increase in hob speed and axial feed speed will elevate the cutting force and
the cutting temperature, resulting in the phenomenon of regional heating concentration,
which together lead to the increase in residual tensile stress. Additionally, it is evident
from the results that the influence of the hob speed on the residual stress of the tooth root
is obviously greater compared to the axial feed speed. The reason is that the increase in
hob speed results in a rapid rise in cutting temperature, and the speed of the temperature
increase brought on by the hob speed is much higher than the temperature increase rate
brought on by the axial feed speed rate, which is the main source of the increase in cutting
temperature. Consequently, the hob speed plays a more prominent role in determining the
residual stress at the root of the teeth, aligning with the findings from the simulation of a
high-speed hobbing process mentioned in reference [36].

According to the findings presented in Figure 8b, the interaction effect between the hob
speed and radial cutting depth on tooth root residual stress is similar to that in Figure 8a.
Under the condition of low hob speed, the residual tensile stress decreases with the decrease
in radial cutting depth. When the hob speed is 750 r·min−1 and the radial cutting depth
is maximum, the residual tensile stress is the highest. However, when the hob speed is
750 r·min−1 and the radial cutting depth is the smallest, there is also a small residual tensile
stress, clearly indicating that the interaction effect of process parameters on the residual
stress of the tooth root is prominent.

According to the findings presented in Figure 8c, under the interaction between the
axial feed speed and the radial cutting depth on the residual stress at the root of the tooth,
when the axial feed speed is slower than 3.5 mm/min, the residual tensile stress decreases
with the decrease in radial cutting depth. The size of the axial feed speed is directly related
to the cutting area and chip thickness, which will affect the cutting temperature and the
machining quality of hobbing. According to the simulation in reference [36], when the
axial feed speed increases, the cutting temperature does not increase obviously, which
leads to a lower residual tensile stress. Furthermore, the radial cutting depth also has a
certain influence on the cutting force and cutting temperature. A smaller cutting depth will
increase the horizontal radial feed times, resulting in the accumulation of residual stress.
As a consequence, it can be concluded that the axial feed speed plays a dominant role when
the axial feed speed is slower than 3.5 mm/min and the radial cutting depth is smaller.

4.2. Single-Factor Experimental Analysis

Through the measurement of the above methods, the measurement results for the root
residual stress of the single factor test are shown in Table 10.

Table 10. Single-factor experiment results for residual stress at tooth root.

Serial Number Data (MPa) Serial Number Data (MPa)

1 129.60 7 183.23
2 215.73 8 176.33
3 184.70 9 169.83
4 238.57 10 154.10
5 154.77 11 121.03
6 159.47 12 68.27

In order to further research the influence of each process parameter on the residual
stress of the tooth root, a single-factor experiment was carried out. The influence trends of
the hob speed, axial feed speed, and radial cutting depth on the residual stress at the root
are shown in Figure 9. According to the findings presented in Figure 9a, with the increase
in the hob speed, the residual stress value of the tooth root gradually increases, indicating
that the residual tensile stress increases. With the increase in the hob speed, there will be
more heat generated in the cutting zone, resulting in more drastic chip deformation and an
increased chip compression ratio. Additionally, the chip temperature is significantly higher
than the temperature of the corresponding separation position on the gear, which is due
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to the large deformation of the workpiece material and the great friction between the hob
and the gear in the second deformation area, which is called the greatest heat concentration
area [20]. The temperature variation in the cutting area affects the bond between the chip
and the gear, with a higher temperature facilitating stronger bonding. Therefore, with the
hob speed increases, the chip with a high heat load separates from the gear, leading to a
rise in residual tensile stress on the gear surface.
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According to the findings presented in Figure 9b, with the increase in the hob axial
feed speed, the residual stress value of the tooth root gradually increases, indicating the
residual tensile stress increases, but the overall range is between 150 and 190 MPa. The
main reason for this phenomenon is that when the axial feed speed increases, the volume of
material that is cut by the cutter teeth per unit of time will increase, resulting in a gradual
rise in the cutting force and cutting temperature, which jointly increase the force and cutting
temperature. Moreover, the dominant factor in this increase is the cutting temperature. It is
noteworthy that the range of variation in residual stress is relatively small, which is due
to the axial feed speed having a lesser impact on the cutting stress. It has been proven by
finite element simulation in reference that the effect of the axial feed speed on the cutting
stress is not obvious [37], which explains the small variation range of the residual stress in
this experiment.

According to the findings presented in Figure 9c, with the gradual increase in the radial
cutting depth, the residual stress value of the tooth root gradually decreases, indicating that
the residual tensile stress decreases. The increase in the radial cutting depth corresponds to
a decrease in horizontal feed times, which in turn reduces the cumulative cutting length and
load, resulting in a reduction in residual stress [21]. Liu et al. [38] support that in multiple
cuts, the previous cuts usually produce accumulated strain/stress and temperature on the
surface of the part, which will be carried to the subsequent cutting or final cutting and
continue to affect the cutting force, process temperature, and deformation zone, ultimately
impacting the final residual stress on the part. Ma et al. [39] further emphasize that the final
residual stress is affected by the processing history. Li et al. [40] demonstrate that the depth
of each cut also affects the distribution of residual stress. Therefore, with the increase in the
radial cutting depth in the process of hobbing, the horizontal feed times will be decreased,
which will reduce the accumulation of residual stress at the root of the tooth during the
machining process, resulting in a lowering of the residual tensile stress.

5. Conclusions

In this paper, the effect of hobbing process parameters (hob speed, axial feed speed,
and radial cutting depth) on the residual stress of the tooth root was researched by an
orthogonal test and a single-factor test. Based on the above analysis results, the following
conclusions were drawn:

1. The process parameters of hobbing have a significant influence on the residual stress
of the root, and the importance is successively given to the hob speed, axial feed speed,
and radial cutting depth. In each process parameter range, the best process parameter
combination is low hob speed, low axial feed speed, small path cutting depth.

2. The influence of the hob speed on the residual stress of the tooth root is the greatest.
According to the LASSO feature importance analysis, the respective importance values
assigned to the hob speed, axial feed speed, and radial cutting depth in relation to the
residual stress of the tooth root are 0.460, 0.278, and 0.262, which are consistent with
the range analysis results.

3. Under the cutting conditions of the experiment, the residual stress of the tooth root
was measured as residual tensile stress. According to the analysis of the single-factor
experiment, with the increase in the hob speed and axial feed speed, the residual
tensile stress of the tooth root shows an increasing trend. With the increase in the radial
cutting depth, the residual tensile stress at the tooth root exhibits a decreasing trend.

4. If the residual compressive stress is to be obtained, the process parameters of hobbing
should be optimized. It is necessary to replace the empirical method of process
parameter selection with calculation algorithm.
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