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Abstract: Cloud computing has gained widespread recognition for facilitating myriad online services
and applications. However, the current stages of commercial cloud computing employ a moder-
ate design, wherein computational resources like storage and servers are housed in a few sizable
worldwide data centers. System reliability, efficiency, and low latency are all goals of virtual machine
(VM) placement. Load balancing has emerged as a crucial challenge for attaining energy efficiency in
a fictitious grid computing architecture where a variety of users’ workloads are distributed across
several virtual machines. We propose a more effective optimization technique known as the twin
fold moth flame algorithm. This algorithm considers multiple constraints, including computation
time, stability, and placement cost. The proposed model’s effectiveness will be evaluated based on
relocation costs, reaction times, and stability assessments. The most significant gains of the presented
work are 4.24%, 9.73%, 11.10%, 28.83%, 7.63%, and 10.62% for 20 count data of nodes for artificial bee
colony–bat algorithm, ant colony optimization, crow search algorithm, krill herd, whale optimization
genetic algorithm, and improved Lévy-based whale optimization algorithm, respectively.

Keywords: virtualization; virtual machine deployment; cloud-based solutions; placement algorithm;
load balancing

1. Introduction

Cloud-based solution technologies have seen extraordinary development over the
past few years. Cloud computing has become a popular model for providing support for
a diverse set of web-based applications and businesses [1–3]. For instance, the medical
industry leverages cloud computing solutions to securely store and retrieve data. It does
this to improve patient care through the use of virtual healthcare applications by monitoring
and identifying critical diseases such as cancer and immunological disorders [4,5].

The inefficient allocation of resources in cloud-based infrastructure poses a significant
impediment. Cloud resource management stands as a forefront domain of study today.
Because it does not rely on previous information, the robust module is superior to the
stationary module in terms of both its adaptability and its effectiveness. In cloud computing,
load balancing is seen as a multidimensional challenge of resource allocation that requires
optimal utilization of resources without compromising the quality of service offered to
customers [6–10]. This requires optimal utilization of resources to fulfill the demands of
the problem at hand.

In the complex world of cloud computing, placing virtual machines (VMs) is a crucial
task. It involves purposefully assigning virtual computers to physical servers on cloud
platforms. The process of determining where virtual machines should be placed is made
more difficult by the dynamic nature of workloads and shifting resources. Moreover, load

Appl. Sci. 2024, 14, 540. https://doi.org/10.3390/app14020540 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020540
https://doi.org/10.3390/app14020540
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-5623-8981
https://orcid.org/0000-0001-7284-5211
https://doi.org/10.3390/app14020540
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020540?type=check_update&version=2


Appl. Sci. 2024, 14, 540 2 of 18

balancing turns into a crucial component that carefully distributes network traffic and
computational workloads among several servers to maximize resource efficiency and avoid
overloading any one node. The variety of hardware configurations, the unpredictable
nature of workloads, and the critical requirement for reliability are a few of the issues that
come with these operations [7]. It can be difficult to forecast and successfully manage
resource requirements when dealing with dynamic workloads, which change in response
to user demands and application requirements. Decisions about load distribution are
made more difficult in heterogeneous cloud environments, which are frequently made
up of various hardware and software configurations. Effective load balancing is essential
for preserving resource equilibrium, preventing server under- or over utilization, and
guaranteeing cost-effectiveness. Moreover, it is necessary for scalability because it enables
horizontal scaling, which makes it simple to manage varying workloads. Achieving this
equilibrium is essential for maximizing the use of resources, scalability, and fault tolerance,
which in turn leads to improved user experience and energy efficiency. By addressing
these issues in-depth, the suggested improvements to the simulation model for protected
virtual machine deployment aim to establish a standard for attaining peak performance
and economy in cloud-based applications.

Load-balancing algorithms typically optimize the selection of prospective target hosts
throughout algorithm periods. Load balancing follows host selection. The immediate
effect can maximize resource consumption, but it does not ensure task execution per-
formance [7]. Heuristics methods, such as artificial bee colony (ABC) and ant colony
optimization (ACO) [11] readily acknowledge this reality. The reduction of energy expendi-
ture in VM migration requires promising technologies. Although such methods may yield
rapid outcomes in terms of resource utilization, they fail to ensure the utmost efficiency
in work completion pace. Algorithm-based approaches acknowledge and compensate
for this problem to a great extent by employing well-established techniques like ABC
and ACO. Despite this, the situation calls for certain solutions that are both practical and
environmentally friendly to guarantee effective energy management during the placement
of VM [12–16].

To optimize cloud computing load balancing, our proposed study presents the twin
fold moth flame algorithm, which takes several constraints into account, and compares
the suggested model to other algorithms. The twin fold moth flame (TFM) algorithm
as a novel optimization technique for handling the complexity of virtual machine (VM)
placement and load balancing in the ever-evolving cloud computing environment, where
effective load balancing remains crucial. The TFM algorithm provides a fresh method of
optimization and is modeled after the inventive characteristics of flames and moths. TFM
uses a two-pronged strategy that combines the accuracy of confluence similar to flame
management with the adventurous options reminiscent of moth flight patterns, all based
on the notions of biological imitation. Because of this special conjunction, TFM is able
to negotiate the complex field of virtual machine placement, taking stability, placement
cost, and computation time into account. TFM intends to transform cloud computing
effectiveness by adding aspects to load-balancing analysis. This work provides an in-depth
evaluation that compares the suggested TFM algorithm with state-of-the-art benchmark
methods, assessing its edge in terms of stability, placement cost, and computation time.
Our work has made substantial improvements to the field, including the development of
an effective load-balancing infrastructure, the TFM algorithm, and the thorough evaluation
used to validate its benefits.

The contributions of our work can be summarized in the following:

• Algorithm development: The principal contribution of this research is the develop-
ment of the twin fold moth flame (TFM) algorithm, a novel optimization technique
designed to address the challenges related to load balancing and virtual machine
(VM) placement in cloud computing environments. This algorithm incorporates spe-
cial features that are influenced by both flames and moths. It uses a two-pronged
approach that combines flame control precision with dynamic exploration similar



Appl. Sci. 2024, 14, 540 3 of 18

to moth flight patterns. This creative method is a significant development in cloud
computing load-balancing techniques.

• A systematic method for load balancing: The TFM algorithm presents a compre-
hensive method of load balancing by taking into account several factors, such as
computation time, placement cost, and stability. In contrast to traditional approaches,
TFM integrates these crucial aspects to navigate the complex VM placement terrain,
guaranteeing a more complete and efficient load-balancing solution for cloud comput-
ing settings.

• Biological ingenious optimization: By using biological imitation principles—more
specifically, mimicking the traits of flames and moths—this research advances the
area by developing an algorithm that successfully negotiates the challenges associated
with virtual machine deployment. This novel methodology offers a new viewpoint
on optimization techniques by taking inspiration from nature to meet cloud comput-
ing difficulties.

• Extensive comparative analysis: This research offers a comprehensive analysis that
pits the suggested TFM algorithm against the most advanced benchmark techniques.
This evaluation takes into account important parameters including calculation time,
placement cost, and stability, providing a thorough examination that validates the
algorithm’s efficacy and highlights its advantage over current approaches. The thor-
ough analysis performed in this study highlights the useful advantages of the TFM
algorithm in optimizing cloud computing settings and advances our knowledge of
load-balancing techniques.

This paper presents an advanced simulation approach to address the ongoing problem
of optimizing the deployment of virtual machines (VMs) in the ever-changing cloud
computing ecosystem. The enhanced methodology described in this paper attempts to
address the complicated issues related to virtual machine deployment, redefining standards
for efficiency and dependability in cloud-based environments. This study advances the
area by proposing a novel simulation methodology that improves and protects virtual
machine (VM) deployment in cloud-based systems. This study aims to set new benchmarks
for reliability and efficiency in the rapidly evolving field of cloud computing.

The paper is organized as follows in the following sections. The details of cloud
computing are covered in detail in Section 2, with particular attention to load balancing,
energy efficiency, and virtual machine (VM) placement. Subsequently, Section 3 offers
a thorough exposition of the design ideas and aims that dictate the suggested virtual
machine placement technique, with a focus on load balancing, system dependability, and
minimal latency. The paper presents a multifaceted issue formulation in Section 4 that
includes parameters like placement cost, stability, and calculation time for evaluating
virtual machines. The twin fold moth flame algorithm and its multifunctional optimization
capabilities designed for effective load balancing are the main topics of Section 5’s in-depth
investigation of the suggested model. The focus of Section 6 is on the investigation of the
twin fold moth flame’s three stages. Following this, a comparative analysis is presented
to assess the suggested model in relation to current methodologies. In contrast, Section 7
presents the findings and recommendations for further investigation.

2. Materials and Methods
2.1. Related Work

Optimizing dynamic fault-tolerant virtual machine placement in 2023 was a significant
step toward improving the reliability of cloud data center architecture, as noted in [17].
The authors used an advanced technique for virtual network resuscitation that maximizes
virtual machine selection for traffic routing analysis by using integer programming. As
a result, the cloud data center virtual machines’ failure recovery method was enhanced.
A group selection-based virtual machine placement approach was introduced in 2023
as a key contribution, as reported in [18]. This strategy aimed to improve migration
efficiency by taking into account many parameters, including voyage cost, communication
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overhead, and virtual heat. This strategy was successful in lowering the cost of relocation
and transmission. But in 2021, a VM travel approach called the enhanced bee colony
approach [19] was developed to strengthen cloud security and thwart intrusions. Statistical
security analysis was made possible by this method, which used the bee colony approach
to simulate VM operation. Although these contributions show promise for strengthening
security, increasing migration efficiency, and optimizing fault-tolerant virtual machine
placement, there may be some disadvantages, such as computational overhead, difficulties
implementing complex techniques in practice, and the requirement for thorough validation
in real-world cloud environments.

According to [19], an entirely novel IP Sec routing technique for live VM transfers
across infrastructure sites surfaced in 2021. The implementation of this technique created a
complex router path that was intentionally hidden to prevent possible man-in-the-middle
attacks. Interestingly, an onion routing strategy was used to improve virtual machine
transfer privacy, demonstrating a strong security layer. A configurable and energy-efficient
live virtual machine trip approach was introduced by [20] in 2022, with an emphasis on
reducing idle machine power consumption to conserve energy. The framework provides a
comprehensive solution by incorporating many modules, including resource monitoring,
distribution, task allocation, analysis of optimization techniques, remote voyage agent,
voyage scheduler, and energy regulator. Nonetheless, researchers used flexible clustering
strategies in 2020 [21], describing the relocation and deployment of virtual machines
through probabilistic incentive networks. One advanced method is dynamic evaluation that
makes use of optimization incentive functions. Although these contributions show promise
for improving energy economy, security, and privacy during live virtual machine transfers,
there may be certain disadvantages due to implementation complexity, resource constraints,
and the requirement for extensive validation in various cloud computing settings.

A security evaluation method based on an accessibility model was presented by [22]
in 2022 for virtualized infrastructures with VM migration, namely for virtual machine
manager (VMM) recovery. Establishing the best restoration strategy while taking avail-
ability, threat, and stability into account was the main goal. The paper emphasized the
difficult balancing act between mobility and potential security risks inherent in VM migra-
tion for resurrection, highlighting vulnerabilities like as man-in-the-middle and denial of
service (DOS) assaults. Meanwhile, in 2021, ref. [23] presented a multifunctional, encrypted
virtual machine deployment approach that combined a non dominated sorting genetic
algorithm with a whale optimization genetic algorithm. This novel approach minimizes
inter-communication latency and facilitates energy-efficient resource allocation among vir-
tual machines (VMs), with a focus on secure and rapid user application deployment. Some
potential drawbacks may include the need for extensive testing in real-world scenarios,
computational overhead associated with advanced algorithms, and the practical implemen-
tation challenges in various cloud computing environments, although these contributions
demonstrate strengths in security evaluation, restoration planning, and encrypted virtual
machine deployment.

2.2. Limitations and Establishing Grounds for a New Proposal

Addressing these restrictions and proposing novel solutions will increase depend-
ability, scalability, real-time responsiveness, and security in dynamic fault tolerant VM
placement and migration in cloud data centers.

2.2.1. Key Limitations

◆ Scalability issues: The scalability issues surrounding virtual machine deployment
and migration in expansive cloud data centers are not covered in the current research.
Real-world cloud infrastructures must be scalable, yet the boundaries of present
scaling are rarely investigated.

◆ Restricted security scope: Although certain studies in the same field discuss security
concerns such as denial of service (DoS) and man-in-the-middle attacks, their coverage



Appl. Sci. 2024, 14, 540 5 of 18

is still quite narrow. Emerging risks could arise from security flaws in the migration
and installation of virtual machines.

◆ Inadequate research on suggested techniques: Suggested procedures are not fre-
quently the subject of thorough examinations in related papers. This makes it difficult
to conduct a thorough evaluation of solutions because there are insufficient exper-
imental setups, comprehensive performance metrics, and comparisons with other
cutting-edge techniques.

2.2.2. Establishing Grounds for a New Proposal

• Scalability: In large-scale cloud data centers, VM deployment and migration provide
scalability difficulties that should be given top priority in the suggested solution.
Sustained performance requires strategies to effectively manage expanding workloads
and a growing number of virtual machines.

• Instantaneous adaptability: The new approach should concentrate on latency and
reaction time because it acknowledges the significance of time-sensitive applications.
Meeting the needs of real-time applications requires ensuring secure virtual machine
installation and migration while minimizing the impact on application performance.

• Integrated stability procedure: The new plan must recognize and address a wide
range of security risks and vulnerabilities to preserve the integrity, confidentiality, and
availability of virtual machines and cloud infrastructure. It is important to incorporate
a comprehensive security approach into the VM deployment and migration procedures
to protect against new threats.

3. A Compact Architectural Description of the Proposed VM Placement Approach

The presented virtual machine placement technique presents a small-scale, yet all-
inclusive architectural framework intended to maximize virtual machine (VM) distribution
in cloud computing settings. The architecture’s primary goal is to improve availability
and performance by giving priority to effective load balancing. The system is carefully
engineered to handle the resource consumption issue by dynamically reassigning over-
worked virtual machines (VMs) to underutilized counterparts, which creates equilibrium
in the distribution of the total load. The architectural model leverages knowledge from
almost 10 years of intensive research in the field to stress the smooth coordination of virtual
machine placement in distributed systems. Sophisticated algorithms and mechanisms are
contained in this small design, which also includes real-time monitoring and analysis to
help with decision-making on virtual machine transfer. The confidentiality and integrity of
the VM placement procedure are guaranteed by the smooth integration of security mea-
sures. The suggested architecture is a comprehensive and forward-thinking solution that
embodies the changing requirements of cloud computing environments and positions itself
as a strong way to deal with the difficulties associated with virtual machine deployment in
a constantly changing and developing technological environment.

3.1. Proposed Framework: Task Constraints and Cloud Infrastructure Prototype

The proposed workflow for securing VM voyages on effective load balancing is
explained in Figure 1.

Table 1 summarizes research on cloud computing VM migration. The table lists the
pros and cons of each technique or algorithm. These details highlight the vast range of
cloud VM migration improvements offered. VM migration solutions address effectiveness,
dependability, cost savings, resource use, and performance. By summarizing each technique
and highlighting its pros and downsides, the specifics aim to illuminate VM migration’s
considerations and trade-offs. Cloud computing researchers and professionals can utilize
this knowledge to understand present tactics, investigate their applications, and develop
new VM migration methods.
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Table 1. Listing the foreground and issues of present VM voyage strategies.

Citation Blueprint Foreground Issues

[19] DFTM VM migration improves cloud
livability quickly and easily.

As VM consumption rises, so
does resource waste.

[20] VMMAGS
To increase system reliability
and cut communication and
migration expenses.

The migration was risky due to
varying response time.

[21] ABC-BA
Low energy consumption
and failure rate reduce VM
migration failures.

Network traffic overload
necessitates the effective use of
cloud resources.

[22] ACO Energy-efficient and fast
migration.

To speed up migration, shrink
the VM.

[23] SPN Low mean service time is
associated with high throughput.

Low accessibility and low work
service rate necessitates lowering
power usage.

[24] HMGOWM
Saving the CPU reduces the high
access probability of virtual
machine migration.

Avoid the prohibited overlap at
all costs.

[25] LVMM
Can increase the effectiveness
of migrations and lower the cost
of migrations.

Hefty and additional expenses.

[26] SnapMig
By deleting unnecessary data
blocks, migration times
are reduced.

Hardware expenditures reduce
IO and migration performance.

[27] CSA Conserve energy and resources. Time draining.

[28] KH Boost data hub’s energy efficiency. Convergence may take time.

[29] WOGA Power, resource, and
communication costs.

No VM mapping to server
clusters.

[26] ILWOGA Optimum bandwidth reduces the
number of active PMs.

Dynamic relocation and
multipurpose VM allocation
must be considered.

3.2. Resource Pooling

Each server in a cloud platform resource pool is denoted by Si, where i = 1, 2,. . ., n.
Under the initial state k, Si = VMi1,. . ., VMik, and the server acknowledges and transmits
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virtual machines at each endpoint. The i-th virtual machine is VMi. Servers (Si) are
equipped with disk storage, computing resources, and networking. Dynamic host selection
for VM allocation in cloud environments is difficult. Every kind of management has a
specific QoS requirement, expressed as Ti,i = 1, 2, 3, . . ., n in the server’s request for services.
It should be noted that administration requests may have varying arrival, ripening tenure,
and other conditions. The cloud platform user assigns Ti,i = 1, 2, 3,. . ., n to VMs. Task
scheduling is determined by VM function execution and VM resource availability. Every
task in the interval Ti,i = 1, 2, 3,. . ., n has three attributes: Ti = {CTU, Stab, CoP}. The three
critical parameters for effective load balancing throughout VM placement in this context
are computation time utilization (CTU), stability (Stab), and placement cost (CoP). This
optimization is addressed using a proposed technique.

4. Multipurpose Problem Description and Evaluation for Quantification of
Virtual Machine

The preliminary goal of this synopsis is to minimize the three-fold multipurpose
problem, which is described statistically in Equation (1).

obj = min{CTU, Stab, CoP} (1)

4.1. Computation Time Utilization

CTU, the total amount of time a computational task takes to execute a set of activities,
is commonly referred to as CTU utilization [23]. Virtual machines are also associated with
the resources of the actual server when a client requests a cloud-based commodity. These
virtual machines are configured to accommodate the host’s computational needs so that the
steps involved should be immediately achievable. It is calculated considering the objectives
specified in Equation (2).

UCTU(tasks) = ∑ CountCTU
(
Tq+, . . . + Tn

)
(2)

4.2. Stability

For efficient and safe load balancing, this VM placement must also be theft-proof. The
stability of VM (X(i)) is calculated by comparing the PM and the workload. The probability
of risks involved (Prisk) model is used to conduct this analysis. The syntax can be followed
using Algorithm 1.

Algorithm 1: Risk Propensity Based on Stability

for i = 1:length(X)
if X(i) <= 0

Prisk = 0;
else if X(i) > 0 & X(i) <= 1

Prisk = 1 − exp((−1/2) × X(i));
else if X(i) > 1 & X(i) <= 2

Prisk = 1 − exp((−3/2) × X(i));
else

Prisk = 1;
end

Prisk(i) = Prisk;
end
Stability = mean(Prisk);

4.3. Placement Cost (CoP)

Another crucial indicator for evaluating task handling is the CoP. The CoP can be
performed by continually implementing relocations, which are associated with incentive
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potential. It calculates the total expense of the virtual machine changing tasks over time. A
mathematical definition of CoP is given in Equation (3).

CoP =
n

∑
Ti=1

CoM(Ti;i = 1, 2, . . . , n) (3)

5. Virtual Machine Placement Optimization using Solution Embeddings
5.1. Solution Embeddings

The process of solution embedding is depicted in Figure 2. The allocation of blocks for
comprehensive tasks, denoted as “Bin; i = 1, . . ., N”, is twice the multiple of the chromosomal
length. Each unit comprises two components: the physical machine responsible for task
completion and the virtual machine identification assigned by the PM to receive the task
(VMid). The size of the block may vary for each individual job.
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As an illustration, let us consider a scenario in which the count of blocks amounts
to 44, resulting in a chromosome length of 88. Consequently, the initial 44 chromosomes
are occupied by the physical machine, whereas the remaining ones are allocated for the
virtual machine.

5.2. The Proposed Model

The moth is lavish and resembles a group of butterflies [17]. Because the moon is
distant, transversal orientation usually aligns the moth and moves linearly. The methods
employed in the proposed TFM are shown below:

Stage 1: The general population of the moth Mothm and the Flamew are led off. Here,
Mothm is the mth moth of wth flames. The general census of flames is Countflames, and
q signifies the conventional iteration census. Moreover, random values ran1 and ran2 are
also initialized.

Fitness function determines the function for all moths, according to Equation (1).
Stage 2: When q <= Countflames

(a) If ran1 < 0.5

The conventional moth flame optimization technique is used to modify both the
moth’s position and flame. The following section elaborates on the actions undertaken:

Equation (4) presents a mathematical formulation of the procedure for transverse align-
ment for the positioning revamp of the moth with regard to flame. Whereas Equation (5)
symbolizes the mathematical representation of the logarithmic spiraling locks of the search-
ing agent.

Mothm = S(Mothm, Flamew) (4)

S(Mothm, Flamew) = Rmebt.cos(2πt) = Flamew (5)

For the wth with the renown of the mth moth, Rm refers to the shape of the logarithmic
spirals, which is quantitatively presented in Equation (6). Furthermore, the number of
flames over the length of t iterations can be calculated using Equation (7).

Rm =|Flamew − Mothm| (6)
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Count f lames = round(N − q × N − 1/T) (7)

Thus, Fn and In stand for the total number of flames and repetitions, correspondingly.

(b) If ran > 0.5

Using the flame distance and moth Equations (8) and (9), calculate the distance.

dist = neatps(Flame)− mothps (8)

mothps = dist + neatps(Flame) (9)

Stage 3: Moreover, the moment q > Countflames

(a) If ran < 0.5

The conventional MFO method, which is theoretically presented in Equations (7)–(10),
updates the position of the moth and the flame.

(b) In case ran 2 > 0.5

The proposed approach changes the location of the iteration of the algorithm (moth
and flame).

Use Equations (10) and (11) to calculate the separation between the flame dis and the
moth, correspondingly.

dist = neatps(Flame)− sort(pop) (10)

mothps = dist + neatps(Flame) (11)

Algorithm 2 displays the pseudocode of the suggested model.

Algorithm 2: Pseudocode of Generalized Architecture

The initialization population pop of the Flamew and the Mothm is calculated.
Initialize Countflames, q, ran 1, ran 2.
Evaluate fitness input according to Equation (1).
for (qmax > q)

If the termination requirement is not satisfied:
if 1 (q <= Countflames)
if 2 (ran 1 < 0.5)

Equation (4) implements transverse alignment for flame placement updating with respect to moth.
Equation (5) is used to modify the search agent’s logarithmic spiraling location.
Equation (7) can be used to compute the number of flames.

else 2
Using Equations (8) and (9) to determine the distance between the flame and the moth:

end if 2
else if 1 (q > Countflames)

if 3 (ran 2 < 0.5)
Equation (4) implements the transverse alignment method to update the moth’s flame position.
Equation (5) is used to modify the search agent’s logarithmic spiraling location.
Equation (7) can be used to compute the number of flames.

else 3
Using Equations (10) and (11) to determine the distance between the flame and the moth:

end if 3
end if 1

end
Terminate

5.3. Design of Databases

The physical machine’s data for the virtual machine placement load-balancing database
comes from https://www.kaggle.com/datasets/discdiver/clouds/code (accessed on 6
November 2022). The database creates virtual machine data. The variables in Table 2 are

https://www.kaggle.com/datasets/discdiver/clouds/code


Appl. Sci. 2024, 14, 540 10 of 18

in the PM’s database. VM databases are built using actual machine datasets. The PM’s
attributes are also included. The following is a discussion of the database design process
for all constraints and limitations:

Table 2. Database restrictions.

In Iterations Data

1 Census of PM Inaugural Findings
2 Tasks involved Articulated Findings
3 Fence tenure Articulated Findings
4 Cost of PM Articulated Findings
5 Stability Articulated Findings
6 Count of computations Articulated Findings

Let Ti;i (1, 2, 3 ,.., n) represent the PM tasks to be completed. The block sizes for
tasks 1–4 are 5, 10, and 12, respectively. The task is given to the PM, which breaks it down
and schedules each work in a different virtual machine. Each of the 13 PMs in use here is
believed to have 10 virtual machines. There are 130 virtual machines in total to complete
the duties.

5.4. Time and Space Complexities of the Proposed Model

Time complexity: The algorithm’s time complexity is determined by the quantity (q)
of iterations, as well as the size of the moth and flame populations. The moths and flames
are subject to calculations and modifications at each level. The complexity of the equations
used to calculate distances and update positions will determine the precise time complexity.
The twin fold moth flame algorithm’s overall time complexity can be roughly calculated as
O(q), where q is the total number of iterations and assumes that each stage’s calculations
can be thought of as constant time operations.

Space complexity: The memory needed to hold the population of moths and flames,
as well as any other variables used for computations and updates, determines how much
space the program takes up. The size of the issue, including the quantity of moths and
flames, will also affect the challenge of space. The space complexity can be approximated as
O(N), where N is the total number of moths and flames in the population, and it is assumed
that the storage needs for each moth and flame are constant.

6. Observations
6.1. Simulation Methodology

A virtualized placement strategy that was adapted for effective load handling was
subjected to extensive testing and MATLAB analysis. An extensive evaluation procedure
was applied to the suggested model, including important parameters such as placement
cost, stability analysis, and CTU use. The effectiveness of the methodology was evaluated
using careful comparisons with prior research findings, offering a strong foundation for
evaluating its performance in the field of virtualized placement. MATLAB analysis and
testing not only confirmed the validity of the suggested technique but also provided
important insights into how well it might optimize load handling, bolstering its potential
as a cutting-edge solution in the dynamic field of virtualized settings.

Modifications to virtual machines (VMs) and blocks are part of the assessment. Block
characteristics are defined as follows: [20, 25, 30, 35, 40] is the fluctuation range that
represents the variability in block characteristics. Meanwhile, for physical machines (PMs),
the range of virtual machines (VMs) is [10–50], indicating the variation in virtual machine
characteristics linked to each PM. Assignments 1–4 include the replacement of blocks
from the available block assortment, implying a dynamic reorganization of components
inside the system. This evaluation covers a wide range of adjustments, highlighting the
flexibility and diversity inherent in the blocks and virtual machines (VMs), establishing the
groundwork for an environment that is both responsive and flexible.
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According to the examined database:

• Type 1 are [4 4 6 7] 20 total blocks = [T4 T1 T3 T2]
• Type 2 includes [5 6 6 8] 25 total blocks = [T4 T3 T1 T2]
• Type 3 includes [6 7 7 10] 30 total blocks = [T1 T3 T4 T2]
• Type 4 includes [7 8 9 11] 35 total blocks = [T1 T3 T4 T2]
• Type 5 includes [5 10 10 15] 40 total blocks = [T1 T2 T3 T4]

6.2. Assessment of CTU Usage

Central processing unit (CPU) utilization, sometimes known as CTU utilization, is the
term used to describe the total amount of processing time needed to run a program in cloud
computing. Applications that run in the cloud usually require virtual machines (VMs)
located in server zones. Once assigned, these virtual machines (VMs) can accomplish a
wide range of tasks that correspond with the host’s processing needs. Minimizing CTU
utilization is necessary for efficient resource use in cloud environments because it ensures
that computing resources are used to their fullest potential. Therefore, reducing CTU
consumption is essential to improving overall resource efficiency and making the cloud
infrastructure capable of supporting a wide variety of workloads and operations.

In Figure 3, a graphical representation of the CTU usage between the proposed work
and the previous studies is exhibited. As shown in Table 3, for 10 VMs: TF-MFA perpetrates
a CTU utilization of 886.2, which is much lower than ILWOA (5692.2), WOGA (4712.1),
KH (1280.8), CSA (1253.9), ACO (1323.2), and ABC + BA (935.61). This suggests that
TF-MFA surpasses the other algorithms in the context of resource utilization for this VM
count. For 20 VMs: TF-MFA demonstrates a CTU utilization of 1228.8, which is on descend-
ing analogized to ILWOA (5071.9), WOGA (3290.9), KH (1790), CSA (1202.9), ACO (1535.9),
and ABC + BA (1679.2). TF-MFA exemplifies better resource utilization efficiency for
this VM count, as well. For 30 VMs: TF-MFA attains the lowest CTU utilization value
of 963.14 compared with ILWOA (2212.3), WOGA (3215.1), KH (2665.1), CSA (1253.9),
ACO (1094.3), and ABC + BA (1597.1). This reveals that TF-MFA provides the most efficient
utilization of computational resources for 30 VMs. For 40 VMs and 50 VMs: TF-MFA
invariably harbors lower CTU utilization values compared with ILWOA, WOGA, KH, CSA,
ACO, and ABC + BA, although the differences vary for each algorithm.

Table 3. Portrays CTU allocation for various VMs in proposed and existing models.

No. of VM TF-MFA ILWOA WOGA KH CSA ACO ABC + BA

10 886.2 5692.2 4712.1 1280.8 1253.9 1323.2 935.61
20 1228.8 5071.9 3290.9 1790 1202.9 1535.9 1679.2
30 963.14 2212.3 3215.1 2665.1 1253.9 1094.3 1597.1
40 1135 3121.6 1858.5 1675.3 1501.7 1614.7 1598.9
50 1389.7 5818.5 2418.1 2246.8 1139.7 1311.8 985.04

The comprehensive analysis clearly shows that the twin fold moth flame algorithm
(TF-MFA) model performs better than other algorithms in terms of central processing unit
(CTU) use, exhibiting greater efficiency at different counts of virtual machines. This vali-
dation highlights how well the TF-MFA model works to optimize resource allocation and
improve overall cloud computing environment virtual machine placement efficiency. The
findings support the model’s ability to achieve more efficient use of computing resources
and highlight its promise as a cutting-edge and practical approach to handling the difficul-
ties associated with placing virtual machines in a variety of dynamic computing settings.
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Figure 3. Compares CTU usage for proposed and current work when a PM distributes (a) VM = 10,
(b) VM = 20, (c) VM = 30, (d) VM = 40 virtual machines for load balancing. Each subfigure represents
a virtual machine distribution scenario with a full quantitative evaluation to improve adaptability.
Conversely, the figure shows the present work’s CTU consumption to benchmark the suggested
technique. The research covers the same virtual machine distribution spectrum, providing an
immediate and insightful comparability. CTU utilization, reaction times, and system throughput
are examined to understand CTU use patterns under different scenarios. These subfigures help
stakeholders optimize the use of resources and reliability by evaluating energy utilization, and
efficiency.

6.3. Assessment of Stability

The assessment presented in Figure 4, which is measured in Table 4, and the corre-
sponding stability factor values provide a thorough comparison of the advanced technique
(TF-MFA) with alternative models, particularly concerning stability influence. This analysis
is broken down into a detailed analysis of important stability metrics that show how the
TF-MFA model stacks up against other methods. In the context of the proposed evaluation,
this thorough assessment is essential for evaluating the TF-MFA model’s stability perfor-
mance and establishing its effectiveness relative to other models already in use. As such, it
provides insightful information in the field of stability optimization.

Table 4. Stability for various VMs assigned by a PM for the current and suggested models.

No. of VM TF-MFA ILWOA WOGA KH CSA ACO ABC + BA

10 0.22457 0.28106 0.50062 0.12212 0.11804 0.068857 0.088531
20 0.27208 0.18888 0.18888 0.13604 0.078694 0.082776 0.092612
30 0.2045 0.15561 0.60420 0.16100 0.068853 0.10240 0.16550
40 0.25816 0.21022 0.36543 0.17131 0.092612 0.19222 0.1332
50 0.32367 0.3159 0.58498 0.12869 0.1082 0.2229 0.088531
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Figure 4. Portrays the stability of the proposed methodology over ongoing projects when a physical
machine distributes (a) VM = 10, (b) VM = 20, (c) VM = 30, (d) VM = 40 virtual machines for load
balancing. The approach’s resilience and coherence across diverse virtual machine deployments has
been depicted. A physical computer deploys virtual machines for load balancing. This examination
evaluates the stability of the system. The recommended technique for active projects is tested for
reliability and efficacy under varied workloads. Each subfigure shows the architecture's reaction
to different computing levels of demand by representing a virtual machine distribution case. This
figure assesses key stability indications and performance indicators, such as system reactivity and
overall equilibrium, to provide useful information into the methodology’s reliability and aid ongoing
endeavors seeking an equilibrium between productivity and flexibility.

◆ Graphical analysis: In Figure 4, it can be observed that the proposed technique
(TF-MFA) guarantees immaculate stability in load balancing while posing fewer risks
compared to classic models. The graphical representation emphasizes the downsized
risk and enhanced stability provided by TF-MFA.

◆ Probability comparison: The suggested methodology illustrates a significantly lower
probability of high-risk circumstances compared to prior models. Particularly at
35 counts of clusters in the 30th virtual machine, TF-MFA is 82.32%, 81.71%, 81.45%,
81.13%, 75.18%, and 86.79% superior in terms of reduced probability when analogized
to ILWOA, WOGA, KH, CSA, ACO, and ABC + BA, respectively.

◆ Stability factor: The stability factor quantifies the stability achieved by each model.
The presented method perpetrates a stability factor of 0.2045 when a physical machine
(PM) is assigned 30 virtual machines (VM) for a given role. In comparison, the
stability factor values for ILWOA, WOGA, KH, CSA, ACO, and ABC + BA are 0.15561,
0.60420, 0.16100, 0.068853, 0.10240, and 0.16550, respectively, TF-MFA portrays a
higher stability factor, signifying improved stability performance.

The overall results of the comparative analysis highlight how much more stable and
successful the suggested method, the twin fold moth flame algorithm (TF-MFA), is than
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other models. Specifically, the TF-MFA model delivers a higher stability factor, reduces the
probability of high-risk scenarios, and guarantees outstanding load balancing stability. All
these facts lend credence to the claim that the TF-MFA model is a better way to guarantee
consistent and fair resource distribution in cloud computing settings. The findings further
our knowledge of stability optimization techniques and establish the TF-MFA model
as a reliable and practical method for handling the challenges associated with resource
allocation in dynamic cloud computing settings.

6.4. Assessment on Placement Cost

The information shown in Figure 5 and Table 5 clarifies the assessment of the twin
fold moth flame algorithm (TF-MFA), which is the methodology provided, in addition to
other models, regarding placement cost. This breakdown includes a thorough examination
of important placement cost parameters, providing information on how the TF-MFA model
performs in comparison to other strategies. The thorough evaluation helps determine
how cost-effective the TF-MFA model is when compared to other models that are already
in use, and it offers insightful information about the financial aspects of virtual machine
deployment strategies in cloud computing settings.
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Table 5. Placement costs for different VMs to a PM for the current and potential models. 
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Figure 5. Portrays the assessment of placement costs for new and current work while allocating
load-balancing virtual machines of (a) VM = 10, (b) VM = 20, (c) VM = 30, and (d) VM = 40. The
subfigures shows the cost dynamics and financial implications of placing these virtual machines in
new project creation and operation. Each subfigure represents a VM distribution scenario, showing
how placement costs change with load balancing size. This figure helps decision-makers reconcile the
distribution of resources and costs for new and current workloads by examining cost trends, possible
savings, and effectiveness.
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Table 5. Placement costs for different VMs to a PM for the current and potential models.

No. of VM TF-MFA ILWOA WOGA KH CSA ACO ABC + BA

10 88.80 287.15 234.93 291.75 252.03 259.1 295.65
20 190.82 268.47 256.54 268.06 254 247.12 272.99
30 221.24 237.11 69.62 248.36 243.15 247.69 227.09
40 153.47 281.76 244.26 292.56 294.68 276.49 231.2
50 147.57 281.47 74.481 257.07 301.89 208.99 217.64

◆ Graphical analysis: Figure 5 displays the placement cost of the presented methodology
in comparison to other techniques. It illustrates that the presented work consistently
earns the lowest placement cost across different variations in VM and block size,
thereby fulfilling the theme of minimizing placement cost.

◆ Percentage comparison: In the case of 40 censuses of blocks and VM = 10, the presented
work outperforms prior methods by 64.81%, 61.22%, 59.57%, 60.42%, 65.45%, and
52.5%. This signifies a noteworthy reduction in placement cost compared to alternative
procedures.

◆ Total placement overhead: Table 5 displays a synopsis of the placement overhead for
different VM allocations. The presented work reveals a minimal total placement cost,
attaining a placement cost of 88.80 when assigning 10 VMs to 1 PM. In comparison,
classic approaches show higher placement costs.

◆ Specific comparisons: The presented method also outperforms constant references
like ABC + BA, ACO, CSA, KH, WOGA, and ILWOA when allocating 40 VMs to 1 PM.
The presented work achieves reductions in placement cost of 33.62%, 44.49%, 47.92%,
47.54%, 37.17%, and 45.53% compared with these reference models, respectively.

Overall, the comparison analysis’s results show that the twin fold moth flame al-
gorithm, or TF-MFA, consistently has the lowest placement cost among the approaches
and dramatically lowers installation expenses. This result highlights how economical the
TF-MFA technique is for maximizing resource placement and allocation expenses in the
context of cloud computing. The results of this study enhance our comprehension of the
financial viability of virtual machine placement techniques and establish TF-MFA as a
notable and efficient method for attaining optimal resource allocation in dynamic cloud
settings while minimizing installation costs.

6.5. Probabilistic Assessment: Proposed Model vs. Traditionally Used Models

Each algorithm undergoes execution 10 times to obtain the figures of the overall
integrity that need to be decreased to guarantee an equitable comparison. The quantitative
consequence for different counts of VMs allocated to one PM for performing the task
scheduling function is displayed in Table 6. On observing the mean value for 10 counts of
VMs, the presented work has the best lowest value of 1786.4, whereas the existing models
have higher mean values of ABC + BA = 1996.3, ACO = 2042.5, CSA = 1985.3, KH = 2754.1,
WOGA = 2110.5, and ILWOA = 2110.7. When 20 counts of VM are allocated to 1 PM, the
best value of the presented model is 3.23%, 8.72%, 10.09%, 27.82%, 6.62%, and 9.61% better
than existing ABC + BA, ACO, CSA, KH, WOGA, and ILWOA methods. Furthermore,
in the median case scenario, the proposed TF-MFA model is 0.84%, 1.82%, 8.49%, 26.97%,
9.61%, and 7.42% better than existing ABC + BA, ACO, CSA, KH, WOGA, and ILWOA
methods for 40 counts of VM. Thus, it is evident from the table that the presented work is
much more sufficient for load balancing during VM migration. Additionally, for 40 counts
of VM, the offered TF-MFA approach outperforms the current ABC + BA, ACO, CSA, KH,
WOGA, and ILWOA approaches by 0.84%, 1.82%, 8.49%, 26.97%, 9.61%, and 7.42% in the
median case circumstance. Overall, Table 6 makes it clear that the amount of work that has
been given is far more adequate for managing load throughout virtual machine relocation.
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Table 6. Probabilistic assessment of a PM’s dynamic VM allocation for load balancing purposes.

VM at 10 Counts

Behaviors TF-MFA IILWOA WOGA KH CSA ACO ABC + BA

Best 1786.4 2110.7 2110.5 2754.1 1985.3 2042.5 1996.3

Worst 3421.4 3607.4 3807 4983.4 4313.8 3685 3734

Mean 2550.7 2950.6 2935.1 3563.7 3069.4 2908.6 2846.4

Median 2497.5 3042.2 2911.4 3259.1 2989.4 2953.4 2827.6

STD 715.48 732.15 746.18 1030.7 989.64 698.48 748.99

VM at 20 counts

Behaviors TF-MFA IILWOA WOGA KH CSA ACO ABC + BA

Best 1982.4 2193.3 2123.1 2746.8 2205.1 2171.9 2048.6

Worst 3639.5 3657.7 4012.3 3798.8 3733.5 3612.8 3468.4

Mean 2750.5 2893.7 3020.4 3268.1 2969 2835.7 2763

Median 2690.1 2862.4 2973.2 3263.4 2968.6 2779.1 2767.6

STD 734.3 655.5 785.28 431.17 650.1 624.92 611.02

VM at 30 counts

Behaviors TF-MFA IILWOA WOGA KH CSA ACO ABC + BA

Best 1685.1 2003.4 2168.6 2538.5 2092.3 2087.6 1946.5

Worst 3208.2 3625.8 4235.3 4101.8 3841.8 3648.9 3469.5

Mean 2539.3 2898.2 3054 3396 2979.7 2992 2697.6

Median 2632 2981.9 2906 3467.8 2992.3 3115.7 2687.2

STD 694.09 713.6 901.66 695.84 770.09 757.58 648.34

VM at 40 counts

Behaviors TF-MFA IILWOA WOGA KH CSA ACO ABC + BA

Best 1763.9 2200.1 2355.4 2166.4 2046.8 1985.7 1913.5

Worst 3450.1 3890.3 4448.4 4691.1 3833.1 3607.8 3600.9

Mean 2661.8 2989.8 3203.8 3574.6 2954.5 2781.9 2748.5

Median 2716.7 2934.5 3005.6 3720.5 2968.9 2767 2739.8

STD 700.33 760.01 942.95 1104.3 755.04 701.04 733.28

7. Conclusions and Future Directions

The development of a virtual machine placement strategy designed for utilization
over wide area network (WAN) links involves the crucial aspect of offline VM selection.
The primary objective of offline VM selection is to carefully choose one or more potential
virtual machines for placement, ultimately mitigating resource demands on the hosts under
consideration. This task is achieved through the implementation of the twin fold moth flame
algorithm (TF-MFA) model, which is built upon three key goals: optimizing computing
time unit (CTU) utilization, ensuring system stability, and minimizing placement costs. By
addressing these goals, the TF-MFA model offers an effective and comprehensive solution
for the strategic placement of virtual machines, particularly tailored for scenarios involving
WAN links in cloud computing environments. The presented model’s effectiveness was
examined by calculating placement costs, computation times, and stability assessment. The
most significant result of the presented work was 3.23%, 8.72%, 10.09%, 27.82%, 6.62%,
and 9.61% for 20 count data of nodes for the artificial bee colony–bat algorithm, ant colony
optimization, crow search algorithm, krill herd, whale optimization genetic algorithm,
and improved Lévy-based whale optimization algorithm, as ambiguously portrayed in
Figures 3–5.
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The swift progress of computer science and technology is significantly influencing
many aspects of our everyday lives and work settings. Looking ahead, we believe that
combining state-of-the-art applied sciences—most notably, artificial intelligence and big
data [30]—will be essential. This evolution is consistent with the ongoing creation of
strong and affordable security controls, especially for large-scale networks and software-
defined networks (SDN) in particular [31]. Furthermore, we anticipate creating end-to-end
internet of medical things (IoMT) infrastructures using a mixed integer linear programming
(MILP) mathematical paradigm [32]. These expected advancements represent the changing
field of computer science and hold the potential to fundamentally alter how we engage
with technology and tackle challenging problems across a range of industries, including
healthcare and network security.
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