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Abstract: With the booming development of door-to-door housekeeping service, the platform faces
the problem of order assignment. Improving the matching mechanism between orders and housekeep-
ers based on a dynamic programming (DP) algorithm can not only achieve flexible order allocation
but can also improve the service efficiency and service quality. In this paper, a single objective
nonlinear programming model is established, which takes the maximum total weight value as the
objective function to study the order allocation problem under offline and online conditions. Under
the offline condition, the number of housekeepers is taken as the decision variable. The status of order
and housekeeper, order time, and action trajectory are taken as constraints. For online assignment,
the order backlog status is treated as the decision variable. The reliability of the model was verified
using real data from 20 groups of housekeepers and 50 groups of orders. Finally, the effect of order
backlog on online allocation is discussed and the optimal threshold and maximum weight are found.
The online order assignment model is compared with the nearest distance assignment model. The
results show that the online assignment model with a total weighted score of 1045.14 is better than
the nearest distance assignment model with a score of 810.25.

Keywords: dynamic programming; matching mechanism; order assignment; order backlog

1. Introduction

With the continuous development of the social economy and the improvement in
people’s living standards, domestic service has gradually become an indispensable part
of modern city residents’ lives. The related service platform provides house cleaning,
babysitting, moving, maintenance, and other services for people’s lives. When the customer
places a service order on the platform, the platform will assign the order to the service
personnel, who will provide the cleaning/takeaway ordering services according to the
service time specified by the customer [1–3]. As an important part of the daily life of city
residents, this kind of domestic service is of great importance to society for its efficient and
high-quality operation.

However, with the increasing demand for domestic service and the continuous growth
of service personnel, the issue of order allocation has become increasingly prominent, and
order matching is a core issue in the operation of domestic service platforms [4]. Optimizing
order matching can significantly improve the efficiency and quality of domestic service, so
that the service demand-side can be better satisfied, but can also improve the income and
employment satisfaction of domestic service personnel, and then promote the development
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of related industries. Therefore, the research and practice of an order matching algorithm
has important social significance for promoting the healthy development of urban domestic
service industry and improving the quality of life of urban residents.

In the current domestic service platform, there are some pain points and problems in
order matching. Firstly, the highly diverse and uncertain demand for domestic services
leads to the complexity of order matching. Second, the number and skill level of service
personnel are unbalanced, which often leads to a waste of resources or an imbalance
between supply and demand in the matching process. In addition, order matching requires
high timeliness, and the traditional manual matching method often struggles to meet
the need for a rapid response. With fierce platform competition and increasing customer
demand, platforms are seeking efficient order matching strategies to reduce costs and
improve service quality.

There are many factors that affect order matching, such as butler rating, travel speed,
order start time, order location, and so on. How to combine these factors into a compre-
hensive order assignment strategy is a complex problem. Dynamic programming (DP) is
an optimization method for solving multi-stage decision problems. By dividing complex
problems into multiple stages and solving them step by step using the optimal substructure
property, the global optimal solution is obtained [5]. By defining optimal strategies, this
method can be applied to various types of problems, including discrete deterministic,
discrete stochastic, infinite stochastic, and continuous deterministic problems [6]. For the
order matching problem of the service platform, the most important thing is to match
the most suitable orders with the most suitable service personnel. Compared with other
algorithms, dynamic programming can efficiently and quickly obtain the most suitable
assignment scheme, thus achieving good economic benefits.

This paper explores how the DP algorithm can be applied to the order matching
problem of the domestic service platform to achieve the perfect match between the order
and the domestic service personnel. The main contributions of this paper are as follows:

(1) Based on DP, with the goal of maximizing the total weighted value, the order
assignment models of offline and online domestic service were established.

(2) We studied the effect of order backlog on the total weighted value of online order
assignment and obtained the optimal order backlog threshold with the goal of maximizing
the total weighted value.

The rest of the paper is organized as follows: Section 2 is a review of the research
on order assignment and a summary of the existing problems, challenges, and the work
finished in this paper; Section 3 elaborates on the data sources and data processing; Section 4
details the methods used for establishing of the optimization model for order assignment;
Section 5 is the results analysis and discussion; finally, Section 6 concludes the full text by
summarizing the findings and looking ahead to future research directions.

2. Related Works

Many scholars have conducted research on order assignment. In 2012, based on the
cumulative prospect theory, Liu et al. [7] established the subjective utility function of a
functional logistics service provider (FLSP) in the assignment of two orders. Considering
different FLSP states, a two-stage sequential assignment model for two stages in the logistics
service supply chain (LSSC) was established. In 2013, Liu et al. [8] established an LSSC
time scheduling model constrained by service order time requirements, with the optimal
objectives of total cost, completion time, and satisfaction of functional logistics service
providers (FLSPs). The effects of the relationship cost coefficient and delay coefficient on
the overall performance of LSSC were discussed. In 2015, Gang et al. [9] used random and
fuzzy random variables to model uncertain parameters of construction companies and
suppliers. Based on the Kuhn–Tucker condition, segmented genetic algorithm, and fuzzy
random simulation, a two-layer model was proposed. In 2016, Hu et al. [10] proposed
a mixed integer programming model to select suppliers based on three criteria: quality,
delivery performance, and procurement cost. The three objectives have different weights,
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which are calculated using the fuzzy analytic hierarchy process (FAHP) method, and orders
are allocated based on the weight values.

In 2019, Mao et al. [2] studied the impact of delivery performance on future customer
orders for an on-demand delivery service platform, identified the factors affecting delivery
performance, and explained how to develop an “order allocation strategy” that can help the
platform increase future customer orders. Fan et al. [11] proposed a multi-objective integer
nonlinear programming (INLP) formula to solve the problem of multi-product, multi-cycle,
and multi-order allocation while considering the product defect rate and carbon emissions.
Based on priority encoding, an improved genetic algorithm (IGAUPE) was proposed,
which can improve the efficiency and effectiveness in solving large instances within a given
time limit.

In 2020, Baek et al. [12] proposed a nonlinear integer programming model and devel-
oped two different algorithms to improve the usability of the model in real business with
large amounts of data. Kim et al. [13] considered an order batch matching problem (OLMP)
to minimize the total delay of orders with different expiration dates, which is necessary
not only to determine the batch allocation in the production facility, but also to generate
a batch release plan within a given time period. Based on the DP model with dominant
conditions, the advantage condition of OLMP has been proposed. Sun et al. [14] established
an optimization model for the problem using cumulative time with the goal of minimizing
the total delivery cost and added a time dimension to the order allocation and path op-
timization dimensions. The main algorithm is a dynamic allocation algorithm designed
from the perspective of scheduling efficiency, and the sub-algorithm is an improved genetic
algorithm. Shavaki et al. [15] proposed a rule-based heuristic algorithm that integrates
order batch processing decisions, batch selection plans, truck allocation orders, and truck
scheduling and routing.

In 2021, Du et al. [1] considered the constraints of customer expected delivery time
and vehicle condition and used three soft time windows to combine vehicle routing models
with different arrival times, and then used genetic algorithms to solve them. Zou et al. [3]
proposed a reinforcement learning framework based on a double deep Q-network (DQN),
which gradually tests and learns the order scheduling strategy by communicating with the
online to offline (O2O) simulation model developed by the simulation of urban mobility
(SUMO). The results show that this framework has good applicability for achieving efficient
order scheduling in situations of huge transaction volume and computational complexity
of delivery routes. Beiki et al. [16] proposed a method that combines the language entropy
weight method (LEWM) and multi-objective programming (MOP) to solve sustainable
supplier selection and order assignment problems. Deng et al. [17] established a two-
layer multi-follower programming model, where the upper-layer model solves the seat
allocation problem for all trains serving multiple origins and destinations (ODs) throughout
the reservation layer, while the lower-layer model optimizes the price decision for each
train serving each OD at different decision periods, and then proposed an effective solution
method based on a divide and conquer strategy. Wu et al. [18] proposed a hybrid intelligent
algorithm that uses the water wave optimization (WWO) metaheuristic method to evolve
the solution of the main order assignment problem, and uses tabu search to optimize the
path of each order selection solution, which can effectively solve the problem of integrated
order assignment and delivery path optimization for delivery personnel.

In 2022, Lakshmanpriya et al. [19] introduced a comprehensive model including
multiple products and time cycles to determine the demand based on green standards
and allocate orders to the best suppliers, in order to increase the total procurement value
while reducing the total procurement cost. Jiang et al. [20] proposed a network freight
order allocation mechanism under carbon tax constraint and established an optimiza-
tion model for order allocation under carbon tax constraint, which was solved using a
0–1 integer programming algorithm, and the order allocation arrangement for online freight
platforms under carbon tax constraints was more economical and environmentally friendly.
Su et al. [21] used the incremental nonlinear control assignment (INCA) method and the
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active set quadratic programming algorithm to accurately allocate the virtual control com-
mands, designed a group of incremental normalized objective functions, and combined
these functions with the linear weighted sum method to construct an incremental multi-
objective function. Using blockchain technology, Sun et al. [4] proposed a new double order
allocation method driven by repurchase motivation. Multiple platforms are integrated
into a single platform to make allocation decisions for different consumer groups. In the
case of high repurchase motivation driven (HRMD) and medium repurchase motivation
driven (MRMD) methods, an improved linear time complexity simulated annealing (SA)
algorithm was used to solve the NP hard assignment problem. Liu et al. [22] proposed a
fuzzy particle swarm optimization (FPSO) algorithm, which uses fuzzy logic reasoning to
process domain knowledge, improve the solution quality, and obtain the optimal allocation
scheme. By comparing with other algorithms, three different examples were provided to
demonstrate the effectiveness of the proposed model and algorithm. Baroto et al. [23] pro-
posed analytic hierarchy process (AHP), simple phase weighting (SAW), and goal planning
methods to solve the green supplier selection and order allocation (GSSOA) problem. Five
standards and thirteen secondary standards were applicable to plastics manufacturing
companies. Yin et al. [24] described the passenger ticket purchase process by using a
compound inhomogeneous Poisson point process, and then used the sparse method to
simulate the passenger ticket purchase demand in the early stage of ticket sales. With ticket
price and distribution as decision variables, they established a stochastic NP mathematical
model with the goal of maximizing train revenue, and then designed a particle swarm
optimization algorithm to solve the model.

In 2023, Yang et al. [25] proposed a real-time shared parking space allocation model
and a timed shared parking space allocation model based on time window constraints.
The results show that the real-time allocation mode reflects the advantage of the optimal
allocation mode when the supply exceeds the demand for users; On the contrary, the fixed
time allocation model has the advantage of optimal system resource utilization efficiency.
Wang et al. [26] proposed two resource allocation algorithms for multi-satellite systems
based on beam-hopping technology. For offline scenarios, a heuristic algorithm was
proposed to allocate time and frequency resources, and a successive convex approximation
(SCA) algorithm was proposed to allocate power resources. For online scenarios, a DP
algorithm is used to maximize the system throughput. Wang et al. [27] established a mixed
integer programming (MIP) model to study the joint optimization problem of dynamic
bed allocation and patient admission control. Based on biogeography, a dynamic bed and
patient admission optimization (BBO-DBPA) algorithm was proposed to obtain the optimal
decision plan. Simoni et al. [28] proposed a sequential batch processing and allocation
algorithm that uses graph-based methods to decompose the original problem into more
manageable sub-problems and uses clustering, which effectively solves the problem of the
same courier being able to process multiple orders on multiple pickup routes.

In 2017, Aboali et al. [29] compared the DP and basic block matching (BBM) methods
in stereo matching algorithms from three aspects: parallax map accuracy, noise enhance-
ment, and smoothness. The results show that both methods can be used for many stereo
vision applications. In 2018, Sun et al. [30] proposed a DP method based on the reduced
state space algorithm (RSS-DP), which greatly reduces the state space of the standard
dynamic programming (SDP) model by decomposing the number of surplus by-product
gases (SBPGs) into references and subsequent allocations, thereby greatly reducing the
computational time. Jiang et al. [31] aimed at the problem of poor adaptability of tradi-
tional control strategies to different driving cycles and adopted a controller based on DP to
optimize the power distribution of hybrid energy storage systems (HESSs) offline under
several typical working conditions. The offline sample data of DP was processed using a
combination of correlation analysis and the mean impact value (MIV) analysis method to
obtain the characteristic variables of the extreme learning machine (ELM) model. At the
same time, ELM is used to learn the offline data of HESS and to obtain the instantaneous
power allocation strategy of HESS. In 2021, Taheri et al. [32] proposed an optimal strategy
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based on DP, which takes the generalized forces and torques as the control and adopts
the decoupling position and attitude dynamics calculation, which effectively controls the
spacecraft when the thruster fails, and reconfigures the DP strategy and control alloca-
tion. Based on the correct answers submitted by students, Razali et al. [33] developed
an online semantic error automatic feedback system for programming using a dynamic
template matching model. The results show that 80% of the best matching templates for
each student are selected by experts using this technology. In 2023, Fu et al. [34] proposed
a multi-frame target detection method based on a dynamic programming ring network
(DPRN). This method approximates the target trajectory using piecewise linear functions
and uses velocity space partitioning DP (VSP-DP) to accumulate the advantage function
of the target on each piecewise linear trajectory segment to avoid the diffusion of the
advantage function in different velocity spaces. The results indicate that this method is
suitable for radar and infrared search and tracking systems. Hou et al. [35] proposed a
dynamic allocation mechanism that divides annual allocation plans into monthly scales
and dynamically modifies the allocation plan to adapt to the aforementioned fluctuations.
The results show that the coupling of the overall allocation plan and the monthly allocation
plan of water resources is more in line with the management requirements. Fu et al. [36]
proposed a calculation method for the total transfer capacity (TTC) of the grid including
PST and wind power. The optimal planning path of the phase shifting transformer (PST)
is derived based on the DP method, and the final results show that this method has good
optimization for PST allocation in each planning stage of the power system. Khan et al. [37]
proposed a method to solve linear programming (LP) problems with fuzzy left and right
sides, and modified LP’s dynamic programming technology. The results show that the
method can optimize the fuzzy linear programming problem. He et al. [38] used adaptive
dynamic programming (ADP) technology to propose an attitude tracking scheme for a
super-actuated tailless unmanned aerial vehicle (UAV) with both nonlinear and nonaffine
control inputs. This method uses nonlinear dynamic inversion to construct an augmented
system and uses a discounted performance function to transform the optimal tracking
problem into an optimal adjustment problem.

The order assignment problem is an optimization problem that can be solved by the DP
algorithm. In 2019, Duan et al. [39] proposed a new method to optimize the order schedul-
ing system by combining the system assignment method with the driver capture method.
In this method, the passenger demand is broadcast to the drivers in the selected scheduling
area of the system, and an optimization problem is developed to determine the growth rate
of the scheduling area by considering the idle driving distance of the drivers and waiting
time of the passengers. The results show that the assignment effect of this method effec-
tively shortens the expected pickup distance of drivers, maintains a short scheduling time,
and balances the interests of passengers and drivers. In 2021, Czerniachowska et al. [40]
proposed a DP algorithm for the allocating retail shelf space to maximize shelf profits. The
results show that this algorithm can solve this problem with less time and computational
resources. In 2022, Suo et al. [41] combined fuzzy interval linear programming (FILP) with
DP and proposed a fuzzy interval dynamic programming (FIDP) model for regional water
resource management under uncertain conditions. The results show that the solution of
this model can provide detailed allocation plans and water scarcity rates at different stages.
Gong et al. [42] built a mathematical model for optimal water allocation of a single main
canal in large irrigation areas, and then solved the model by using the one-dimensional DP
method to calculate the minimum water deficit of each branch canal and the corresponding
optimal water allocation. The results show that the corresponding water allocation of
each branch canal reflects the accuracy and efficiency of a forced model solution. Amuji
et al. [43] developed two models, namely a DP model and an optimal allocation strategy
model, for optimal allocation of outbound loading container units with dimensions of 20
ft and 40 ft to six major seaports in Nigeria. The results show that the allocation results
obtained by the model are highly optimized. Djurdjević et al. [44] combined DP and simu-
lation modeling methods and proposed a method to define the optimal size and product
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allocation in the order selection area of the most typical order selection settings. The re-
sults show that this method can effectively solve the optimal configuration of products in
picking areas of different scales. Wei et al. [45] proposed a large system decomposition
aggregation dynamic programming (DADP) method for the optimal allocation of irriga-
tion water for multi-water source projects in water-scarce areas, which transformed the
N + 1-dimensional dynamic programming problem into the N + 1 dimensional DP problem
for the solution. The results indicate that this method has good applicability.

As mentioned above, research on order allocation has made some progress in recent
years. Many scholars have proposed various allocation models, such as models based
on cumulative prospect theory, integer programming, heuristic algorithms, and genetic
algorithms. These studies aim to improve the efficiency of order assignment, reduce the
cost, and optimize the customer experience and the utilization of service housekeepers.

However, the problem of order assignment still faces several challenges. On the one
hand, as the number of orders increases, order assignment problems become more complex
and large-scale, and finding efficient algorithms to solve large-scale order assignment
problems remains a challenge; on the other hand, the actual order assignment problem
usually involves multiple objectives and constraints, such as cost, delivery time, customer
satisfaction, etc. How to balance multiple objectives and satisfy various constraints is a
complex problem.

In this paper, we will provide a detailed introduction to the establishment of offline
and online delivery models and analyze the optimization results. Finally, through the
research in this article, a feasible solution for order allocation is provided, and guidance is
given for applications in related fields.

3. Data Processing

The data in this article are real data provided by the “58 City” platform and the “Math-
orCup” University Mathematical Modeling Competition [46]. The data include information
on all orders received in a given area within one day (including order identification, order-
ing time, earliest service start time, latest service start time, service duration, and distance
coordinates of service locations), as well as information on all housekeepers (housekeeper
identification, housekeeper service scores, initial location coordinates). The data description
is shown in Tables 1 and 2.

Table 1. Description of order data.

Name Type Description

id_order int Order identification
createTime int Order time/s

serviceFirstTime int Earliest service start time/s
serviceLastTime int Latest service start time/s
serviceUnitTime int Service duration/min

x int Horizontal coordinate of service location/m
y int Vertical coordinate of service location/m

Table 2. Description of housekeeper data.

Name Type Description

id_housekeeper int Housekeeper identification
serviceScore double Housekeeper score

x int Horizontal coordinate of housekeeper/m
y int Vertical coordinate of housekeeper/m
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Example:
id_order, createTime, serviceFirstTime, serviceLastTime, serviceUnitTime, x, y
0, 1661422500, 1662786000, 1662789600, 90, −4693, −12716
1, 1661474400, 1662768000, 1662771600, 60, 2176, −17371
2, 1661568300, 1662771600, 1662775200, 60, 3940, −11414
3, 1661575800, 1662789600, 1662793200, 90, 1791, −16026
Among them, “1661422500” is a timestamp, which is a sequence of characters or

encoded information used to identify when a particular event occurred, usually giving the
date and time, sometimes to the nearest fraction of a second.

Example:
id_housekeeper, serviceScore, x, y
0, 0.9998, 931, −31576
1, 0.9993, 7529, −7145
2, 0.9992, 5393, 2140
3, 0.999, 5982, −3340
The numbers of order and housekeeper are 2304 and 2795, respectively. Let us process

the order data first:
(1) Based on the earliest service start time, sort the order data in ascending order

and set the earliest service start time as 0, as shown in Table 3, where the interval time is
calculated in hours.

Table 3. Processed order data.

id_order serviceFirstTime/h serviceLastTime/h serviceUnitTime/h

0 5 6 1.5
1 0 1 1
2 1 2 1
3 6 7 1.5
4 9 10 1.5
5 5 6 1.5

. . . . . . . . . . . .
2299 12 13 1
2300 13 14 1
2301 13 14 1
2302 13 14 1
2303 13 13 1

(2) Sort the housekeepers in descending order of their service scores to ensure that
housekeepers with higher service scores are given priority when assigning orders.

4. Method

The basic requirements for order assignment are as follows: (1) All orders must be
assigned, and each order can be handled by only one housekeeper. (2) The starting time of
the order service should be between the earliest time and the latest time and an integral
multiple of half an hour. (3) A housekeeper may serve only one order at a time and must
arrive at the client’s location prior to the service start time. (4) The housekeeper must start
from the starting point position when accepting the order, with a speed set to 15 km/h.
(5) Use Euclidean distance [47] to calculate the distance between two points.

There are two modes to consider when sending orders to housekeepers: order match-
ing housekeeper and housekeeper matching order. In order to fully utilize the service
capabilities of housekeepers, improve their work efficiency, reduce travel time, and improve
service quality, this paper uses order matching housekeeper as the matching mode.

Given the order time, service time, and service location of all orders within a day, as
well as the service scores and coordinates of all housekeepers, the weighted value of the
i-th housekeeper completing the k-th order is S(i, k), and the dispatch mode is evaluated
based on the housekeeper’s total weighted value.
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In this paper, offline and online assignment models are discussed, respectively. In the
online allocation mode, a fixed allocation frequency is often used, and new orders generated
during this period are evenly distributed every 30 min. During allocation, some orders are
allowed to temporarily not be dispatched (backlog), but the service start time for backlog
orders must be 2 h later than the current time (excluding 2 h). Meanwhile, for customers,
the experience of backlog is not very good. Therefore, we add a threshold y in the constraint
to ensure that the total number of backlog orders cannot exceed this threshold.

4.1. Offline Assignment Model

Each order must be matched with a domestic helper and solved by using single
objective nonlinear programming.

(1) Objective function

The goal of this model is to maximize the total weighted score Sum, as follows:

Max Sum =
2303

∑
i=0

S(i, k) (1)

(2) Constraints

Each order must be assigned one and only one housekeeper, assuming that orderk (k =
0, 1, . . ., 2303) is a 0–1 variable representing the order status, as follows:

orderk =

{
0, matched
1, unmatched

(2)

Each order must specify a service start time, which must be within the range of [earliest
start time, latest start time] and be an integer multiple of half an hour, as follows:

tk = {tmin, tmin + 0.5, . . . , tmax} (3)

where tk is the service start time of the k-th order, tmin is the earliest start time, and tmax is
the latest start time; A housekeeper can only serve one order at the same time. Assume
that housekeeperi (i = 0, 1, . . ., 2794) is a 0–1 variable representing the housekeeper status,
as follows:

housekeeperi =

{
0, free
1, working

(4)

The coordinates of the order marked with k are represented by (xk, yk), and the
coordinates of the housekeeper marked with i are represented by (xi, yi); thus, the Euclidean
distance d can be expressed as follows [47]:

d =

√
(xi − xk)

2 + (yi − yk)
2 (5)

The housekeeper’s arrival time gotimei must be earlier than the order service’s start
time ti, as follows: {

gotimei ≤ ti
gotimei = historytime + d/v

(6)

where historytime is Beijing time, and the housekeeper’s moving speed is 15 km/h. Assume
that the i-th housekeeper score is weighted S(i, k) after completing the k-th order, as follows:

S(i, k) = αAi + βBk + γCk (7)

where Ai is the service score of the i-th housekeeper, Bk is the travel distance of the k-th order,
and Ck is the time interval of the k-th order, with a coefficient α = 0.78, β = 0.025, γ = 0.195.

(3) Final optimization model
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The final objective function refers to Equation (1). The decision variableis housekeeper
number i. All constraints are as follows:

orderk =

{
0, matched
1, unmatched

housekeeperi =

{
0, free
1, working

tk = {tmin, tmin + 0.5, . . . , tmax}
d =

√
(xi − xk)

2 + (yi − yk)
2

v = 15km/h
gotimei = historytime + d/v
gotimei ≤ ti
S(i, k) = αAi + βBk + γCk

(8)

Finally, with the goal of making Sum as large as possible, and the number of housekeep-
ers as the decision variable, a single objective nonlinear programming model is established
with the status of the order and the housekeeper, the order time limit, and the movement
trajectory as constraints.

4.2. Online Assignment Model

Compared to the offline model, the constraints and decision variables in the online
model have changed. Define the decision condition op for order backlog and determine
whether to dispatch orders after every half point. If op is set to 1, the order is backlogged,
and if op is set to 0, the order is allocated as follows:

op =

{
0, tmax − historytime ≤ 2
1, tmax − historytime > 2

(9)

In addition, study the impact of different order backlog thresholds on the model, and
adjust the constraint values during the solving process. Use the traversal search method to
find the optimal threshold y from 0 to 100%, as follows:

2303
∑

k=0
orderk · op = 2304 × y

0 ≤ y ≤ 1
(10)

Other constraints are the same as in the offline mode. The final objective function
refers to Equation (1). The decision variable refers to Equation (9). All constraints are listed
as follows: 

orderk =

{
0, matched
1, unmatched

tk = {tmin, tmin + 0.5, . . . , tmax}
d =

√
(xi − xk)

2 + (yi − yk)
2

v = 15km/h

housekeeperi =

{
0, free
1, working

gotimei = historytime + d/v
2303
∑

k=0
orderk · op = 2304 × y

op =

{
0, tmax − historytime ≤ 2
1, tmax − historytime > 2

gotimei ≤ ti
0 ≤ y ≤ 1
S(i, k) = αAi + βBk + γCk

(11)
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By performing the traversal search method on the model, the threshold value under
the maximum weight value and the optimal order assignment can be found. By defining the
daily work time utilization rate a and the choiceness rate b, the effectiveness of the algorithm
is evaluated. Firstly, it is assumed that the daily working time is 10 h (if the housekeepers
work more than 10 h, it is considered as overtime), and the working time of the i-th
housekeeper in the daily work is workingtimei. The service score of the i-th housekeeper
in the daily work is serviceScorei, the total number of orders taken by housekeepers is
orderquantityi, and the number of housekeepers who have received orders is m. The daily
working time utilization rate a is the ratio of the total working time of each housekeeper to
the total standard working time of each housekeeper, as follows:

a =

m
∑

i=1
workingtimei

m × 10
(12)

The choiceness rate b of the housekeeper is the ratio between the sum of housekeeper
service score serviceScorei multiplied by the housekeeper order number orderquantityi, and
the sum of housekeeper order number orderquantityi multiplied by the maximum service
score of the housekeeper m, as follows:

b =

m
∑

i=1
serviceScorei × orderquantityi

m
∑

i=1
orderquantityi × serviceScoremax

(13)

4.3. DP Algorithm for Order Assignment

Based on the mathematical model established in the previous section, the design of
the algorithm is also divided into two parts: offline ordering and online ordering.

4.3.1. Algorithm for the Offline Model

For the offline order allocation model, the main processes are as follows. Firstly, all
offline order data are arranged in chronological order. Then, the order is selected according
to the arranged order, the housekeeper with the highest weight is searched through the
loop, the location information and service time of the housekeeper are stored, and the order
weight value is added to Sum. The order is processed until all offline orders are found and
the value of Sum is finally output. The detailed steps are shown in Figure 1.

The specific algorithm steps in Figure 1 are as follows:
(1) Input the housekeeper data and order data processed by time sorting, and set the

weighted value S(i, k) = αAi − βBk − γCk, k, i ∈ N+.
(2) Sort the orders by order and traverse the housekeeper data. Find Max S(i, k) to

receive this order, delete the order, and save Max S(i, k) to Sum at the same time.
(3) Repeat Step 2 continuously until all orders are assigned and calculate the up-

date Sum.

4.3.2. Algorithm for the Online Model

For the online order allocation model, the algorithmic flow is as follows. First, the
orders are sorted by time. Then, the algorithm collects a batch of orders every 30 min,
and the newly generated online orders are collected and processed so that enough order
information can be accumulated so that the domestic service staff with higher service
quality can be selected more effectively when the distribution is performed.
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Figure 1. Flowchart of the dynamic programming algorithm used to assign offline orders.

In addition, to control the number of backlogged orders, the model sets a threshold y
that limits the number of backlogged orders to not exceed a certain percentage of the total
number of orders. As a result, orders are assigned only in two cases: when the backlog
reaches a certain threshold, or when some orders must be assigned immediately due to an
imminent need for service.

So, after collecting data every 30 min, the model goes through the housekeeper data
for each current order and selects a housekeeper with the highest weighted value to take
the order to ensure that the customers can receive the appropriate service. After the
housekeeper takes the order, the housekeeper’s location information and service time are
updated in the dataset for use in future order assignments, and the order is removed from
the list to be assigned. As new orders continue to arrive, the algorithm continues to perform
the previous collection and backlog steps, distributing work as conditions are met. The
entire process continues until all orders have been properly processed.

Finally, the sum of the weighted values of all the housekeepers obtained, i.e., the
Sum value, is output as an important indicator of the efficiency of job distribution. The
above is an overview of the core logic and operational steps of the online order assignment
model. For specific implementation details, please refer to the algorithm flowchart shown
in Figure 2.

The specific algorithm steps in Figure 2 are as follows:
(1) Input the housekeeper data and order data processed by time sorting, and set the

weighted value S(i, k) = αAi − βBk − γCk, k, i ∈ N +.
(2) After 30 min, the clients create a certain number of orders. At this point, check if

there are any orders that were created earlier than their start time. If not, execute Step 3;
otherwise, continue to determine whether the number of backlog orders is greater than y of
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the total orders. If yes, perform Step 3, or the order will be backlogged, and wait for the
next 30 min.

(3) Sort the orders in order and traverse the housekeeper data. Find Max S(i, k) to
receive this order, delete the order, and save Max S(i, k) to Sum at the same time. Check if
all orders are assigned. If not, perform Step 2 and proceed to the next 30 min; otherwise,
perform Step 4.

(4) Calculate the updated Sum.

Figure 2. Flowchart of the dynamic programming algorithm used to assign online orders.

5. Results and Discussion

In this part, we show the results of online and offline ordering and use a case to verify
the model.

5.1. Results of the Offline Model

Using MATLAB for programming and solving, the order allocation in offline mode is
obtained, and some of the results are shown in Table 4:

Table 4. Results of the offline order assignment.

id_order serviceStartTime id_housekeeper

0 1662787800 40
1 1662768000 61

. . . . . . . . .
1189 1662778800 308
1190 1662786000 96
. . . . . . . . .

2303 1662814800 161
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As can be seen, id_order 0 is received by id_housekeeper 40, id_order 1 is received by
id_housekeeper 61, id_order 1189 is received by id_housekeeper 308, and id_order 1190 is
received by id_housekeeper 96. Finally, the maximum total weight value Sum is found to
be 1412.93.

5.2. Results of the Online Model

Perform a traversal search on the threshold y. The results are shown in Figure 3:

Figure 3. Solution of the optimal order backlog threshold y.

Divide Figure 3 into intervals to represent the corresponding relationship between the
local maximum Sum and y, as shown in Table 5:

Table 5. Local maximum Sum and corresponding threshold y.

Interval Local Maximum Sum y/%

[3.5%, 4.5%) 1384.26 4.0%

[4.5%, 5.5%) 1387.38 5.0%

[5.5%, 7.5%) 1386.79 7.0%

[7.5%, 8.5%) 1386.40 8.0%

[8.5%, 11.0%) 1389.56 10.0%

[11.0%, 12.5%) 1386.88 11.5%

[12.5%, 15.0%) 1388.44 14.0%

[15.0%, 17.0%) 1389.38 16.0%

[17.0%, 20.5%) 1393.68 19.0%

[20.5%, 22.5%) 1392.85 21.5%

[22.5%, 26.0%) 1394.70 25.5%

[26.0%, 31.5%) 1397.15 30.0%

[31.5%, 37.5%) 1397.94 35.5%

[37.5%, 42.0%) 1401.36 40.5%

[42.0%, 48.0%) 1404.43 47.0%

[48.0%, 51.5%) 1404.63 51.0%

[51.5%, 53.0%) 1405.14 52.0%



Appl. Sci. 2024, 14, 576 14 of 21

When y = 52%, Sum obtained is the highest and the allocation scheme is the best. When
the order quantity and efficiency change, the maximum Sum can be obtained by selecting y
corresponding to the local maximum Sum within different values of y. Using DP, the order
assignments of the online model are shown in Table 6.

Table 6. Results of online order assignments.

id_order serviceStartTime id_housekeeper

0 1662789600 40
1 1662768000 61

. . . . . . . . .
1189 1662778800 308
1190 1662782400 231
. . . . . . . . .

2303 1662814800 664

As can be seen, id_order 0 is received by id_housekeeper 40 with the serviceStartTime
is 1662789600; id_order 1 is received by id_housekeeper 61 with the serviceStartTime is
1662768000; id_order 1189 is received by id_housekeeper 308 with the serviceStartTime is
1662778800. Finally, the maximum total weight value Sum is found to be 1,405.14. Results
of the order backlog are shown in Table 7. Id_order 0 is backlogged, (serviceStartTime −1,
id_housekeeper −1 and retainable 1),and id_order 2032 has been assigned.

Table 7. Results of the order backlog.

currentTime id_order serviceStartTime id_housekeeper Retainable

1661423400 0 −1 −1 1
1661425200 0 −1 −1 1

. . . . . . . . . . . . . . .
1662807600 2302 1662818400 106 0

. . . . . . . . . . . . . . .

According to the calculation results based on this reference data, the number of
housekeepers who took orders on the day, m, was 709, and the daily work time utilization
rate, a, was 56.19%. According to the housekeepers’ data, the number of people who
participated in the service score of more than 0.9 on the day reached 516. Accounting
for 72.78% of the total number of housekeepers working on the day, the housekeeper
choiceness rate b is 95.22%. The higher the value of b, the more orders the housekeeper
with higher service scores will receive, which will improve the overall service quality of
the platform.

5.3. Verification

Using the offline assignment model, we re-run the data from the top 50 orders and
the top 20 housekeepers, and obtain the execution task list of housekeepers, as shown in
Table 8:
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Table 8. Execution task list for the housekeeper based on the offline model.

id_housekeeper Execution Order

0 34
1662786000

1 39→5
(1662768000→1662773400)

2 44→10→21
(1662784200→1662796800→1662802200)

3 32→20→38→31
(1662771600→1662778800→1662784200→1662795000)

4 13→46→22→18→43
(1662771600→1662777000→1662782400→1662793200→1662798600)

5 17→45
(1662768000→1662777000)

6 24→48
(1662768000→1662773400)

7 2
(1662771600)

8 8→29→33→23→37
(1662771600→1662778800→1662784200→1662793200→1662798600)

9 47→15→25→36→49
(1662771600→1662778800→1662784200→1662789600→1662798600)

10 30→9→0→3→16→40
(1662768000→1662777000→1662786000→1662793200→1662800400→1662807600)

11 41
(1662800400)

12 14
(1662782400)

13 35
(1662768000)

14 11
(1662768000)

17 1→42
(1662768000→16627734000)

18 12→28→26→27
(1662771600→1662778800→1662787800→1662795000)

19 7→6
(1662768000→1662773400)

It can be seen that id_housekeeper 0 is assigned to id_order 34, id_housekeeper 1
is assigned to id_orders 5 and 39, id_housekeeper 2 is assigned to id_orders 10, 21, and
44, and id_housekeeper 3 is assigned to id_orders 20, 31, 32, and 38. Figure 4 shows the
trajectory of the housekeepers. Finally, the total weighted value Sum is 24.96.

5.4. Result Discussion

Based on DP, this paper constructs the order assignment models of offline and online
dispatch. The results show that the maximum weighted value of the offline model is
1412.93, while the online model is 1404.81. The result of the offline model is slightly larger
than that of the online model, because the offline model predetermines the status of all
orders and housekeepers throughout the day and searches for the optimal solution without
being limited by the order release time. However, the online mode is limited by the order
release time, which cannot predetermine the optimal solution for orders that have not
been released.
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Figure 4. Trajectory of housekeepers.

In addition, the relationship between the backlog threshold and the total weighted
value of online orders was investigated. The results show that when the backlog threshold
is less than 52%, the total weighted value gradually increases with the increase in the
backlog threshold; when the backlog threshold exceeds 52%, the increase in the total
weighted value decreases. When the backlog threshold is 52%, the total weighted value
reaches 1405.14. During the order allocation, the total weighted value can be optimized by
changing the backlog threshold to improve the allocation efficiency. Next, we perform a
sensitivity analysis and compare the online assignment model to another model.

5.4.1. Sensitivity Analysis

To verify the influence of relevant variables in the model on the online assignment
model, the sensitivity analysis of the online order assignment model is performed below.

The housekeeper’s moving speed may affect the time when the housekeeper goes to
the service location, and the order update time may affect the order data set. Therefore, in
this model, a sensitivity analysis is conducted on the two variables of housekeeper moving
speed and order update time. To ensure that when the sensitivity analysis of one of the
variables, the other variables remain unchanged, so we change the housekeeper’s moving
speed from 1 km/h to 60 km/h, observe the change in the total order weight value, and
obtain the online order distribution model on the housekeeper’s moving speed sensitivity
analysis results, as shown in Figure 5.
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Figure 5. Sensitivity analysis of the online order assignment model for the housekeeper’s moving speed.

It can be seen from Figure 5 that when the housekeeper’s moving speed v is between
1 km/h and 10 km/h, the online order distribution model is sensitive to the housekeeper’s
moving speed. When the speed is between 10 km/h and 60 km/h, the total order weighting
value Sum is stable. When the moving speed is low, the housekeeper cannot reach the
service position in time, and the Sum value at this time increases with the moving speed of
the housekeeper, but when the moving speed of the housekeeper increases to 10 km/h, the
value of Sum no longer changes.

Then, the order update time is changed from 0.1 h to 2 h to observe the change in the
total order weight, and the sensitivity analysis result of the online order assignment model
to the order update time is obtained, as shown in Figure 6.

Figure 6. Sensitivity analysis results of online order assignment model to order update time.

As can be seen from the analysis in Figure 6, when the order update time is in the
interval [0.1 h, 0.5 h] and [0.6 h, 2 h], the model is insensitive to it and the value of Sum
fluctuates slightly. In the interval [0.5 h, 0.6 h], the value of Sum fluctuates strongly, and the
model is sensitive to the order update time.

5.4.2. Comparison to the Nearest Distance Method

To validate the online assignment model, the nearest distance method is used as a
comparison. The nearest distance method assumes that dk is the distance between the
k-th order and the corresponding housekeeper who receives the order. The process of this
model is as follows.
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Optimization function:

Min dk =

√
(xi − xk)

2 + (yi − yk)
2 (14)

Decision variable refers to Equation (9). All constraints are as follows:

orderk =

{
0, matched
1, unmatched

tk = {tmin, tmin + 0.5, . . . , tmax}
v = 15km/h

housekeeperi =

{
0, free
1, working

gotimei = historytime + d/v
2303
∑

k=0
orderk · op = 2304 × y

op =

{
0, tmax − historytime ≤ 2
1, tmax − historytime > 2

gotimei ≤ ti
0 ≤ y ≤ 1
S(i, k) = αAi + βBk + γCk

(15)

The core algorithm of the nearest distance assignment model is to assign orders to
the nearest housekeeper to achieve fast service. This method can reduce the distance of
the housekeeper’s movement, but it ignores the importance of the housekeeper’s service
quality. The values of Sum, m, a, and b of the online assignment model are compared with
those of the nearest distance assignment model in Table 9.

Table 9. Comparison with the nearest distance assignment model.

Model Sum m a b

Online assignment model 1405.14 709 56.19% 95.22%
Nearest distance assignment model 810.25 1200 28.85% 56.76%

Compared with the nearest distance assignment model, the value Sum of the online
assignment model is larger, the overall service evaluation score is higher, and the platform
service quality is better. On the same day, m is smaller, and the housekeepers with high
service scores take more orders, while the housekeepers with low service scores take fewer
or no orders. The values of a and b are larger, and the daily work time utilization rate and
choiceness rate are higher. From the long-term development of the company, the higher
the overall service score and the better the service quality, the better the development of
the company will be. Therefore, compared with the closest distance assignment model, the
online assignment model proposed in this paper is superior.

Overall, both offline and online delivery models have their own advantages and
disadvantages, and the choice of which model to use depends on the optimization objectives
and acceptable constraints. The offline model can obtain the overall optimal solution, but
it requires a comprehensive understanding of the entire day’s orders and housekeeper
situation and may not handle unexpected situations properly. The online model takes into
account time constraints and the clients’ experience, which is more in line with the needs
of the real situation and has better adaptability to unpredictable problems.

6. Conclusions

For order assignment, this paper establishes offline and online order assignment mod-
els based on dynamic programming, both of which can achieve optimal order assignment.
For the online order assignment model, an order backlog mechanism is added to prevent
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the algorithm from falling into the local optimization dilemma. The online assignment
model has strong applicability and can be applied to other resource assignment problems.

In order to demonstrate the stability of the model, a sensitivity analysis is conducted.
By analyzing the effects of the two variables, household travel speed and order update time,
it is concluded that the household’s moving speed is sensitive from 1 km/h to 10 km/h
and insensitive from 10 km/h to 60 km/h. The order update time is insensitive in the range
of [0.1 h, 0.5 h] and [0.6 h, 2 h], but sensitive in the range of [0.5 h, 0.6 h], thus proving the
superiority and stability of the model proposed in this paper. Furthermore, the online order
assignment model is compared with the nearest distance assignment model. The results
show that the total weighted score of the nearest distance assignment model is 810.25, while
the proposed online assignment model is 1405.14. The higher the total weighted score,
the better the service quality of the company. Therefore, the online assignment model is
superior to the nearest distance assignment model.

However, the order assignment models do not address practical issues such as tem-
porary order cancellations and temporary leave requests by housekeepers, which require
further research.
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