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Abstract: This study explores the application of reinforcement learning (RL) algorithms to optimize
lift control strategies. By developing a versatile lift simulator enriched with real-world traffic data
from an intelligent building system, we systematically compare RL-based strategies against well-
established heuristic solutions. The research evaluates their performance using predefined metrics to
improve our understanding of RL’s effectiveness in solving complex decision problems, such as the
lift control algorithm. The results of the experiments show that all trained agents developed strategies
that outperform the heuristic algorithms in every metric. Furthermore, the study conducts a compre-
hensive exploration of three Experience Replay mechanisms, aiming to enhance the performance of
the chosen RL algorithm, Deep Q-Learning.

Keywords: decision systems; artificial intelligence; reinforcement learning; lift control

1. Introduction: Contribution of the Paper

In our fast-paced world, lifts are irreplaceable in multi-floor buildings, transporting
hundreds of passengers daily. As stated in an IBM survey from 2010, the employees in
New York collectively spent 16 years waiting for a lift and another 6 years inside the lift
cabin during a 12-month period [1]. The time spent waiting to be served by the lift control
system can lead to significant frustration and tangible losses. Addressing the challenge of
optimizing lift control to minimize passenger waiting times in a predetermined and deter-
ministic environment is a provenNP-hard problem [2]. The real-world scenario introduces
uncertainties that necessitate adaptive decision-making without complete knowledge of
future events. Heuristic algorithms have traditionally tackled this issue [3], with recent
exploration of solutions based on artificial intelligence algorithms [4–7].

The dissatisfaction of lift users, the difficulty of the problem, and the potential im-
provements achievable through reinforcement learning techniques were the motivations
behind the studies and experiments presented in this article. While the task seems intuitive,
finding an optimal algorithm is, as previously mentioned, complex, and this complexity
grows in real-world scenarios.

This case study’s primary objective and main contribution is to demonstrate a viable
path and actions for leveraging reinforcement learning methods in addressing a real-world
control problem, specifically lift control. To achieve this goal, a universal lift emulator was
developed, incorporating real-world traffic distribution data from the intelligent building
system of ASTOR sp. z o.o. Company, Krakow, Poland. The research involves a comparison
between strategies developed using reinforcement learning algorithms and established
heuristic solutions, evaluating their performance through predefined metrics. Additionally,
a secondary aim of the study is to compare the effectiveness of three Experience Replay
mechanisms. These mechanisms are designed to improve the performance of the Deep
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Q-Learning algorithm, which was chosen as the reinforcement learning algorithm for
this investigation.

The article begins by defining the lift control problem and introducing the concept
of our proposed solution in Section 2. Traditional heuristic algorithms are enumerated
and explained according to a rationale for choosing the Reinforcement Learning (RL) to
tackle the problem. The RL methods, particularly Q-Learning algorithms and their variants
with the Experience Replay mechanism, are described. Section 3 provides an overview of
significant solutions found in the literature.

Moving on to Section 4, we delve into the steps taken in our solution, explaining
the construction of a lift control system emulator characterized by real-world passenger
distribution. We detail how this emulator serves as the environment for RL learning,
the chosen RL algorithms, and the learning process itself. In Section 5, we describe the
evaluation procedure, and showcase and analyse its results. Concluding the article in
Section 6, we discuss the findings and outline potential ideas for future research.

2. Description of the Problem and Concept of the Solution

The lift control system consists of one or more lifts operating within a multi-story
building. In the latter case, it is referred to as group control [8]. The system registers lift calls
from the floors and cabins and processes them according to a chosen strategy. Calls from
the floors are generated by physical buttons located on the floors, sometimes distinguishing
between requests to travel upwards or downwards. Inside the lift cabin, there are stop
buttons that trigger calls to specific floors. The objective of the lift control system is to serve
its passengers optimally in the following aspects:

• The average and maximum wait times for passengers as they await the lift’s arrival.
• The average and maximum travel times for passengers to reach their destinations.
• The distance traveled by each lift.

Finding an optimal strategy in this context is part of a broader category of real-time
transportation and demand-related problems, often referred to as online-dial-a-ride [9].

2.1. Problem Definition

The task presented to the lift system controller can be defined as follows: for N
passengers wishing to travel from the starting floor si to the destination floor di, de-
noted as (s1, d1), (s2, d2), . . . , (sN , dN), the goal is to determine a sequence of visited floors
p1, p2, . . . , pk in such a way that, for each passenger, their starting floor si precedes their
destination floor di. Moreover, if the task includes finding a sequence of minimal length, the
problem becomes NP-complete due to a reduction from the problem of cyclic vertex cover,
as demonstrated by Seckinger and Koehler [2] in 1999. Similarly, the problem addressed
in this work may share similarities with variants of the Traveling Salesman Problem or
the Routing Problem, but none of them fully models it. This is because the cost of travel
depends not only on the order in which passengers are serviced but also on how they are
grouped. Additionally, these aforementioned problems operate in static environments and
assume full knowledge of them, while in lift control systems, passengers appear dynami-
cally, and the complete system state is unknown. Hence, heuristic algorithms for real-time
lift system control have been developed. Below, we outline those that can be used in a
single-lift system, as described by Crites and Barto [3].

2.2. Traditional Heuristic Algorithms

The Longest Queue First (LQF) algorithm utilizes a queue to determine which call to
service at a given moment. When a passenger summons the lift from a floor or from inside
the cabin, their request is added to the end of the queue. Requests are serviced in order of
the longest waiting time. On each floor, there is typically only one button, so passengers
cannot specify whether they want to travel up or down. Additionally, requests generated
by pressing buttons inside the cabin take precedence over those generated on floors. This
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prioritization ensures that passengers already inside are serviced before the lift responds to
a new passenger’s call.

The Collective Algorithm (CA) extends the Longest Queue First algorithm. It involves
stopping at intermediate floors during the service of the longest-waiting request, provided
that there are active cabin or floor requests for those intermediate floors. Moreover, the Last
Mission (LM) variant of this algorithm only stops at a floor if the direction indicated by
its request aligns with the current direction of lift movement. In this variation, each floor
typically has two call buttons, allowing passengers to specify the direction of their travel.

Those heuristic approaches, although they solve the problem, have their limitations.
They often rely on simple rules, like servicing the longest waiting queue, which may not
optimize passenger waiting times or energy usage. These methods struggle to adapt to
changing traffic patterns. As a result, more advanced techniques capable of adapting to
passenger traffic patterns are being explored to address these limitations.

2.3. Reinforcement Learning

Reinforcement Learning (RL) offers a promising solution to the limitations of tradi-
tional heuristic approaches in lift control. This specific field of machine learning introduces
a dynamic approach in which an agent learns through active interaction with its envi-
ronment. RL finds widespread application in various fields, including robotics, finance,
healthcare, and game playing [10,11]. In robotics, RL is widely employed to enable adap-
tive and autonomous behavior in robots, allowing them to navigate and perform tasks in
unstructured and dynamic environments [12]. It offers the unique advantage of exploring
complex environments to find intricate strategies that are often beyond the scope of simple
rule-based traditional solutions. This adaptability makes RL well-suited for lift control sys-
tems, where the dynamic nature of traffic patterns and user demands requires an intelligent
and evolving decision-making approach.

The environment can be represented as a Markov Decision Process (MDP). This MDP
is composed of several components: a set of possible states S, a set of available actions A,
and two functions—the transition function T(s, a, s′) and the reward function R(s, a, s′). The
transition function captures the dynamics of the environment, determining the probability
of transitioning from state s to s′ when taking action a. On the other hand, the reward
function relates to the rewards received in this process, quantifying the goodness of the
action choice.

In each time step t ∈ {0, 1, 2 . . .} during the interaction loop, the agent observes a
state of the environment st ∈ S and selects an action at ∈ A. Consequently, he receives an
immediate reward rt ∈ R and observes a new state st+1 in accordance with the dynamics
of the environment. The agent’s choices are represented by a policy function denoted as π,
defined as follows:

π(a, s) = Pr(at = a | st = s). (1)

The policy function assigns a probability value to each possible state-action pair. It must be
ensured that the sum of probabilities for all available actions in a given state equals 1.

Based on the policy, we can define an action-value function, denoted as Qπ(s, a),
which represents the expected cumulative reward when starting from state s, taking action
a, and then following policy π thereafter:

Qπ(s, a) = E
[

∞

∑
t=0

γtrt

∣∣∣∣ s0 = s, a0 = a; π

]
, (2)

where γ ∈ [0, 1] is the discount factor that trades off the importance of immediate and later
rewards. The optimal value for this state-action pair is Q∗(s, a) = maxπ Qπ(s, a). Then, the
optimal policy can be easily derived by assigning a probability of 1 to the highest valued
action in each state while setting a probability of 0 to all other actions in that state.
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2.3.1. Q-Learning and Deep Q-Learning

Q-Learning is a form of temporal difference learning, where the goal is to estimate
the optimal action values by learning a parameterized action-value function Q(s, a; θt) [13].
In a standard Q-Learning algorithm, after taking an action at in state st and observing the
immediate reward rt and a new state st+1, the target action value is calculated using the
Bellman’s equation as follows:

YQ
t = rt + γ max

a
Q(st+1, a; θ). (3)

The parameter is updated using the stochastic gradient descent method to modify the
current value Q(st, at; θ) towards the target value YQ

t .
In Deep Q-Learning, a multi-layered neural network is used to approximate the action-

value function. For each state s, the network outputs a vector of action values Q(s, ·; θ) of
length card(A), where θ are the parameters of the network. To mitigate value estimation
errors, Mnih et al. [14] introduced a dual-network approach. They utilized the online
network for making updates and the target network to estimate the target value YQ

t .

2.3.2. Experience Replay

Experience Replay technique has been applied to improve the stability and efficiency
of the learning process. Its fundamental approach involves an Experience Replay buffer,
as employed by Mnih et al. [14]. It is a fixed-size storage for experience, or (state, action,
reward, next state) transitions, encountered by the agent during interactions with the
environment. During training, a predefined number of such transitions are uniformly
sampled from this buffer to perform parameter updates.

A more advanced variant, known as Prioritized Experience Replay, was introduced by
Horgan et al. [15]. This technique redefines the sampling process to prioritize transitions
based on their estimated importance calculated through the temporal differences, denoted
as YQ

t − Q(st, at). The experiences are sampled from a probability distribution that is
proportional to the stored temporal differences. Consequently, transitions with a higher
impact on the learning process are used more frequently, thereby improving the overall
learning efficiency.

In certain environments, there may be states or groups of states that are encountered
less frequently by the agent, leading to an imbalance in the experience replay buffers.
This imbalance can result in the agent making suboptimal decisions in these less common
states. To solve this challenge in the context of controlling traffic lights using reinforcement
learning, Wei et al. [16] introduced the Memory Palace technique. In this approach, experi-
ences are distributed across multiple memory palaces (essentially conventional Experience
Replay buffers) based on the active light phase. During training, the same number of
samples are drawn from all of the palaces, ensuring balance. This prevents more frequent
phase states from dominating the training process, ultimately improving the accuracy of
the final value function estimation.

3. Related Works

The solution proposed by Imasaki et al. [4] utilizes a fuzzy neural network to predict
passenger wait times under various control parameters. The input state space is partitioned
using fuzzy logic rules, with the controller making decisions based on the network’s
predictions, although the specific control algorithm is not explicitly defined.

Markon et al. [5] developed a system for training neural networks to perform immedi-
ate cabin allocations. Their training process involved three phases. The first phase used
supervised learning with data collected from a system controlled by existing solutions from
Fujitec. Selected network weights were frozen to represent the control system’s principles.
The remaining network was fine-tuned in the second phase to mimic the lift controller. In
the third phase, the entire network was further trained in a system simulator to enhance
its performance using a simplified form of reinforcement learning. The network’s input
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layer consisted of 25 neurons for each lift, and the output layer had one neuron per cabin.
Passenger floor requests were assigned to the lift with the highest activation value of the
corresponding output neuron. The system was tested in a 15-floor building simulator with
six elevators, resulting in a minor improvement over the existing controller.

In later years, reinforcement learning saw its implementations in elevator control.
Crites and Barto [6] applied the concept of Deep Reinforcement Learning (Deep RL) to a
single elevator system in a ten-floor building during peak downward traffic. Passengers
selected routes with the lowest floor as their destination, and they appeared based on a dis-
tribution tied to the simulation phase. The training process lasted four days, during which
the algorithms spent over 60,000 h in a simulated environment. The trained algorithms
demonstrated notably better performance compared to well-known heuristic algorithms.

One of the first reinforcement learning implementations for a lift control system was
designed by Li [17]. The author utilized three RL algorithms, all from the family of Q-Value
function estimation methods. The results show a decrease in the average waiting time
metric for all trained strategies as compared to a reference heuristic policy.

A more recent solution was presented in 2020 by Wei et al. [7]. The researchers used a
new Deep Reinforcement Learning method, called Asynchronous Advantage Actor-Critic,
to train an agent capable of optimal dispatching of elevators in a group control setting. The
learning process was conducted within an emulated system designed to mimic real-life
building conditions. The results obtained during test simulations in various traffic patterns
revealed that the trained agent successfully reduced average waiting times compared to
traditional heuristic algorithms.

4. The Proposed Solution

In the proposed solution, the reinforcement learning approach was chosen to develop
a control strategy capable of outperforming traditional heuristic approaches. To accomplish
this, it was necessary to model the lift control system as a Markov Decision Process (MDP)
to serve as an environment for training an agent.

4.1. Lift System Simulator

For this purpose, a lift system simulator was created, representing a discrete-time
system that allows the control of the lift in discrete time intervals. The simulator’s pa-
rameters include the number of floors, denoted as N f ∈ N+, and the capacity of the lift
cabin, denoted as C ∈ N+. Passengers can be introduced into the system at any time at
the end of a queue on any starting floor and are assigned a target floor different from their
starting floor.

At any time-step the simulator accepts one of three available control actions, which are
as follows:

(A) Move the lift one floor up (not possible on the highest floor).
(B) Move the lift one floor down (not possible on the lowest floor).
(C) Do not move the lift and serve the passengers in two steps:

(i) All passengers inside the cabin whose target floor is the current floor exit
the cabin.

(ii) The first passengers from the current floor’s queue enter the cabin, where the
available free space in the cabin determines the number of passengers entering.

4.2. Passengers Distribution

A raw simulation is not sufficient to create an environment model that represents the
real lift control problem. What is also needed is the distribution of passengers’ arrivals
depending on their route and time. To approximate such a distribution, real-world data
from the lift control system reading in the intelligent building of the ASTOR sp. z o.o.
company were used. With a mature approach to data and knowledge of their increasing
value over time, ASTOR began archiving sensor readings in the entire building (over
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300,000 parameters) over a decade ago, including those from the lift control system using
an advanced AVEVA Historian 2023 tool.

The considered building comprises seven floors (from floor −1 to 5) and one cabin
with stop buttons for every floor. On each floor there are two buttons, one associated with
the intention to travel to a higher floor and the other to a lower floor (except for the highest
and lowest floors, which have only one button). The available parameters for further
analysis included the current cabin position and the current state of all the buttons.

To count and classify the passengers, we used data ranging from August 2018 to
August 2019. The assumption made for this purpose was that when a user enters a lift
standing on floor A, he immediately selects and presses the button ZB inside the cabin
corresponding to his destination floor B. Such an assumption allowed, by sequentially
analyzing the recorded parameter changes in time, for the association of each change in the
activity of the Zx stop button inside the cabin with a specific passenger travelling to floor x
from floor y, where the lift’s last stop was registered.

In this way, 65,142 passengers were counted and categorized based on their travel
route, considering both the starting and destination floors, the specific day of the week, and
the travel time. The passenger counts were averaged over four-second intervals, aligning
with the typical duration of lift travel between two floors. This process resulted in the
calculation of the average number of passenger appearances for each route within specific
time slots.

The derived distribution revealed that, on average, a passenger appeared once every
120 steps. To increase the dynamics of the environment and introduce a higher level of
challenge for the learning agents, we reduced this time interval to 10 steps by multiplying
the distribution values by 12. This adjusted distribution maintains real-world characteristics
while providing a more demanding problem for the agents to learn a more interesting case
for this study. The distribution, illustrated in Figure 1, indicates that almost all of the trips
are the longer ones, either starting from the lower floors or concluding at the higher floors,
represented by values in lower left and upper right corners. Additionally, the higher values
are present in the upper right corner, meaning that a majority of trips start on either floor
−1 or 0 and head up to one of floors 3, 4 or 5. This is a common pattern, as people are more
likely to call and wait for the cabin when going up than when going down [18].

-1 0 1 2 3 4 5
Destination floor
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1

2
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4

5
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g 

flo
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0 0.0016 0.0008 0.0034 0.0082 0.0089 0.0056

0.0012 0 0.0005 0.0028 0.007 0.01 0.0067

0.0006 0.0004 0 0.0001 0.0001 0.0003 0.0001

0.0022 0.0015 0.0001 0 0.0001 0.0006 0.0009

0.0056 0.0036 0.0001 0.0002 0 0.0011 0.0012

0.0058 0.0061 0.0002 0.0003 0.0005 0 0.0004

0.0048 0.0049 0.0001 0.0007 0.0009 0.001 0

su
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0.029

0.028

0.0016

0.0054

0.012
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0.012

0.10
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Figure 1. The distribution of the average number of passenger appearances for each possible route.
Aggregated values for the starting and destination floors are presented in the last column and the last
row, respectively. Regardless of the chosen route, the average number of passenger appearances at
each step is indicated in the bottom-right corner. The values in the matrix are colour-coded according
to a logarithmic colour map, with the colour bar located on the right side of the figure.

An analysis of the summed values along the destination floor axis, presented in the
last ‘sum’ column, reveals that over half of the passengers start on either floor −1 or 0.
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At the same time, the remaining part is mostly concentrated around floor 4. Regarding
destination floors, a significant majority of passengers are headed to higher floors, with
floor 4 being the most common choice. Interestingly, very few passengers either start or
finish at floors 1 or 2 in this building.

4.3. State Representation

The state of the environment observed by the agent at time-step t is represented by
the environmental state vector st, determined based on the current state of the simulator.
The specific components of this vector construction for the system adopted in this work are
detailed below:

st = [pt, Z1
t , Z2

t , . . . , ZN
t , D2

t , D3
t , . . . , DN

t , U1
t , U2

t , . . . , U(N−1)
t ]T , (4)

where:

• pt ∈ {1, 2, . . . , N} represents the current position of the lift cabin at time-step t.
• Zi

t ∈ {0, 1}, i = 1, 2, . . . , N indicates the state of the lift cabin button for floor i at
time-step t. It is equal to 1 if there is at least one passenger inside the cabin with floor i
as their destination and 0 otherwise.

• Ui
t ∈ {0, 1}, i = 1, 2, . . . , (N− 1) denotes the state of a call button on floor i associated

with the intention to go up. It is set to 1 if at least one passenger is on floor i with a
destination floor j > i, and 0 otherwise.

• Di
t ∈ {0, 1}, i = 2, 3, . . . , N represents the state of a call button on floor i associated

with the intention to go down. It is valued at 1 if at least one passenger is on floor i
with a destination floor j < i, and 0 otherwise.

4.4. Reward Function

The construction of the reward function is a critical aspect of creating the environment.
It defines the optimal strategy that maximizes the cumulative reward over time, serving
as the sole quality metric for an agent in the context of an unknown and abstract goal
set by the environment. Careless selection of the reward function can lead to unintended
agent behaviour.

The reward is calculated following the agent’s chosen action and depends on both the
action and the resulting state of the simulator. Its value can also be negative and is often
interpreted as a penalty. In this work, the reward was computed as a linear combination of
two individual components, each aimed at capturing distinct aspects of the target strategy:

R(t) = −Rbuttons(t)− 20× Rillegal(t). (5)

The first component, denoted as Rbuttons(t) ∈ N, represents the number of active but-
tons in the system. Minimizing this component is associated with reducing the number of
waiting passengers. The second component is termed as Rillegal(t) ∈ {0, 1} and represents
the penalty for an illegal move, such as choosing to go up on the highest floor or to go
down on the lowest floor. Penalizing the agent for an illegal action is an easy solution to
the issue of the dependency of available actions on the environment’s state. The scaling
factor of 20 was chosen apriori to ensure that selecting an illegal action is always penalized
more than choosing every other legal action. In extreme scenarios where all 19 buttons are
active, selecting a legal action results in a penalty of at most −19, while choosing an illegal
action incurs a higher penalty of −20.

The simulator with passengers distribution, together with the state representation and
reward function, formed the Markov Decision Process (MDP) model for the lift control
system. It encompasses all its components, making it a suitable environment for the
reinforcement learning process.
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4.5. Learning Process

We utilized a dual-network Deep Q-Learning algorithm with the Experience Replay
method and an ε-greedy policy for training. The training process spanned 1000 episodes,
each consisting of 20,000 time-steps. Both the online and target neural networks featured
three fully connected layers, with 20 neurons (matching the state vector length), 128 neurons,
and 3 neurons (representing the number of actions), respectively.

To further investigate the impact of Experience Replay techniques on learning dynam-
ics, we conducted three experiments using all variants discussed in Section 2.3.2: basic
Replay buffer, Prioritized Replay buffer, and Memory Palace. In the Memory Palace variant,
the rooms corresponded to different floors where the lift cabin was currently located. This
design aimed to distribute the sampled experience among specific contexts, preventing the
domination of more frequent phase states and enhancing the overall learning process.

Both the basic Replay Buffer and the Prioritized Replay Buffer had a capacity of 106,
while the Memory Palace consisted of seven rooms, each being a Replay Buffer with a
capacity of 105. During training, every four time-steps, a mini-batch of 32 transitions was
sampled from the experience replay for weight updates. When using the Memory Palace,
the mini-batch comprised thirty-five elements, with five from each room.

To enhance learning stability, network weights were synchronized between the on-
line and target networks every 40,000 time-steps. To enhance the extensive environment
exploration, the exploration factor, ε, started at 1 and gradually decreased by 0.02 after
each episode until reaching the final value of 0.1. The discount factor, γ, was set to 0.99 to
significantly prioritize future rewards. In the learning process, we applied the Huber Loss
function, a robust alternative to Mean Squared Error, particularly suitable when dealing
with errors in reinforcement learning that might exhibit outlier values [19]. Additionally, we
employed the Adam optimizer, a popular optimization algorithm known for its efficiency
in adapting learning rates for individual parameters. All the hyperparameter’s values were
inspired by the work of Mnih et al. [14].

4.6. Learning Dynamics and Evaluation Metrics

In supervised learning, monitoring a model’s progress is easily achieved by evaluating
its performance on training and validation datasets. However, evaluating the performance
and progress of agents in reinforcement learning presents more significant challenges [20].
To address this, we tracked multiple metrics during the learning process. These included
the average Huber Loss value over all updates in the episode, the average reward obtained
by the agent, the average waiting time of served passengers and the number of illegal
actions the agent took.

Although the average reward for an episode is the most obvious metric to evaluate the
agents’ progress, it tends to be noisy due to the changing distribution of the encountered
states during Q function updates. The three plots in Figure 2 illustrate the average reward
(light blue line) and its smoothed trajectory (blue line) for learning variants with Replay
Buffer, Prioritized Replay Buffer and Memory Palace, respectively. Despite the noise, there
is a notable improvement in the initial episodes from values around−0.6 to values hovering
around −0.12.
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Figure 2. Average reward in subsequent episodes across three Experience Replay learning variants.
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The number of illegal moves provides insight into the progress of Q values evaluation
accuracy in the subset of state space where the lift is on the lowest or highest floor. As
shown in Figure 3, each learning variant’s number of illegal moves sharply decreased from
almost 2000 in episode 1 to below 250 from episode 50 onward. The consistent nonzero
values result from the ε-greedy policy during learning, promoting exploration through
random action choices.
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Figure 3. Number of illegal moves in subsequent episodes across three Experience Replay
learning variants.

Although average waiting time is not explicitly stated in the agent’s reward, the reward
construction anticipates a decrease in average waiting time as a byproduct of increasing the
reward. Figure 4 confirms this expectation, with each Experience Replay variant witnessing
a visible decrease in average waiting time from over 100 steps to values oscillating around
10 steps. This alignment indicates that the increase in reward function values aligns with
the general goal of reducing the average passenger’s waiting time.
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Figure 4. Average waiting time of all served passengers in subsequent episodes across three Experi-
ence Replay learning variants.

4.7. Implementation Details

The lift simulator, the data processing pipeline and the employed learning algorithms
were implemented in Python 3.10, with PyTorch serving as the primary library for the deep
learning components, and libraries such as NumPy 1.26 and Pandas 2.1 delivering data pro-
cessing functionalities [21–23]. The computations were performed on a machine equipped
with an AMD Ryzen 5 4600H @ 3.0 GHz CPU, an NVIDIA GeForce GTX 1650 GPU, and
32 GB of RAM. The metrics were tracked using the Tensorboard utility developed by
Google [24].

5. Tests and Their Interpretation
5.1. Evaluation Procedure

To comprehensively assess and compare the performance of the trained agents and
heuristic lift control strategies, we prepared 30 test simulations, each spanning 1000 time-
steps. All heuristic algorithms, including Longest Queue First (LQF), Collective Algorithm
(CA), and Last Mission Algorithm (LM) described in Crites and Barto [3], as well as
strategies developed by the agents, were used to control the lift in each simulation. This
approach allowed us to calculate mean and standard deviations for each performance
metric, providing a more detailed understanding of their effectiveness.
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During each test simulation, the trained agents utilized the strategy π derived from
their learned Q function values:

π(s) = arg max
a

Q(s, a). (6)

This strategy implies that the agent always chooses action that, based on its gathered
knowledge, results in the highest expected cumulative reward, prioritizing environment
exploitation over exploration.

5.2. Results and Analysis

During test simulations, various metrics describing the performance of each strategy
were collected. The metrics included average reward per simulation step, average waiting
time of served passengers, number of served passengers, and number of illegal moves.
The results, presented in Table 1, include both mean and standard deviation of each of the
metric values over all 30 prepared simulations.

Table 1. Performance metrics during 30 test simulations of 1000 time steps for various lift control
strategies. For each metric, its mean (µ) and standard deviation (σ) are presented. The best mean
value in each metric is bolded.

Strategy Average Reward Average Waiting Time Served Passengers Illegal Moves
µ σ µ σ µ σ µ σ

LQF −0.1101 0.0137 11.8963 1.0981 84.1333 6.2020 0.0 0.0
CA −0.0968 0.0097 10.0738 0.5569 88.3667 6.7338 0.0 0.0
LM −0.0954 0.0094 9.9724 0.5191 87.7667 6.7705 0.0 0.0
DQL_MP −0.0914 0.0082 9.5548 0.5229 89.1000 6.9746 0.0 0.0
DQL_RB −0.0909 0.0086 9.5050 0.4727 89.2667 6.9378 0.0 0.0
DQL_PRB −0.0906 0.0090 9.4452 0.5751 89.6333 6.9107 0.0 0.0

The initial observation indicates that the LM strategy is the best among the heuristic
algorithms. However, it notably underperforms compared to each trained agent across
all metrics. The trained agents not only consistently served more passengers, but also
served them in a shorter time. Particularly, the agent trained with Prioritized Replay Buffer
achieved the shortest average waiting time at 9.44, around 5% better than the LM strategy
and over 20% better than the LQF strategy.

Additionally, even stronger relative improvement is visible in the average reward,
where trained agents achieved around 5% better scoresthan the LM strategy without any
overlap of the confidence intervals, indicating statistically significant differences in their
performance. However, the average reward is more similar among the trained agents than
the average waiting time. This occurred because the agent was trained solely to maximize
reward, a method that was not constructed based on passenger waiting times but with
an idea to minimize that time as a byproduct of maximizing the reward. Furthermore,
the agent lacks information about how long passengers have been waiting, as the state
representation only includes pressed buttons. In this setting, the environment is not overly
complex yet delivers crucial information.

The absence of illegal move choices by all agents underscores the accurate Q function
estimations for states in which the lift was positioned on either the highest or lowest
floors. This outcome demonstrates the accuracy of the Q function estimations and suggests
that penalizing the agent for incorrect actions is an effective approach for handling state-
dependent actions. This is particularly relevant when such actions impact only a limited
portion of the state space.

For a more extensive exploration and analysis of the experimental results, please
refer to the Engineering Thesis authored by Wojtulewicz [25]. The thesis explores diverse
environments with different complexities, providing valuable insights into the utility of Re-
inforcement Learning in addressing decision problems like the lift algorithm. Additionally,
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it shows the crucial role of the reward function in shaping environments for Reinforcement
Learning applications.

6. Conclusions and Future Works

In conclusion, the study successfully demonstrates a viable approach for utilizing
reinforcement learning (RL) methods to address a complex real-world control problem,
specifically lift control. The development of a universal lift emulator, enriched with real-
world traffic distribution, modelled using data from ASTOR Company’s intelligent building
system, allowed for a comprehensive evaluation of RL-based strategies against conventional
heuristic solutions. The research showcases that strategies devised by agents, trained using
the advanced Deep Q-Learning algorithm, consistently outperform traditional heuristic
solutions regarding average waiting time, served passengers, and overall reward.

Furthermore, the exploration of three Experience Replay mechanisms, namely basic
and Prioritized Replay Buffers and Memory Palace, demonstrated their effectiveness in the
Deep Q-Learning algorithm. The learning process for each variant of DQL was smooth and
stable, displaying rapid improvements in the average episode reward metric at the initial
stages of training. While all agents, incorporating distinct Experience Replay mechanisms,
formulated strategies surpassing traditional solutions, the agent trained with the Prioritized
Replay Buffer mechanism achieved the highest average reward and the lowest average
passenger waiting time in test simulations. Nevertheless, the discrepancies in metric values
among the agents are marginal, making it challenging to declare the Prioritized Replay
Buffer as the superior technique definitively.

While this study provides valuable insights, there are several avenues for future
research in this domain. Firstly, the exploration of different RL algorithms and architectures
could yield further improvements in lift control optimization. Investigating the impact of
varying state representations and reward functions on the learning process may enhance
the adaptability of RL agents to diverse scenarios.

Additionally, expanding the study to consider more complex lift systems, such as
those with multiple cabins or buildings with interconnected elevators, could provide a
more comprehensive understanding of reinforcement learning versatility. The integration
of dynamic factors, such as varying passenger arrival rates depending on the system
hour, could provide a more complex environment that can assess the adaptability of
reinforcement learning methods.
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