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Abstract: One important task for autonomous driving is the precise detection and recognition of
road traffic signs. This research focuses on a comprehensive set of 72 distinct traffic signs that are
prevalent on urban roads in China, with the goal of developing an enhanced You Only Look Once
(YOLO) network model tailored for this specific task. The modifications include the omission of the
terminal convolution module and Conv3 (C3) module within the backbone network. Additionally,
the 32-fold downsampling is replaced with a 16-fold downsampling, and a feature fusion module
with dimensions of 152 × 152 is introduced in the feature layer. To capture a more encompassing
context, a novel hybrid space pyramid pooling module, referred to as Hybrid Spatial Pyramid Pooling
Fast (H-SPPF), is introduced. Furthermore, a channel attention mechanism is integrated into the
framework, combined with three other improved methodologies. Upon evaluation, the enhanced
algorithm demonstrates impressive results, achieving a precision rate of 91.72%, a recall rate of
91.77%, and a mean average precision (mAP) of 93.88% at an intersection over union (IoU) threshold
of 0.5. Additionally, the method also achieves an mAP of 75.81% for a variety of IoU criteria between
0.5 and 0.95. These achievements are validated on an augmented dataset established for this study.

Keywords: traffic sign detection; feature fusion; object detection

1. Introduction

The detection and recognition of traffic signs has the potential to significantly improve
vehicular environment perception. In the context of road navigation, the ability to acquire
precise, real-time traffic sign information stands as a pivotal asset.

Recent advancements in research have prominently harnessed the capabilities of
deep learning techniques, with a notable emphasis on leveraging Convolutional Neural
Networks (CNNs) [1,2]. These techniques have been adeptly applied to extract features that
facilitate the tasks of detection and classification. The typical workflow involves training
the network on an annotated dataset and subsequently subjecting the model to validation
and testing phases specifically tailored for traffic sign detection.

Presently, two distinct strategies have emerged as prominent avenues for object detec-
tion: the region-suggestion-based strategy and the regression-based strategy. The former
strategy adheres to conventional object detection paradigms, generating and categorizing
region proposals. Within this category, notable methodologies include R-CNN [3], SPP-
Net [4], Fast-RCNN [5], Mask-RCNN [6], and Faster-RCNN [7]. Yang et al. [8] introduced
the AT attention network within the framework of Faster R-CNN, enabling the precise
identification of regions of interest. Subsequently, the utilization of a fine region proposal
network (FRPN) yielded exceptional performance with an 80.31% mAP score on the TT100K
dataset [9]. Additionally, Lu et al. [10] pioneered the use of a visual attention model, which
tactically focuses exclusively on specific regions, obviating the need to process the entire
image for detection.

Noteworthy contributions also include the cascaded network approach by Zhang
et al. [11], which uses the R-ANN model for joint training and multi-scale capabilities.
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The concept of a pyramid network characteristic was introduced by Lin et al. [9], adeptly
addressing multi-scale object detection. This architecture comprises two principal com-
ponents: a multi-scale pyramidal hierarchy drawn from CNN’s inherent structure and a
top-down network structure featuring horizontal connections. By amalgamating high-level
feature maps across scales, each containing semantic insights, this approach ascertains a
universal feature extractor, which is a significant advancement.

Further elevating the field, Wang et al. [12] adopted the Res2Net [13] network archi-
tecture, serving as Faster R-CNN’s foundation. This innovation extended to the refinement
of the original Non-Maximum Suppression (NMS) calculation method, utilizing both
confidence and intersection over union (IOU) as evaluation criteria. The outcome was a
remarkably improved bounding box generation accuracy, culminating in an impressive
87.4% average precision (AP).

In summation, recent research within the realm of traffic sign detection has been char-
acterized by the proficient deployment of deep learning, particularly hinged upon CNNs.
This approach, bolstered by an array of innovative strategies and architectures, has garnered
remarkable advancements in both accuracy and efficacy across various benchmark datasets.

Building upon the insights gleaned from the aforementioned literature, in this re-
search, we describe a novel CNN-based architecture for traffic sign detection. Our work is
motivated by the aspiration to contribute to the field and expand its horizons. The central
contributions of this research are articulated as follows:

(1) Enhanced K-means++ Anchor Frame Clustering Algorithm: We carefully re-cluster
the dataset using an enhanced version of the K-means++ anchor frame clustering
technique. The objective is to derive initial candidate frames that are notably more
accurate, thus priming our network for improved performance.

(2) Refined Backbone Network Structure and H-SPPF Module: The structure of our
backbone network is strategically revised to prioritize the detection of diminutive
objects. Additionally, we propose a hybrid spatial pyramidal pooling H-SPPF module.
This module introduces a mechanism for extracting contextual information that is
richer and more nuanced, thereby elevating the model’s capacity.

(3) Channel Attention Mechanism Integration: We integrate the channel attention mech-
anism into our network’s architecture. This addition is integral to amplifying the
model’s prowess in extracting pertinent features from road traffic sign objects.

This paper’s remaining content is as follows: The hybrid pyramidal pooling module’s
composition is described in depth in Section II. The suggested network structure in this
paper is the subject of Section III. Section IV outlines the experimental dataset as well as
parameter settings and evaluation metrics. Section V gives the results of the comparison
experiments and the ablation experiments. Section VI offers a summary of this paper’s
algorithm as well as an outlook for subsequent work.

2. Related Work

Object detection is approached as a regression problem with bounding box and cat-
egory probabilities in regression-based object detection algorithms, and representatives
of regression-based object detection frameworks include SSD [14], YOLO [15–17] series,
etc. By extracting characteristics from the network and performing detection and classifi-
cation, this end-to-end object detection algorithm may significantly increase the speed of
detection and provide an algorithm model with high real-time performance that is better
suited for use on smart device terminals, such as in-vehicle advanced assisted driving
systems [18], driverless systems, etc. Garg et al. [19] conducted a study investigating three
algorithms—SSD [20], Faster RCNN [7], and YOLOv2 [16]—on five different traffic sign
object classes and evaluated the results, which demonstrated that while YOLOv2’s detec-
tion speed is three times faster than Faster RCNN, its accuracy is comparable to that of SSD
and Faster RCNN. In order to enhance the network model structure of YOLOv3, Zhang
et al. [21] suggested developing a multi-scale spatial pyramid pooling employing global
features and multi-scale local region features module [22], thus enhancing the precision of
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small item identification [23,24]. In order to accommodate small objects, Wang et al. [25]
modified the scale of the original output feature map and substituted GIOU [26] for IOU in
the distance formula of the K-means clustering algorithm. This improved YOLOv4-Tiny
increased the mAP in the traffic sign recognition task by 5.73% over the original algorithm.
In order to obtain more picture channel characteristics, Zhang et al. [27] created a new
feature pyramid structure called BiFPN in place of FPN in YOLOv4. The experimental
findings revealed that the mAP was 1.03% higher than that of the traditional YOLOv4
model. Our approach is refined using YOLOv5s to enhance the capacity to recognize small
traffic sign objects and subsequently address the issue of low-accuracy small traffic sign
detection in real-world settings.

3. Method
3.1. K-Means Clustering Algorithm Improvement

The initial candidate frame is obtained by clustering the COCO dataset [28] in the
YOLOv5 algorithm. The images in this dataset come from complex daily scenes and
contain categories such as people, vehicles, animals, common household items, etc. The
initial candidate frame obtained by clustering this dataset does not match the size and
characteristics of the traffic sign dataset studied in this paper. Therefore, for the dataset
obtained by augmenting the TT100K dataset [29] used in this paper, a new clustering is
needed to obtain a more accurate initial candidate frame, as shown in Table 1. The specific
steps are as follows:

1. First item: randomly select 1 sample object clustering center from the traffic sign dataset.
2. Second item: First, the distance between each sample object in the traffic sign dataset

and the currently selected n (1 ≤ n ≤ K) clustering centers is calculated and expressed
as D(x). The likelihood of each sample object being chosen as the subsequent cluster
center is then computed. Afterwards, in the process of choosing the n + 1th cluster
center, the larger the value of D(x), the higher the probability of the point being chosen
as the n + 1st cluster center. (b) Lastly, the roulette wheel approach is used to choose
the subsequent cluster centroid.

3. Iterate 2 again until K clustering centers are chosen.
4. The following is identical to the K-means clustering approach.

Table 1. Size of the anchor frame following clustering.

Feature Map Size Feel the Wild-Size Anchor Frame Size

38 × 38 large (23,24), (31,31), (44,47)
76 × 76 middle (10, 12), (14,15), (17,20)

152 × 152 small (4, 4), (5,6), (8,8)

The selected TT100K traffic sign dataset is used as a benchmark for clustering the
labeled dataset.

3.2. Improved Multi-Scale Feature Fusion Structure

Multi-scale feature fusion can be used to increase microscopic item detection accuracy.
The feature fusion layer in the standard YOLOv5s model uses PANet [30] to improve the
efficiency of information transfer from the bottom to the top layer in FPN, augmenting the
whole feature pyramid layer with the precise location information in the lower layer, as well
as reducing the information path’s length between features at the lower and upper layers.
Generally speaking, the perceptual field is the region that is applied to the input image,
and as the number of layers deepens, the perceptual field of the network progressively
grows. As a result, the shallow feature map with high resolution has a smaller, richer
spatial location information-rich perceptual field that is better suited for the detection of
small objects, whereas the deeper feature map with low resolution has a larger and more
advantageous perceptual field for the detection of large objects. Three feature maps are
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produced by the feature fusion in the YOLOv5 standard model, and these are utilized for
the detection of large, medium, and small objects. Given that traffic sign objects are often
small objects, this research improves the multi-scale feature fusion structure.

In order to enhance the model’s sensitivity to small object features without expanding
its size, the bottom convolutional module, the C3 module in the backbone network, and the
19 × 19 feature fusion module in the feature fusion layer are removed initially. The 32-fold
downsampling is then substituted with 16-fold downsampling, and a new feature fusion
module measuring 152 × 152 is subsequently added to the feature layer. Figure 1 illustrates
the improved feature fusion structure. In order to increase the model’s capacity for small
object recognition, the upgraded FPN and PANet modules work together to augment the
semantic and spatial information of traffic signs.
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Figure 1. Improved multi-scale feature fusion structure (The bottom convolution module, the C3
module in the backbone network, and the 19 × 19 feature fusion module in the feature fusion layer
are deleted. The 32× downsampling is then replaced with 16× downsampling, and a new feature
fusion module measuring 152 × 152 is subsequently added to the feature layer.).

3.3. Space Pyramid Module

The basic YOLOv5s SPPF module uses a spatial pyramid module with maximum
pooling, and the extraction of global features also heavily relies on average pooling. In this
research, we present the hybrid spatial pyramid pooling (H-SPPF) module, which further
improves the extraction of network contextual information by fusing three distinct sizes
of average pooling operations into the SPPF module. The specific structure of H-SPPF is
displayed in Figure 2.

As shown in the picture, the H-SPPF module is composed of an average pooling layer
and a maximum pooling layer with a pooling kernel size of 5 × 5. This feature map is
then input into three sequentially connected maximum pooling layers with a 5 × 5 pooling
kernel size to generate six separate feature maps. These six generated feature maps are
subsequently combined with Fo to complete the fusion of global and local features, resulting
in a feature map with a richer perceptual field. Finally, a Conv module is used to obtain
the final output Fout(W × H × C2). The whole calculation process can be expressed by
Equation (1).

Fout = Conv(Fo + M(Fo) + M(M(Fo)) + M(M(M(Fo)))+A(Fo)+A(A(Fo))+A(A(A(Fo)))) (1)
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where Fo denotes the result of the first Conv output, Fo = “Conv”(Fin); the symbol M()
represents the largest pooling operation when using a 5 × 5 pooling kernel size; and the
average pooling operation with a 5 × 5 pooling kernel size is indicated by the symbol A().
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Figure 2. Diagram of the H-SPPF module structure (The H-SPPF module, based on the SPPF module,
integrates three average pooling operations of different sizes to further enhance the ability to extract
network context information. Through this method, richer global features and local features can be
obtained that improve the network’s ability to pay attention to small target features.).

The H-SPPF module improves the network’s capacity to gather global and local features
and allows it to obtain more contextual information by combining the maximum pooling
layer and the average pooling layer. This further increases the network model’s accuracy.

3.4. Fusion Attention Mechanism

In order to enhance the precision of road traffic sign object detection and identification,
this research presents the SE attention mechanism within the YOLOv5 base network [31].

Figure 3 displays the SE attention mechanism’s algorithm structure. To obtain the
feature map U, the input feature map X is first subjected to a convolution operation. The
feature map comes next. Equation (2) illustrates how U is put through a global average
pooling operation to provide the statistical data for every channel in the feature map.

zc = Fsq(uc) =
1

H × W ∑H
i=1 ∑W

j=1 uc(i, j) (2)

where Fsq represents the squeezing operation and uc is the feature map obtained after
convolution. It is further supplied into the excitation operation for the result z_c contained
operation. The nonlinear activation functions and two completely connected layers make
up the majority of the excitation operation, which are ReLU and Sigmoid, respectively, and
the formula is shown in Equation (3).

s = Fex(z, ω) = σ(ω2δ(ω1z)) (3)

where Fex represents the excitation operation, δ represents the activation function of ReLU, σ
represents the activation function of Sigmoid, and ω1 and ω2 are two linear transformations.
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The establishment of inter-channel correlation can be accomplished by the excitation
operation, and the normalized weight information vectors of different channels, denoted
by s, are obtained. Finally, the relevant channel of the feature map is multiplied by the
created weight feature vector s. U to give the feature map weights U to obtain the feature
map that will be used as the final output to improve the identified object’s features.
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In this paper, as seen in Figure 3a,b, which depict the structures of the SEBottleNeck
and C3SE modules, respectively, SE is fused into the C3 module to produce the C3SE mod-
ule. Then, the SEs are fused into different positions of the network model for experimental
comparison to obtain the optimal adding position, bolster the network model’s capacity to
extract objects from road traffic signs, and raise the items’ detection precision.

The paper’s enhanced network model’s structural diagram, as shown in Figure 4:
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4. Experiments and Discussion
4.1. Datasets

The TT100K dataset includes more than 100 traffic sign categories, but similar tunnel
signs, attention to livestock, attention to falling rocks, and other traffic signs rarely appear
in the urban traffic environment; so, this paper selects the 72 categories of traffic signs
that are more commonly found in the urban traffic environment for identification, which
is mainly divided into the three major categories of prohibited signs, warning signs, and
directional signs, and are further subdivided into the above traffic signs. For the traffic signs
mentioned above, the groups are further separated, as Figure 5 illustrates. The baseline
dataset in this work is the newly obtained dataset that underwent augmentation based on
the TT100K dataset. The augmented dataset is separated into training, validation, and test
sets with a division ratio of 8:1:1.
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4.2. Experimental Parameter Settings and Experimental Methods

In this research, we validate the efficacy of the network using ablation experiments
and comparison tests on a TT100K dataset following dataset augmentation. The pertinent
model parameters during training are displayed in Table 2.

Table 2. Training parameter setting.

Parameter Name Corresponding Value(s)

Image-size 640
batch-size 8

epochs 150
Weight-decay 0.0005

In order to assess the efficacy of the object detection model, this study chooses FPS
(Frames Per Second) as the detection rate measure, which is the number of frames the
model can detect in a second; precision rate P; recall rate R; and mean average precision
mAP@0.5 and mAP@0.5:0.95 as the model accuracy measures. Figure 6 illustrates how the
test results are divided by the confusion matrix.
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4.3. Analysis of Ablation Experiments

In this section, an ablation study will be conducted for each module proposed to be
improved in this paper, and the effectiveness of the improved modules will be verified by
adding and removing the corresponding modules during model training and comparing
the training results.

4.3.1. Analysis of the Effectiveness of Dataset Enhancement and Expansion

Table 3 displays the experimental comparison results using the dataset expansion
and enhancement method of this paper. From these results, it can be concluded that
the precision rate, recall rate, and average precision of the obtained experiments have
greatly improved when compared to the original dataset. This indicates the necessity and
effectiveness of the dataset expansion and enhancement in this paper. Following the dataset
expansion, because of the increase in the number of labels of each category, the number of
samples available for the learning of the network model is also increased.

Table 3. Experiments conducted before and after dataset augmentation and expansion are compared.

Datasets P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS (Hz)

Data amplification 66.24 54.11 60.12 47.32 106
After data amplification 90.01 83.68 87.88 71.53 100

4.3.2. Enhance the Multi-Scale Feature Fusion Module’s Efficacy Analysis

The experimental comparison of the model’s performance before and after the en-
hanced multi-scale feature fusion method is presented in Table 4. In Table 4, YOLOv5s
denotes the standard network model and YOLOv5s+ denotes the improved network model.
The enhanced multi-scale feature fusion module strengthens the semantic and spatial infor-
mation of traffic signs and enhances the model’s capacity to detect traffic signs, as shown by
Table 4’s improvements in the precision rate P, recall rate R, mAP@0.5, and mAP@0.5:0.95.
Furthermore, there is very little change in FPS between the network model before and after
the improvement; so, the detection rate is almost unaffected and can still maintain the same
detection rate as the standard network model.

Table 4. Experiments conducted before and after the multi-scale feature fusion module was improved
are compared.

Model P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS (Hz)

YOLOv5s 90.01 83.68 87.88 71.53 100
YOLOv5s+ 91.43 87.6 92.65 75.25 97

4.3.3. Improved Anchor Frame Clustering Algorithm Effectiveness Analysis

The experimental comparison findings with and without the clustering approach
suggested in this paper are displayed in Table 5. The clustering algorithm used before
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improvement is indicated by YOLOv5s+ in Table 5, whereas the clustering algorithm
suggested in this research is indicated by YOLOv5s+_K. From Table 5, it can be found
that using the improved clustering algorithm improves the overall detection performance.
Among them, the accuracy P is improved by about 1.2%, which shows the effectiveness
of the improved clustering algorithm. This is primarily because the upgraded K-means
clustering method can generate more appropriate initial candidate frames for traffic signs
based on the TT100K dataset, which allows the network model to extract road traffic sign
information more effectively.

Table 5. Comparison of experiments before and after improving the clustering algorithm.

Model P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS (Hz)

YOLOv5s+ 91.43 87.6 92.65 75.25 97
YOLOv5s+_K 92.71 87.72 92.95 75.32 97

4.3.4. H-SPPF Module Effectiveness Analysis

Table 6 displays the outcomes of the experimental comparison of model performance
before and after using the H-SPPF module. The usage of the SPPF module is shown in
Table 6 by YOLOv5s+_K, while the use of the H-SPPF module suggested in this study
is indicated by YOLOv5s+_K_HSPPF. As the table illustrates, after using the H-SPPF
module, the recall rate improved by 0.21% compared to that without the module, mAP@0.5
improved by 0.18%, and the remaining metrics have a minimal difference in performance
from that without the module, thus confirming that the H-SPPF module proposed in this
paper can improve the network’s capacity to gather both global and local features, further
improving the model’s detection performance.

Table 6. Experimental comparison before and after the addition of the H-SPPF module.

Model P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS (Hz)

YOLOv5s+ 92.71 87.72 92.95 75.32 97
YOLOv5s+_K 92.69 87.93 93.13 75.29 96

4.3.5. Evaluation of the Attention Mechanism Module’s Efficacy

To further verify the validity of the adding position of the attention mechanism as
well as the adding method, and to obtain the optimal adding result, this paper conducts
relevant experiments on the adding position of the SE attention mechanism.

Table 7 displays the comparison findings of the experiments. Among them, YOLOv5s+
_K_HSPPF represents the network model after the improvement described above; Y_C3SE_B,
Y_C3SE_N, and Y_C3SE_H symbolize the incorporation of the SE attention mechanism
into the backbone network’s final C3 module, the C3 module of the Neck part, and the C3
module ahead of the model’s detection header, respectively, based on the improvement in
the previous three subsections; and the fusion of the SE attention mechanism in the final
C3 module of the backbone network and the C3 module of the Neck portion is represented
by Y_SE_B_SE_N, respectively.

Table 7. Comparing the effects of adding the module for the attention mechanism at various locations.

Model Backbone Neck Head P (%) R (%) mAP@0.5 (%)

YOLOv5s+_K_HSPPF × × × 92.69 87.93 93.13
Y_C3SE_B

√
× × 91.75 88.19 92.39

Y_C3SE_N ×
√

× 92.53 87.52 92.18
Y_C3SE_H × ×

√
91.56 88.26 92.33

Y_SE_B_SE_N
√ √

× 91.72 91.77 93.88
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Indicating whether the attention mechanism module is fused in the appropriate model
portion or not, “×” and “

√
”, respectively, denote the state of the attention mechanism module.

Table 7 illustrates that the final fusion procedure yields the best outcomes, fusing
the SE attention mechanism in the backbone network and Neck part. Specifically, after
fusion in the backbone network, the Neck portion, and the C3 module prior to the detecting
head, the average accuracy drops rather than rises. In contrast, in this paper, the last C3
module of the backbone network and the C3 module of the neck part of the recall rate and
average accuracy obtained from the mAP@0.5 trials—91.77% and 93.88%, respectively—are
where the SE attention mechanism is fused (the table in black bold font reveals); both
metrics are improved over the model before adding the attention mechanism, by 3.84% and
0.75%, respectively.

Therefore, the ability of the model to recognize object features can be strengthened by
combining the SE attention mechanism in the Neck component and the backbone network,
respectively, utilizing the channel attention. This enhances the model’s ability to extract
the road traffic sign objects. Consequently, it demonstrates how the attention techniques
proposed in this research can be combined to further improve the model’s performance.

4.4. Comparative Analysis of Overall Experimental Results

In this section, the effectiveness of the improvement strategy of this paper will be
verified from the perspectives of both theoretical analysis and actual detection results. The
standard YOLOv5s model and the model YOLOv5s+_K_HSPPF_SE proposed in this paper
will be quantitatively and qualitatively analyzed.

On the augmented TT100K dataset, Table 8 presents the comparison findings between
the basic YOLOv5s model and the network model YOLOv5s+_K_HSPPF_SE suggested in
this paper. From the table, the following conclusions can be summarized: the precision,
recall, and average precision are all improved compared with the standard model, in which
the precision is improved by 1.71%, the recall is improved by 8.09%, mAP@0.5 improved
by 6.0%, and mAP@0.5:0.95 improved by 4.28%, which indicates that the improved model
according to the improvement strategy of this paper has a more substantial improvement
in the detection performance compared with the standard model, which also confirms
the progress and efficacy of the reform plan put forward in this work. When it comes to
real-time performance, there is very little difference between the enhanced model and the
standard model. The enhanced model maintains a high level of real-time performance while
making significant gains in detection performance, which allows it to meet the real-time
requirements of the research presented in this paper.

Table 8. Results of the standard model experiments and the improvement technique suggested in
this research are compared.

Model P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS (Hz)

YOLOv5s 90.01 83.68 87.88 71.53 100
YOLOv5s+_K_HSPPF_SE 91.72 91.77 93.88 75.81 99

Figure 7 shows the results of the mean average precision for each traffic sign category
obtained before and after the amplification of the dataset using the standard YOLOv5s
model, respectively. The cyan line represents the mean average precision value of each
category obtained on the unamplified dataset, and the red line represents the mean average
precision value of each category obtained on the post-amplified dataset.

When the dataset is not augmented, due to the uneven distribution of instances of each
category in the dataset, it leads to the traffic signs with a large number of category instances
obtaining a better mean average accuracy, while the traffic signs with a small number of
category instances have a lower mean average accuracy. The number of categories with
mAP@0.5 values below 0.5 is as high as 25, which has a significant impact on the model’s
detection accuracy.
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On the other hand, on the dataset obtained by using the dataset augmentation method
of this paper, each traffic sign’s category instances are distributed more evenly, which
results in greater mean average precision values for each category. There was only one
category with mAP@0.5 values lower than 0.5, demonstrating both the need for and the
efficacy of the augmentation strategy used in this work.

The results of the mean average precision value of detection in each category before
and after the model improvement on the enhanced dataset are compared in Figure 8. The
red folded line represents the mean average accuracy of the standard YOLOv5s model
in each category, and the blue folded line represents the mean average accuracy of the
YOLOv5s+_K_HSPPF_SE model in this paper in each category.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 17 
 

average accuracy of the remaining categories of traffic signs is higher than those obtained 
by the standard YOLOv5s model, which indicates that this article further verifies the effi-
cacy of the improvement technique in this paper by demonstrating a good comprehension 
of the conventional YOLOv5s network model, which can enhance the average accuracy of 
most traffic sign categories. 

 
Figure 8. Statistics of mean average precision results of each category before and after improvement. 

5. Discussion 
We tested the suggested approach on the TT100K dataset in the aforementioned stud-

ies. It attains an intersection over union (IoU) threshold of 0.5, an accuracy rate of 91.72%, 
a recall rate of 91.77%, a mean average precision(mAP) of 93.88%, and a mAP of 75.81% 
at a range of IoU thresholds from 0.5 to 0.95. In comparison to YOLOv5, which has 90.01% 
precision, 90.01% recall, 87.88% mean average precision (mAP) at 0.5 intersection over 
union (IoU) threshold, and 71.53% mAP for a range of IoU thresholds from 0.5 to 0.95, 
there is a significant increase. Figure 9 displays the incomplete visualization results of the 
suggested strategy in the intelligent transportation setting. 

We have shown the discrepancies between the results with a red circle in the detec-
tion results graphic. It is evident that the suggested approach performs better in tasks in-
volving the detection of small objects and significantly enhances small object detection. 

In each of the following sets of comparison graphs, the left column represents unde-
tected images of real road scenes, the middle column represents the results of detecting 
images using weights derived from the standard YOLOv5s network model trained on the 
augmented dataset, and the right column represents the results of detecting images using 
weights derived from the improved network model proposed in this paper trained on the 
augmented dataset. 

  

Figure 8. Statistics of mean average precision results of each category before and after improvement.

Figure 8 makes it clear that, for just five of the seventy-two traffic sign categories exam-
ined in this research, the mean average accuracy attained by the YOLOv5s+_K_HSPPF_SE
model is less than that of the regular YOLOv5s model, and the average accuracy of the
remaining categories of traffic signs is higher than those obtained by the standard YOLOv5s
model, which indicates that this article further verifies the efficacy of the improvement tech-
nique in this paper by demonstrating a good comprehension of the conventional YOLOv5s
network model, which can enhance the average accuracy of most traffic sign categories.



Appl. Sci. 2024, 14, 555 12 of 15

5. Discussion

We tested the suggested approach on the TT100K dataset in the aforementioned
studies. It attains an intersection over union (IoU) threshold of 0.5, an accuracy rate of
91.72%, a recall rate of 91.77%, a mean average precision(mAP) of 93.88%, and a mAP of
75.81% at a range of IoU thresholds from 0.5 to 0.95. In comparison to YOLOv5, which has
90.01% precision, 90.01% recall, 87.88% mean average precision (mAP) at 0.5 intersection
over union (IoU) threshold, and 71.53% mAP for a range of IoU thresholds from 0.5 to 0.95,
there is a significant increase. Figure 9 displays the incomplete visualization results of the
suggested strategy in the intelligent transportation setting.
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this paper trained on the augmented dataset are displayed in the right column.
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We have shown the discrepancies between the results with a red circle in the detection
results graphic. It is evident that the suggested approach performs better in tasks involving
the detection of small objects and significantly enhances small object detection.

In each of the following sets of comparison graphs, the left column represents unde-
tected images of real road scenes, the middle column represents the results of detecting
images using weights derived from the standard YOLOv5s network model trained on the
augmented dataset, and the right column represents the results of detecting images using
weights derived from the improved network model proposed in this paper trained on the
augmented dataset.

6. Conclusions

The proposed improved model’s detection skills were thoroughly assessed in this
study in comparison to the baseline YOLOv5s model. Extensive experiments were carried
out using real road scenes and diverse traffic sign scenarios, demonstrating the effectiveness
of the enhanced model.

The outcomes demonstrate how well the upgraded network model detected small
items. The introduced enhancements significantly improved the accuracy of detecting
small traffic signs, as shown in Figure 10. Additionally, the proposed model outperformed
the standard YOLOv5s model under challenging conditions such as dim lighting and
interference from surrounding advertisements by accurately identifying traffic signs and
exhibiting robustness against interference.
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Moreover, the expanded dataset helped the model become more universal. The pro-
posed model successfully detected small traffic signs like pl80, indicating the effectiveness
of the improvements made for detecting small objects. This trend continued in subse-
quent experiments, with the model accurately recognizing various traffic signs, even in
complex scenarios.

Moreover, the improved model showcased its robustness and superior detection per-
formance in various situations. It accurately identified traffic signs during turns, detected
distant and smaller objects, and avoided misclassifications even in the presence of interfer-
ence. The model’s ability to accurately detect tilted traffic signs and smaller distant signs



Appl. Sci. 2024, 14, 555 14 of 15

was especially impressive, demonstrating its advanced characteristics that outperformed
those of the YOLOv5s model.

In summary, the outcomes of comprehensive tests confirm that the suggested enhance-
ments are successful. Not only does the improved model greatly increase the accuracy
of small item identification, but it also demonstrates exceptional resilience in a range of
difficult situations. This research builds a solid basis for future developments in practical
applications, like autonomous driving and intelligent transportation systems, and adds
significant insights to the field of traffic sign identification algorithms.
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