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Abstract: Transmission tower re-identification refers to the recognition of the location and identity
of transmission towers, facilitating the rapid localization of transmission towers during power
system inspection. Although there are established methods for the defect detection of transmission
towers and accessories (such as crossarms and insulators), there is a lack of automated methods
for transmission tower identity matching. This paper proposes an identity-matching method for
transmission towers that integrates machine vision and deep learning. Initially, the method requires
the creation of a template library. Firstly, the YOLOv8 object detection algorithm is employed to
extract the transmission tower images, which are then mapped into a d-dimensional feature vector
through a matching network. During the training process of the matching network, a strategy for
the online generation of triplet samples is introduced. Secondly, a template library is built upon
these d-dimensional feature vectors, which forms the basis of transmission tower re-identification.
Subsequently, our method re-identifies the input images. Firstly, we propose that the YOLOv5n-conv
head detects and crops the transmission towers in images. Secondly, images without transmission
towers are skipped; for those with transmission towers, The matching network maps transmission
tower instances into feature vectors. Ultimately, transmission tower re-identification is realized by
comparing feature vectors with those in the template library using Euclidean distance. Concurrently,
it can be combined with GPS information to narrow down the comparison range. Experiments
show that the YOLOv5n-conv head model achieved a mean Average Precision at an Intersection
Over Union threshold of 0.5 (mAP@0.5) score of 0.974 in transmission tower detection, reducing the
detection speed by 2.4 ms compared to the original YOLOv5n. Integrating the online triplet sample
generation into the matching network training with Inception-ResNet-v1 (d = 128) as the backbone
enhanced the network’s rank-1 performance by 3.86%.

Keywords: transmission tower re-identification; transmission tower detection; YOLO; triplet loss

1. Introduction

Transmission towers are used to support power transmission lines. Due to prolonged
exposure to outdoor environments, power systems are susceptible to various natural risks
such as floods, snowstorms, and heatwaves, as well as physical defects like missing insu-
lator pieces, loss of damper heads, and infrastructure damage [1]. All these factors can
affect the normal operation of power transmission lines, leading to disruptions in power
transmission, economic losses, and even threats to public safety. In recent years, with
the rapid advancement of machine learning and deep learning, these technologies are
increasingly being employed to predict and detect faults in power grids [2,3]. Atrigna
et al. [4] propose an approach based on machine learning techniques to predict power grid
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outages caused by heatwaves. Typically, power grids commonly utilize risk assessments
to mitigate the detrimental effects of natural disasters like heatwaves and floods, thereby
reducing potential damage. Simultaneously, due to the prolonged exposure of power
systems to outdoor environments, various physical defects can emerge. Such defects can
lead to interruptions in power transmission. The literature [5] utilizes variations in voltage
and current to localize defects within the power transmission lines, but it is possible that
these defects have not yet manifested as changes in the electrical parameters of the power
transmission lines. If the grid system could detect these defects promptly, it would enable
preemptive interventions before any deviations in voltage and current become evident,
thereby reinforcing the stability and reliability of the power transmission lines. Thus, it
is essential to detect and replace the defective parts. Typically, the power grid conducts
inspections of its power transmission lines to detect faults [6]. Currently, the methods for
inspections include manual inspection, helicopter patrols, and Unmanned Aerial Vehicle
(UAV) inspections [7]. The inspections of transmission towers and their accessories primar-
ily include: foreign object detection [8,9], the detection of insulator and other infrastructural
damage [10,11], and checks for transmission tower tilting and damage [12]. When defects
located in transmission towers and their accessories are detected during inspection, the
power system should implement maintenance measures immediately. However, prior to
maintenance measures, it is imperative to first determine the identity and location of the
transmission tower where the damage is situated. Transmission tower re-identification
refers to recognizing the transmission tower’s location and specific identification, which is
pivotal for their timely maintenance. Transmission tower re-identification needs to achieve
object detection and identity matching for transmission towers.

The primary task of transmission tower re-identification is the target recognition of the
transmission towers. Traditional object detection algorithms tend to rely on hand-crafted
features, such as Sobel edge detection, Haar, and HOG features. These features exhibit
limited generalization capabilities, resulting in a subpar performance in complex scenarios.
Object detection algorithms based on deep learning fall into two categories. One is two-
stage detection algorithms reliant on region proposals, such as Fast R-CNN [13] and Faster
R-CNN [14]. The other is based on regression analysis, exemplified by the YOLO [15–17]
series and EfficientDet [18]. In the context of transmission tower detection, Zhang et al. [19]
introduced DSA-YOLOv3 to enhance detection performance in aerial images of transmis-
sion towers. Experiments showed that DSA-YOLOv3 achieved a higher average precision
(AP) than both YOLOv3 and the two-stage Fast-RCNN. Bian et al. [20] optimized Faster R-
CNN by reducing its convolutional layers, catering to the speed and accuracy requirements
for transmission tower detection on mobile devices. Sheng et al. [21] took into account
the compositional relationship of transmission tower components and enhanced YOLOX
for defects detection of the towers and their components. Post-modification, there was a
10.13% improvement in mean average precision (mAP) compared to the original YOLOX.
Additionally, algorithms from the YOLO series, such as YOLOv5 and YOLOv7, have been
applied in the detection of electrical system equipment and in defect detection [22,23].

Currently, there are three main methods for transmission tower identity matching,
that is, manual comparison, nameplate recognition and precise positioning using position
and orientation system (POS).

For manual comparison, the identification of transmission towers primarily depends
on inspection staff using information from the transmission tower nameplates and their
environmental surroundings. Nevertheless, this methodology is characterized by consider-
able labor intensity and suboptimal efficiency in the inspection processes.

For transmission tower identity matching, the recognition of the nameplate represents
a prevalent approach. Kong et al. [24] detected the transmission tower nameplate using
Faster R-CNN and subsequently proposed, in her undergraduate thesis, an adversarial-
learning-based Super-Resolution Feature Generation Network (SFGNet) for enhancing the
accuracy of small object detection. Xia et al. [25] applied affine distortion correction to
digital text images and recognized numbers on the transmission tower nameplates using
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the CRNN algorithm. Li et al. [26] constructed the F3RNet for the recognition of electrical
equipment, attaining an average precision (AP) of 90.1% in the detection of transmission
tower nameplates. In practice, relying solely on the transmission tower nameplate for
transmission tower re-identification can introduce an array of challenges. For instance, the
placement of transmission tower nameplate varies across different transmission towers.
In the photographic process targeting the transmission towers, the transmission tower
nameplate may reside in the camera’s occluded region, becoming imperceptible (Figure 1a);
Additionally, the transmission tower nameplate might have fallen off or been damaged
due to harsh weather conditions like snowstorms (Figure 1b,c); Due to prolonged outdoor
exposure, the transmission tower nameplate has become illegible (see Figure 1d).
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Figure 1. Challenges in nameplate identification: (a) the nameplate is situated in an occluded zone;
(b) nameplate detachment; (c) nameplate damage; (d) nameplate indistinctness.

Precise positioning methods employing the Position and Orientation System (POS)
require the use of high-accuracy GPS data. Wang et al. [27] chose to use the Position and
Orientation System (POS) to address the transmission line tower matching. Qin et al. [28]
utilized POS to acquire the coordinates of the scene’s point cloud and the precise movement
trajectory of the cable inspection robot. Typically, to obtain high-accuracy GPS data, it is
necessary to deploy Differential GPS (DGPS), which enhances the accuracy of standard
GPS using ground-based reference stations. When transmission towers are located in
remote areas, the system needs to establish multiple stations for comprehensive coverage.
Additionally, during the inspection process, the GPS receiver is typically integrated into
the inspection device, and it is necessary to deploy sensors such as Inertial Measurement
Units (IMUs) and magnetometers to deduce the GPS positions of objects captured in the
imagery. Consequently, the deployment of the POS incurs significant expenditures and
poses considerable challenges in terms of maintenance. Furthermore, GPS signals can be
affected or even lost in dense urban areas, tunnels, mountainous regions, and high-humidity
weather conditions.

The advantages and disadvantages of the three methods are delineated in Table 1. In
recent years, researchers have detected and recognized transmission tower nameplates for
matching towers, while others have utilized POS for the positioning of transmission towers
and their components. Their research is summarized in Table 2.
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Table 1. The advantages and disadvantages of the three methods.

Reference Method Category Advantages Disadvantages

- Manual comparison High reliability High labor intensity and low work efficiency

[24–26] Nameplate detection and
recognition High precision The nameplate may fall off and become invisible

[27,28] POS High precision and
real-time positioning

High setup and maintenance costs; positioning
failure under weak GPS signals.

Table 2. Literature review of nameplate and POS applications in power transmission line inspection.

Reference Dataset Task Utilized Item Result

[24] Their own Nameplate detection Nameplate AP: 73.2%
[25] Their own Nameplate recognition Nameplate Accuracy: 96.4%
[26] Their own Nameplate detection Nameplate AP: 90.1%
[27] - Positioning transmission line tower POS Positioning accuracy within 5 m

[28] - Point cloud positioning POS Build up the cable inspection robot
motion trajectory model

Image matching techniques have been widely adopted in various subdisciplines. In
the realm of facial recognition, matching algorithms are designed to precisely identify
specific individuals from extensive facial image databases. For pedestrian re-identification,
matching algorithms strive to accurately recognize the same individual from different
camera perspectives and at different time intervals. Moreover, in landmark recognition,
matching algorithms have proven their value, adeptly identifying specific structures or
locations from a plethora of scene images, significantly underpinning tourism landmark
identification and autonomous driving technologies.

At present, the features employed in image matching algorithms primarily encompass
local and global characteristics. Local feature matching predominantly relies on feature
extraction and descriptor matching. These techniques initially extract salient point or line
features from images, compute descriptors for these features, and then match images pairs
based on descriptor similarity. Traditional local image feature matching approaches include
ORB [29] and LBD [30], among others. ORB integrates FAST key point detection with
BRIEF descriptors, incorporates rotational invariance, conserves computational resources,
and is frequently employed in visual localization and map reconstruction. LBD is a local
line feature matching algorithm that accumulates edge responses to generate surrounding
regions of line segments and formulates a one-dimensional descriptor, and is commonly
utilized for architectural and urban landscape image matching. Bian et al. [20] enhanced
the ORB point matching and LBD line matching algorithms to address the pose estimation
of UAV relative to transmission towers. Guo et al. [31] refined the ORB algorithm to extract
uniform key points and, in conjunction with the LSD [32] algorithm, matched regions of
transmission towers and backgrounds in images to estimate the UAV pose. Deep-learning-
based local feature matching algorithms encompass methods like SuperPoint [33] and
SuperGlue [34]. SuperPoint, grounded on convolutional neural networks, is designed
for key point detection and descriptor generation. SuperPoint is typically employed in
image registration and 3D reconstruction tasks, utilizing Euclidean distance and cosine
similarity as matching assessment metrics. SuperGlue, a graph neural-network-based
matching method, necessitates key points and descriptors as inputs. Through its graph
neural network and optimized matching layer, SuperGlue facilitates inter-image matching
and is prevalently used in visual SLAM and robotic navigation tasks.

Local feature matching techniques can achieve image local feature matching, subse-
quently enabling the tracking of dynamic object movement trajectories and pose estimation.
However, the task of transmission tower identity matching is to distinguish between differ-
ent individual transmission towers. In practice, multiple similar transmission towers may
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exist within a small vicinity. When matching the identity of transmission towers, certain
features that are not successfully matched might be the critical indicators differentiating
transmission towers’ identities. Consequently, utilizing local feature matching methods
may result in subpar matching outcomes.

Global image features represent the overall content of an image. Convolutional Neural
Networks (CNNs) progressively extract and integrate local features into a global context
through their hierarchically increasing receptive fields and stacked structures, capturing
both the fine details and overall structure of images. In recent years, due to their significant
feature extraction capabilities, numerous global feature matching algorithms have begun
to utilize CNN to extract global image features. Facenet [35] employs a CNN-based
architecture and introduces a triplet loss training mechanism for facial matching tasks.
Chen et al. [36] employ Convolutional Neural Networks for feature extraction and append a
verification sub-network based on a classification sub-network to address the pedestrian re-
identification problem. Arcface [37] uses CNN for input image feature extraction, considers
angles in the feature space as classification boundaries, and incorporates the Arcface loss
for model training, further enhancing the accuracy of face classification. The networks
mentioned previously utilize CNNs to extract global image features, and corresponding
experiments have demonstrated the reliability of their global feature extraction methods.

The reviewed studies offer vital perspectives on the identification of transmission towers

1. Defect inspection in electrical power systems, which is vital, tends to favor the use of
single-stage identification algorithms from the YOLO series. These algorithms not
only excel in terms of accuracy but also demonstrate a remarkable recognition speed,
meeting the practical demands and standards of electrical inspections;

2. The identification matching of transmission towers is crucial, facilitating the mainte-
nance of the towers and their components. Manual comparison methods are time-
consuming and can potentially be influenced by human factors; nameplate recog-
nition and POS positioning represent effective and mature methods for matching
transmission towers in the automated inspections. However, nameplate recognition
is incapable of handling situations where images lack nameplates. Additionally,
POS have high installation and maintenance costs, and their matching effectiveness
diminishes when GPS data are unavailable.

3. Local feature matching algorithms have limitations, as models tend to match similar
features but often overlook unmatched critical features;

4. Convolutional Neural Networks (CNNs) can extract and integrate global image fea-
tures. When combined with different head networks, they have been applied in
pedestrian re-identification and face matching.

Transmission towers are typically located in vast open areas and surrounded by the
same type of transmission towers, which exhibit similar external shapes. In the task of
transmission tower re-identification, it is possible to encounter multiple instances of the
same type of transmission towers within a single image. Consequently, the spatial rela-
tionship of key points among these towers might be identical. Compared to transmission
tower re-identification, facial recognition exhibits a more pronounced difference for distinct
faces. Additionally, pedestrian re-identification can rely on some characteristics of different
individuals for identification, such as facial features and the relative positioning of human
body key points [38,39]. Landmarks, due to their specific geographical locations, often
come with discernible reference objects, making their identification process relatively stable.
Therefore, transmission tower re-identification is a challenging issue. Considering the
limitations of nameplate recognition and POS, this paper proposes a system framework for
transmission tower re-identification, which contains two parts. These are the construction of
the transmission tower identity matching template library and the identity matching stage
(the identity matching of the transmission tower in the input images). Both parts require
the implementation of transmission tower detection and the generation of feature vectors.
Given our aspiration to deploy this algorithm in edge devices such as UAVs, we prioritize
accuracy during the establishment of the template library. During the identity matching
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stage, we intend to comprehensively consider both speed and accuracy. Consequently, opti-
mizations are made for the transmission tower detection and matching networks. Within
the framework of our newly proposed transmission tower re-identification system, the
principal contributions are enumerated as follows:

1. During the identity matching stage, we propose using the YOLOv5-conv head network
to detect transmission towers. While maintaining detection accuracy, the speed of
transmission tower detection is enhanced;

2. During the training of the transmission tower matching network, we introduce an on-
line triplet sample generation strategy. During the training process, we fix the anchor
and positive samples in the triplet and employ the Hungarian algorithm to optimize
the selection of negative samples in all triplets. The online triplet generation for triplet
sampling strengthened model convergence stability, accelerated the convergence
speed, and improved the rank-1 accuracy of transmission tower identity matching.

3. We propose a method to establish a transmission tower identity matching template
library. The matching template library for transmission towers is constructed based
on the feature vectors generated from transmission tower images. Additionally, GPS
information can be included in the database, which can be neglected in the absence of
GPS signals.

4. Our proposed method does not rely on GPS information. During the process of
matching transmission towers, on the one hand, if the input image is equipped with
GPS information, the matching accuracy and speed can be improved by narrowing
the template library. On the other hand, the method is still capable of performing
transmission tower identity matching even in the absence of GPS information in the
input images.

2. The Proposed Method

Transmission tower re-identification, aiming to distinguish between different trans-
mission tower instances, is addressed in this paper based on a template library algorithm.
This method encompasses two stages: firstly, establishing a transmission tower identity
matching template library, and secondly, performing identity matching of transmission
towers in input images. Key technologies in both stages include a transmission tower
detection network and a matching network.

2.1. The Framework of the Proposed Method

The simplified system framework is shown in Figure 2. Overall, three sets of models
need to be trained, which are the YOLOv8s (transmission tower detection), YOLOv5n-
conv head (transmission tower detection), and the matching network (transmission tower
matching). In Figure 2, ‘Backbone: Inception-ResNet-v1 (d = 128)’ indicates that our chosen
backbone network is the Inception-ResNet-v1 (d = 128). Sections 2.4 and 2.5 consider
more complexities beyond those depicted in Figure 2, such as instances where the images
lack GPS information. “The construction of the transmission tower identity matching
template library” will be elaborated in detail in Section 2.4. The “transmission tower
identity matching framework” will be elaborated in detail in Section 2.5.

The first part is the construction of the transmission tower matching template library.
The specific steps are as follows:

1. The YOLOv8s target detection network is used to crop the transmission tower from
the images;

2. The matching network, utilizing Inception-ResNet-v1 (d = 128) as its backbone, is
employed to obtain the feature vector of the cropped transmission tower image;

3. Positional information (GPS) is added to the transmission tower image; this item can
be set to “null” in the absence of GPS;

4. Based on the above information, a transmission tower identity matching template
library is established.
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The second part is the identity matching of the transmission tower in the input images
(the identity matching stage), detailed as follows:

1. The YOLOv5n-conv head network is employed to identify whether there is a trans-
mission tower in the input images. If the input image contains transmission towers,
the transmission towers are cropped from the image and processed through steps
2 and 3. If there is no tower, the image is skipped;

2. The cropped transmission tower image is processed through the matching network,
which employs Inception-ResNet-v1 (d = 128) as its backbone, to obtain the feature
vector for matching;

3. If the image designated for matching contains GPS data, images are filtered from the
template library based on the GPS latitude and longitude. The feature vector awaiting
matching is then matched with the images in this collection. If the original image
lacks GPS information, the feature vector for matching is compared with all images in
the template library for identity matching.

Since our matching network is based on metric learning, it can adapt to new data
without the need for frequent retraining [35]. We plan to train the matching network
annually. In practical applications, the initial step entails the creation of a template library
for matching transmission towers. This library is then employed in the identity matching
stage when inspecting transmission lines. During the identity matching stage, if transmis-
sion towers are present in the input image, the identity matching algorithm is applied to
align these towers with the corresponding entries in the template library. In Figure 2, the
processed input image yields ‘tower10, 0.549’, where ‘0.549’ denotes the minimum distance
to the images in the template library. ‘tower10’ indicates that the cropped input image is
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matched to the image instance with the identifier ‘tower10’ in the database, signifying that
the model has matched this cropped image to the tower10 instance. Moreover, when GPS
information is accessible within the input images, it is considered for integration into the
template library. This integration may involve replacing certain tower images to augment
the accuracy of the matching process.

In Section 2, this paper elaborates on the methods and models we utilized, while
Section 3 is dedicated to the experiments and analyses conducted on these models and
methods. The key technical points of this paper are illustrated in Figure 3.
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2.2. The Transmission Tower Detection Based on the Improved YOLO

The YOLO series, as a classic single-stage detection model, has spawned numerous
object detection algorithms [40]. To date, the YOLO series has evolved up to YOLOv8.
Zhao et al. [22] indicated that YOLOv7, when applied to anti-vibration hammer corrosion
detection, not only offered rapid detection speed but also a higher accuracy, even surpassing
two-stage detection models like Faster R-CNN. In their study on insulator defect detection
tasks, Souza et al. [10] revealed that YOLOv5l achieves a mAP@0.5 detection accuracy
surpassing that of both YOLOv6l and YOLOv7. Currently, YOLOv8’s detection accuracy on
the COCO dataset surpasses that of YOLOv7 and the YOLOv5 [17]. Given the characteristics
of the YOLO network and its applications in the transmission tower defect detection,
this study utilizes the YOLOv8 network in establishing the transmission tower identity
matching template library. To further accelerate the inference speed of the transmission
tower object detection, the improved YOLOv5n-conv head network is employed during
the identity matching stage.
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2.2.1. Improvement of YOLOv5n

YOLOv5 [15], a detection model introduced by Ultralytics in 2020, has evolved from its
initial release of version 1.0 to version 7.0. In the YOLOv5 architecture, CBS consists of Con-
volution (Conv), BatchNormlization (BN), Sigmoid Linear Unit (SiLU). The CSP Bottleneck
with three convolutions (C3) module is utilized in the backbone and the head networks.
Within the backbone network, this module is denoted as C3_n, where ‘n’ represents the
number of Bottleneck1 units. In contrast, in the head network, it is denoted as C3_n_F,
with ‘n’ indicating the number of Bottleneck2 units. This differentiation underscores the
adaptive use of the CSP Bottleneck structure in various segments of the YOLOv5 model to
optimize performance. The backbone feature extraction network of YOLOv5 consists of
CBS, C3_n, Spatial Pyramid Pooling—Fast (SPPF). The head network of YOLOv5 consists of
CBS, upsampling, C3_n_F and Conv, constructing three sub-detection modules of varying
dimensions. The loss function of YOLOv5 combines categorical probability cross-entropy
loss, binary cross-entropy loss for confidence, and bounding box regression loss, aiming
for a comprehensive optimization of the target detection model. The categorical proba-
bility loss adjusts the target category of the classification prediction box, the confidence
loss determines whether the prediction box genuinely contains the target object, and the
bounding box regression loss finetunes the exact position of the prediction box. The total
loss is determined by the cumulative weighted sum of these three losses, as illustrated in
Equation (1):

Loss = λ1Lcls + λ2Lobj + λ3Lbox (1)

where Lcls represents classification loss, Lobj represents confidence loss, Lbox represents
bounding box regression loss, λ1 is the weight of the classification loss, λ2 is the weight of
the confidence loss, λ3 is the weight of the bounding box regression loss.

This study introduces two derivative models based on the YOLOv5n architecture:
YOLOv5n-c2f head and YOLOv5n-conv head. Glenn Jocher et al. [17] suggested that the
CSP Bottleneck with two convolutions (C2f) can introduce gradient flow to enhance the
feature extraction capability of the head network. In the YOLOv8 architecture, the structure
of the C2f module differs between the backbone and head networks. Within the backbone
network, this module is denoted as C2f_n, where ‘n’ represents the number of Bottleneck1
units. Conversely, in the head network, it is identified as C2f_n_F. Here, ‘n’ indicates
the number of Bottleneck2 units. In our research, the YOLOv5n underwent a structural
modification where the original C3_n_F module was replaced with the C2f_n_F module.
This alteration resulted in the creation of a new variant, designated as the YOLOv5n-
c2f head. Furthermore, we replaced the C3_n_F module in YOLOv5n with a two-layer
CBS network, resulting in the formation of the YOLOv5n-conv head. All the previously
discussed modules, as well as the refined YOLOv5n-conv head network, are depicted in
Figure 4. This substitution aims to streamline the network, decrease the inference time for
the transmission tower detection, and facilitate real-time monitoring on mobile devices.
The overall network structure of YOLOv5n-conv head is illustrated in Figure 4. Since our
alterations were limited to specific layers within the head network of YOLOv5n, the loss
calculation for both YOLOv5n-c2f head and YOLOv5n-conv head remains as outlined in
Equation (1).

2.2.2. YOLOv8

YOLOv8 [17], an improved iteration based on the network structure of YOLOv5, is
the latest model introduced by Ultralytics in 2023. Firstly, when processing image data, the
initial convolution kernel size is adjusted to 3 × 3. Secondly, YOLOv8 improves network
performance by incorporating the C2f module, which encompasses the C2f_n_F and C2f_n
configurations. This replaces the C3 module used in YOLOv5, consisting of the C3_n_F
and C3_n. Thirdly, YOLOv8 adopts the decoupled head (anchor-free head). The decoupled
head approach may accelerate training speed and enhance model accuracy. YOLOv8
network architecture and its modules are illustrated in Figure 4. However, on the flip
side, it may encounter issues with regression task misalignment. Hence, the Distributed
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Focal Loss (DFL), an enhanced version of the focal loss, is employed as a loss function
for regressing the distance from the points to the bounding boxes. Consequently, the loss
function of YOLOv8 comprises classification loss, regression loss, and DFL loss. Thus, the
total loss for YOLOv8 is delineated as depicted in Equation (2):

Loss = λ1Lcls + λ2Lbox + λ3Ld f l (2)

where Lcls represents classification loss, Lbox represents bounding box regression loss, Ld f l
represents DFL loss, λ1 is the weight of the classification loss, λ2 is the weight of the
bounding box regression loss, λ3 is the weight of the DFL loss.
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2.2.3. Transmission Tower Detection Model Evaluation

Object detection models are typically evaluated based on their inference time and
accuracy. In this study, we chose mean Average Precision (mAP) to assess the accuracy of
transmission tower detection. The mAP is derived from the average AP of all categories,
indicating the overall detection performance of the model. The calculation formula for
mAP is presented by Equation (6):

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

AP =
∫ 1

0
P(R)dR (5)

mAP =
N

∑
i=1

APi
N

(6)

where TP represents the number of true positives in the category, FP denotes the number
of false positives in the category, FN is the number of false negatives in the category, APi
represents the Average Precision for the ith category, N is the total number of categories, i
represents the ith category, mAP represents the mean Average Precision.

For object detection, IoU is the intersection ratio of two bounding boxes. In this
paper, mAP@IoU is a comprehensive metric that considers the precision and recall of
all detection categories under a given IoU value. Before calculating mAP@IoU, it is nec-
essary to first compute the AP@IoU. AP@IoU represents the area under the PR curve
formed by precision (P) and recall (R) under a given IoU value, reflecting the accuracy of a
single category.

2.3. Transmission Tower matching Network

In this Section, we provide a thorough explanation of the matching network’s structure.
The network is divided into training and inference stages for application. Key technologies
in the training phase include image augmentation, the triplet generation strategy, and
construction of the loss function for the network.

2.3.1. Matching Network Architecture

The matching network framework in this paper is based on the architecture of the
FaceNet [35]. When two images are inputted, the matching network maps them into feature
vectors, as illustrated in Figure 5. Each image, upon processing through the backbone, yields
a feature map. The feature map undergoes average pooling (AVG) and L2 normalization
(L2) to obtain a k-dimensional feature vector. ‘k’ represents the number of channels in
the feature map obtained after the image passes through backbone. This k-dimensional
feature vector is mapped to a d-dimensional feature vector (features1) through the fully
connected layer FC1, and then mapped to an m-dimensional feature vector (features2) via
the fully connected layer FC2. In this paper, we implemented three distinct networks as
alternatives for the backbone of the matching network. These networks are MobileNet [41],
MobileViT [42], and Inception-ResNet-v1 [43]. MobileNet (k = 1024) is a convolutional
neural network devoid of residual structures. MobileViT (k = 320) is founded on the Vision
Transformer architecture, and Inception-ResNet-v1 (k = 1792) is a convolutional neural
network equipped with residual structures.

During the matching process, the network directly maps the input image to features1,
facilitating subsequent identity matching for the transmission tower. Our approach to
train the matching network involved the utilization of triplet loss, in conjunction with
cross-entropy loss. Furthermore, we introduced a method for optimizing the generation
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sequence of triplets to enhance the training efficiency of the network. Detailed explanations
of these training techniques are comprehensively outlined in Section 2.3.5.
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2.3.2. Training Dataset Image Augmentation

Images of transmission towers that are captured might originate from various collec-
tion points, under diverse lighting and weather conditions. Owing to these extrinsic factors,
the color, brightness, contrast, and other visual characteristics of the images may be affected
to varying extents. While specific environmental backgrounds might momentarily assist in
identifying the transmission towers, considering the variability of the external environment,
models should refrain from an over-reliance on such information. Consequently, this study
introduces an image augmentation technique involving the random bottom occlusion of
transmission towers, combined with enhancements in the HSV channel and random image
flipping, to enrich the dataset.

By employing random horizontal flipping augmentation on images, this technique
can effectively enlarge the transmission tower matching dataset, thereby augmenting its
diversity and robustness in deep learning applications. The image augmentation technique
in the Hue, Saturation, Value (HSV) channel can adjust hue, saturation, and value to
enhance visual effects. This method aims to simulate varying weather conditions, thereby
enabling the model to adapt to diverse meteorological scenarios. The HSV enhancement
values chosen in this study were referenced from the YOLOv8’s augmentation values, with
gain coefficients of {0.015, 0.7, 0.4}. While local environments can facilitate the matching
of images with the template library, it is pertinent to note that transmission towers are
situated outdoors, where environmental conditions might vary. In practice, the vicinity
of the base of transmission towers may undergo substantial alterations. To address this,
this study implements a random bottom occlusion strategy for image augmentation. The
height of the introduced random white block, denoted Hz

a , falls within the range
[
H6

a , H4
a
]
.

Concurrently, its width, Wz
a lies in the range

[
W8

a , W2
a
]
. When the block is superimposed

onto the image at coordinates
(

Hp, Wp
)
, Hp is confined to the range

[
H − H4

a , H − Hz
a
]
; Wp

is restricted to (0, W − Wz
a ]. This augmentation is strategically implemented to ensure that

the images are adaptive to localized environmental changes. The formulas for calculating the
width and height of the added white block are respectively presented in Equations (7) and (8).

Hz
a = int

(
H
z

)
(7)

Wz
a = int

(
W
z

)
(8)

where H and W denote the height and width of the image, respectively. z represents the
enhancement coefficient. Post enhancement, the height and width of the required white
block are expressed as Hz

a and Wz
a .

The results obtained from applying the three image augmentation techniques are
depicted in Figure 6.
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2.3.3. Triplets Generation Strategy Based on Dynamic Negative Allocation

Triplet loss [35] is a loss function utilized for similarity metric learning. It aims to
map images of the same identity in Euclidean space to proximal positions. Simultaneously,
it maps images of the different identity to more distant positions in the space. When
the network embeds image x into a d-dimensional Euclidean space, the embedding is
represented as f (x) ∈ Rd. The objective of the triplet loss function is to reduce the distance
between images of the same identity (anchor xa

i and positive xp
i ), while enlarging the

distance from images of a different identity (negative xn
i ). Consequently, the model can

adeptly cluster features of transmission towers with identical identities. The formula for
calculating the triplet loss is presented as Equation (9):

Ltriplet =
N

∑
i=1

[
∥ f (xa

i )− f
(

xp
i

)
∥

2

2
− ∥ f (xa

i )− f (xn
i ) ∥

2
2 + a

]
+

(9)

where Ltriplet represents triplet loss. N represents the number of triplets. xa
i , xp

i , xn
i

respectively represent the anchor, positive, and negative, in the ith triplet. f
(
xa

i
)
, f

(
xp

i

)
and

f
(

xn
i
)
, respectively, represent the feature vectors after xa

i , xp
i and xn

i have been processed
through the network. α represents the enforced margin between positive and negative
sample pairs. [ ]+ indicates that when the value [ ] is greater than 0, it is taken as the loss;
when it is less than or equal to 0, the loss is considered as 0.

However, simple triplets can lead to a triplet loss of 0, which is not conducive for
model training [44]. For transmission tower matching, we think that examples of the same
type of transmission tower are more challenging to distinguish than those of different
types. Therefore, we believe it is necessary to dynamically adjust triplet samples. Based
on the literature [45], this paper introduces an online triplet generation method that fixes
the anchor and positive within a batch, optimizing the maximum triplet loss, and employs
the Hungarian algorithm to allocate the negatives in the batch. The generation process of
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triplets is shown in Figure 7. During the training process, the batchsize is set as a multiple
of 3. The batchsize is divided into multiple items (s_1, s_2, . . ., s_m), with the total number
of items being one-third of the batchsize. Each item (s_i) consists of an anchor (xa

i ), a
positive (xp

i ), and a negative (xn
i ). Following the application of the Hungarian algorithm,

the positions of the negative samples in each batch were dynamically optimized, leading to
the creation of new items (i_1, i_2, . . ., i_m).
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During the training process, the Hungarian algorithm is employed to allocate the
negative samples from all items in the batch. To facilitate optimization, we ensured that the
identities of the transmission tower in different items were distinct. Therefore, the maxi-
mum batch size can be set to half the total number of transmission tower instances. This
strategy seeks to minimize the scoring metric S between the anchor and its corresponding
positive relative to the unassigned negative for each batch. The optimization target S is
computed as Equation (14). Utilizing the Hungarian algorithm minimizes the value of
S, yielding the current allocation matrix xi,j and completing the distribution of negative
samples among the items. Each row and column of xi,j contains only one ‘1’, ensuring a
unique matching scheme.

valuej
i =

∥∥∥ f (x a
i
)
− f (x p

i

)∥∥∥2

2
−

∥∥∥ f (xa
i )− f

(
xn

j

)∥∥∥2

2
+ a (10)

scorej
i =

{
0 valuej

i ≤ 0
valuej

i 0 < valuej
i

(11)

si,j = −scorej
i , i, j = 1, 2, . . . m, m ≤ q/2 (12)

xi,j =

{
1 Assignment f rom jth negative to ith anchor
0 others

(13)

S =
m

∑
i=1

m

∑
j=1

xi,jsi,j (14)

where valuej
i represents the triplet value computed from the anchor and positive in the

ith item and the negative in the jth item; scorej
i represents the triplet score for the anchor

and positive in the ith item and the negative in the jth item; si,j represents the element in
the ith column of the allocation matrix, and s is a m × m matrix. Each row represents the
score of the anchor and positive in the ith item corresponding to the negative in the jth
item; m represents the total number of items in the batch; q represents the total number of
transmission tower instances in dataset; xi,j represents the allocation matrix; S represents
the objective function to be optimized.

Under the assumption that feature vectors of the same type of transmission towers
are closer compared to those of different types, and that these distances ensure non-zero
triplet loss, we developed a triplet mining strategy. These newly formulated triplets, in
accordance with our hypothesis, are delineated in Figure 8. In Figure 8, each transmission
tower instance is labeled as tower ‘i’, indicating its sequence as the ith instance (tower_ID).
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Detailed information about its data type, and other relevant details are provided in Table 3.
Table 3’s structure will be detailed in Section 2.4. Additionally, item ‘i’ refers to the ith
triplet sample. Within an item, ‘A’ represents the anchor, ‘P’ denotes the positive, and ‘N’
signifies the negative.
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Table 3. Template library structure(features1 is a 128-dimensional feature vector).

Field Data Type Description Source

ID int Primary key Auto-increment
features1 varchar(4000) Image feature vector Matching network result
tower_ID int Transmission tower identifier Manual entry

GPS_longitude float(20,10) Image longitude info Image info or “null”
GPS_latitude float(20,10) Image latitude info Image info or “null”

2.3.4. Matching Network Loss Function

During the early stages of model training, using only triplet loss might lead to dif-
ficulties in network convergence. Thus, a common approach is to integrate multi-class
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cross-entropy loss to facilitate network convergence [35]. In this study, we utilize a softmax
activation function in the network’s final layer to map the feature vector to a probability
distribution across different transmission tower instances (categories), compute the cross-
entropy loss, and subsequently optimize the model in conjunction with the triplet loss. As
a result, the composite loss function of the model is shown in Equation (15).

S =
1
N

N

∑
i=1

[
∥ f (xa

i )− f
(

xp
i

)
∥

2

2
− ∥ f (xa

i )− f (xn
i ) ∥

2
2 + a

]
+
+

1
m

m

∑
i=1

C

∑
c=1

yi,clog(pi,c) (15)

where N represents the number of online-generated triplet samples, and f
(
xa

i
)

represents

the embedding vector of the anchor image obtained through the network. f
(

xp
i

)
represents

the embedding vector of the positive sample obtained from the network. f
(
xn

i
)

represents
the embedding vector of the negative sample procured from the network. α represents the
enforced margin between positive and negative sample pairs. m represents the number
of images in the online-generated triplets. C represents the number of categories. yi,c
represents the actual label of the ith sample in the cth category. pi,c represents the predicted
probability of the ith sample in the cth category.

2.3.5. Matching Network Training Method

The training process of the matching network is illustrated in Figure 9. During the
training process, the images first undergo data augmentation. Data augmentation tech-
niques include random flipping, HSV color enhancement, and random bottom occlusion.
Augmented images are fed into the matching network to generate corresponding feature
vectors (features1 and features2). Specifically, features1 is utilized to construct triplet
samples. The detailed description of online triplet generation is provided in Section 2.3.3.
Furthermore, features2 is employed to compute the cross-entropy loss. The total loss,
described in detail in Section 2.3.4, is optimized using the Adam optimizer during the
training of the matching network.
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2.3.6. Matching Similarity Evaluation

Each cropped transmission tower image, when passed through the matching network,
produces a d-dimensional feature vector. This study opted to employ the Euclidean
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distance to evaluate the matching results, using similarity assessment criteria illustrated in
Equation (16). A smaller Euclidean distance indicates higher similarity.

sim(A, B) =

√
n

∑
i=1

(Ai − Bi)2 (16)

2.3.7. Matching Accuracy Evaluation

Given the current absence of established evaluation standards for transmission tower
matching, the evaluation criteria for the identity matching results of transmission towers
refer to common metrics in the image retrieval domain, namely rank-1, Mean Average
Precision (mAP). Given that the calculation of mAP and Average Precision (AP) in image
retrieval differs from that in object detection, in this context, we denote mAP and AP in
image retrieval as mAPr and APr, respectively. The rank-1 denotes the ratio of the number
of times all query images successfully match the total number of queries. Typically, a higher
rank-1 metric indicates a better model matching performance. To compute mAPr, one
first needs to determine APr. The APr value in image retrieval serves as a measure of the
re-identification performance, and is computed as delineated in Equation (18).

∆ recall =
1

Nt
(17)

APr = ∑
i

TPr(i)
TPr(i) + FPr(i)

·∆ recall, i ∈ Ω (18)

where Nt represents the number of images in the gallery that share the same ID with the
query image; Ω represents the set of samples with the same identity as the query sample
and ranking in the kth position in the query results (for example, the notation Ω = {1, 3, 4}
signifies that the identity at the first, third, and fourth ranks within the retrieval outcomes
correspond to the identity of the target image under query); TPr(i) represents the number
of positive samples in the top i retrieval results; FPr(i) represents the number of negative
samples in the top i retrieval results.

mAPr is a more comprehensive metric that not only considers the most similar image
but also reflects the similarity situation of all other images in the template library with
the image to be retrieved. Hence, it is more indicative of the merits of the algorithm. The
computation for mAPr is shown in Equation (19)

mAPr =
1
N

N

∑
m=1

APr(m) (19)

where mAPr represents the Mean Average Precision for matching network; N represents
the number of query images; APr(m) represents the average precision for the mth query
images presented in Equation (19).

This study posits that the accuracy of the top few images in the retrieval results
is crucial for evaluating the model. Consequently, we introduce a tailored evaluation
metric, termed Mean Average Precision, based on the top three most similar retrieved
images (mAP_rank-3). Within this metric, the APr for each query image is restricted to
the top three retrieval results in the gallery, denoted as the AP_rank-3. The calculation
methods for AP_rank-3 and mAP_rank-3 refer to Equations (18) and (19), with the specific
computational approaches illustrated in Equations (20) and (21)

AP_rank-3 =
1
3∑

i

TPr(i)
TPr(i) + FPr(i)

, i ∈ Ω1 (20)

mAP_rank-3 =
1
N

N

∑
m=1

AP_rank-3(m) (21)
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where Ω1 denotes the set of samples that have the same identity as the query sample and
rank at the jth position in the query results, under the condition that j is less than or equal
to 3; N represents the number of query images.

2.4. Transmission Tower Identity Matching Template Library

Establishing the transmission tower identity matching template library lays the founda-
tion for identifying transmission towers. The process for setting up this library is illustrated
in Figure 10. Input images are cropped to isolate transmission tower images using the
YOLOv8s module. Then, cropped transmission tower images are passed through a match-
ing network to obtain the feature vectors, denoted as “features1”, which are written into the
template library. If the input image contains GPS information, the GPS information is added
to the transmission tower template library. If not, the GPS information value is set to “null”.
Additionally, the “tower_ID” is manually inputted. When features1 is a 128-dimensional
feature vector, the data structure of the template library is presented in Table 3. However,
when features1 is a 256-dimensional feature vector, varchar(4000) is insufficient to store
this vector. In such cases, we employ varchar(8000) to accommodate features1.
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2.5. Transmission Tower Identity Matching Framework

The pseudocode for the identity matching process of the transmission tower is pre-
sented as Algorithm 1. To facilitate real-time detection on mobile devices, the YOLOv5n-
conv head is employed in this study for efficient transmission tower detection during the
model’s inference phase. Firstly, input images are processed through the YOLOv5n-conv
head for transmission tower detection. In scenarios where the input images do not con-
tain transmission tower instances, these images are skipped without further processing.
However, when transmission tower instances are detected, they are cropped from the
input images for subsequent matching processes. The focus of this section is on cases
where transmission tower instances are present in the input images. For images with trans-
mission tower instances, the matching algorithm is shown in Figure 11. In our designed
matching algorithm, we utilize different databases for matching based on the presence or
absence of standard GPS data. Consequently, this paper employs arrows of three different
colors—yellow, black, and red—to guide the reader through the entire matching procedure.
In Figure 11, the yellow arrows indicate the necessary steps for the matching algorithm.
The black arrows serve as indicators, illustrating the algorithm’s operational flow when
GPS data are absent in the input image. Conversely, the red arrows depict the algorithm’s
process when GPS data are present in the input image. Feature vectors, denoted as fea-
tures1, are obtained through the matching network discussed in Section 2.3.1. The system
determines whether the input image contains GPS information. If the input image lacks
GPS data, the model compares the feature vectors generated by the matching network
with those stored in the template library using the Euclidean distance, a process detailed
in Section 2.3.6. If the input image contains GPS data, the model first filters the template
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library using this GPS information to form a candidate set (Subset). The feature vectors
from the input image are then compared with those vectors in the candidate set using the
Euclidean distance to identify the best match. When the Euclidean distance between the
most similar image and the original exceeds 1, the model determines that the transmission
tower is not present in the template library.

Algorithm 1 Identifying the transmission tower in the input image

input: input_image(A)
output: result
# Step 1: Detect and Crop the input image to get transmission tower instances
tower_instances=YOLOv5_conv_head(input_image)
if tower_instances=[]:

return “null”
# Step 2: Extract feature vector using matching network
input_features1= Matching_Network(tower_instances)
# Step 3: Check if input image has GPS information
if input_image. GPS():

# Use GPS information to filter template library
candidate_set = FilterDatabaseUsingGPS(input_image.GPS_data)

else:
#Use the entire template library
candidate_set = EntireTemplateLibrary

result=[]
# Step 4: Compare feature vector with candidate set using Euclidean distance
For tower_feature in input_features1:

min_distance = INFINITY
best_match = NULL
for template in candidate_set:

distance = EuclideanDistance(tower_feature, template. features1)
if distance < min_distance:

min_distance = distance
best_match = template.tower_ID

# Step 5: Determine if the transmission tower is in the template library or not
if min_distance > 1:

answer=“null”
else:

answers= best_match
result.append(answer)

return result
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3. Experiment and Analysis
3.1. Dataset
3.1.1. Object Detection Dataset

Given the scarcity of diverse transmission tower types and instances in public datasets,
this study captured 5552 images of transmission towers from various angles, different
shooting distances, and under diverse lighting conditions. All collected images are in JPG
format with a resolution of 2736 × 3648 pixels. The dataset encompasses eight types of
transmission tower structures, as illustrated in Figure 12. To meet the requirements for
training and evaluating the transmission tower identification algorithm, all images were
annotated with bounding rectangles using the LabelImg tool.
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Figure 12. Different types of transmission towers.

The image dataset of transmission towers is split into training, testing, and valida-
tion subsets at a ratio of 7:2:1. Specifically, the training subset contains 3965 images, the
testing subset includes 1036 images, and the validation subset has 551 images. A detailed
distribution of the dataset can be seen in Table 4.

Table 4. Object detection dataset.

Category Train Test Val Total

butterfly_shape 520 156 76 752
cat_shape 911 291 131 1333

four 716 181 94 991
gan 752 205 108 1065

goat_shape 619 148 75 842
line 567 154 78 799

shang 654 183 101 938
six 958 223 117 1298

total 5697 1541 780 8018

3.1.2. Matching Dataset

Environmental factors might influence the matching of transmission towers. Data
collection was conducted on 82 transmission tower examples under varying weather
conditions and timepoints. We created a dataset of transmission tower images cap-
tured using mobile phones. A total of 1687 images were amassed for the training set,
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421 for the validation set, and 347 for the test set. Environmental information aids in the
successful identification of transmission towers. However, over time, these environmental
characteristics may evolve. Consequently, an over-reliance on such environmental data
should be avoided. For this reason, each instance of the transmission towers in the im-
ages was cropped. The cropped images were then used to construct the matching dataset.
Figure 13 depicts a cropped image of a particular transmission tower instance from the
dataset, captured at varied distances and orientations.
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3.2. Experiment on Transmission Tower Object Detection
3.2.1. Model Training

Experiments were conducted on Dell Server T7920 (Server 1) and Lenovo Server
(Server 2). Server 1 is equipped with two Intel Xeon Gold 6248R CPUs and two NVIDIA
A4000 16G GPUs. Server 2 is configured with a 12th Gen Intel(R) Core(TM) i7-12700H CPU
and a GeForce RTX 3060 6G GPU. Ubuntu 18.04 LTS was installed on Server 1. Both Server
1 and Server 2 were set up with Python 3.8 and configured with environments including
PyTorch 1.13.1 and Ultralytics 8.0.81. YOLOv5n, YOLOv5s, YOLOv8n and YOLOv8s
adopted the official COCO dataset weights for weight transfer, while the YOLOv5n-c2f
head and YOLOv5n-conv head utilized the pre-trained weights of the YOLOv5n model,
specifically trained for transmission tower detection, for the purpose of transfer learning.
The input image resolution was set to 640 × 640, with the Adam optimizer utilized for
model optimization, and betas set to (0.937, 0.999). YOLOv5 models necessitate predefined
anchor boxes. Through K-means clustering and genetic algorithms, the priors for the first
prediction head were determined as [9, 19], [15, 43], [25, 69]; the priors for the second
prediction head were [36, 110], [57, 158], [77, 265], while those for the third prediction head
were [98, 355], [130, 418], [195, 461]; The binary cross-entropy loss weight for confidence
was set to 1, the mean squared error loss weight for positional offset was set to 0.05, and
the cross-entropy loss weight for class probability was set to 0.5. Since YOLOv8 employs
an anchor-free head, it was appropriate to assign a relatively larger weight to the bounding
box loss to expedite convergence. The weight distribution was as follows: bounding box
loss at 7.5, classification loss at 0.5, and DFL loss at 1.5. The initial learning rate was set to
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0.01, with a final learning rate of 0.0001. The training was configured for 200 epochs with a
linear decay based on the number of epochs. Model training was conducted on Server 1. It
was observed that YOLOv8n converged around the 190th epoch. A comparison was made
between YOLOv5n, YOLOv5s, YOLOv8s, YOLOv5n-c2f head, and YOLOv5n-conv head
for convergence patterns from epochs 0 to 190. The experimental results are illustrated in
Figure 14.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 23 of 31 
 

optimizer utilized for model optimization, and betas set to (0.937, 0.999). YOLOv5 models 
necessitate predefined anchor boxes. Through K-means clustering and genetic algorithms, 
the priors for the first prediction head were determined as [9, 19], [15, 43], [25, 69]; the 
priors for the second prediction head were [36, 110], [57, 158], [77, 265], while those for the 
third prediction head were [98, 355], [130, 418], [195, 461]; The binary cross-entropy loss 
weight for confidence was set to 1, the mean squared error loss weight for positional offset 
was set to 0.05, and the cross-entropy loss weight for class probability was set to 0.5. Since 
YOLOv8 employs an anchor-free head, it was appropriate to assign a relatively larger 
weight to the bounding box loss to expedite convergence. The weight distribution was as 
follows: bounding box loss at 7.5, classification loss at 0.5, and DFL loss at 1.5. The initial 
learning rate was set to 0.01, with a final learning rate of 0.0001. The training was config-
ured for 200 epochs with a linear decay based on the number of epochs. Model training 
was conducted on Server 1. It was observed that YOLOv8n converged around the 190th 
epoch. A comparison was made between YOLOv5n, YOLOv5s, YOLOv8s, YOLOv5n-c2f 
head, and YOLOv5n-conv head for convergence patterns from epochs 0 to 190. The exper-
imental results are illustrated in Figure 14. 

  
(a) (b) 

  
(c) (d) 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 24 of 31 
 

  
(e) (f) 

Figure 14. Object detection experimental results (a) metrics/ 𝑚𝐴𝑃@0.5  curve; (b) met-
rics/𝑚𝐴𝑃@0.5: 0.95 curve; (c) training loss curve of the YOLOv5; (d) validation loss curve of the 
YOLOv5; (e) training loss curve of the YOLOv8; (f) validation loss curve of the YOLOv8. 

Figure 14 indicates that the convergence speed and accuracy of the YOLOv8s and 
YOLOv8n models are superior to those of YOLOv5s and YOLOv5n. The YOLOv5n-c2f 
head adopted parameters from YOLOv5n (transmission tower detection), showing a 
faster decline in training loss compared to YOLOv5s and YOLOv5n. However, possibly 
due to the model not being trained on the COCO dataset and a limited collection of dataset 
images being available, no accuracy improvement was observed on the validation dataset. 
The YOLOv5n-conv head also utilized transfer learning with YOLOv5n parameters 
(transmission tower detection). The results suggest a minor decline in model convergence 
accuracy. 

3.2.2. Model Evaluation and Result Analysis 
The models were evaluated on Server 1 and Server 2 using the test dataset, with the 

results detailed in Table 5. The results indicate that the YOLOv8s achieved the highest 
accuracy on the test dataset, while the YOLOv5n-conv head demonstrated the fastest in-
ference speed on the dataset. The results show that, on Server 1, the inference speed of 
YOLOv5n-conv head improved by 1.7 ms compared to the YOLOv5n. On Server 2, com-
pared to the YOLOv5n, its speed improved by 3.3 ms. Despite a reduction of approxi-
mately 0.7 in GFLOPs, there was no significant decrease in mAP@0.5 and mAP@0.5:0.95. 
In comparison to YOLOv8s and YOLOv8n, the mAP@0.5 for YOLOv5n-conv head only 
decreased by 0.003 and 0.006, respectively, while mAP@0.5:0.95 declined by 0.028 and 
0.03. Moreover, when the batchsize was set to 1, there was a notable reduction in inference 
time. Therefore, on the current dataset, the YOLOv5n-conv head proposed in this study 
excels in both speed and accuracy, offering a viable option for practical applications in 
mobile transmission tower detection. YOLOv8s exhibits the highest accuracy and is suit-
able for the establishment of a template library. 

Table 5. Performance results of object detection algorithms on the test dataset. 

Model mAP@0.5 mAP@0.5:0.95 FLOPs/G 
Inference (Batchsize = 
1 A4000 Ubuntu)/ms 

Inference (Batchsize = 
1 3060 Windows)/ms 

YOLOv5n-conv head (ours) 0.974 0.791 3.6 8.1 20.5 
YOLOv5n-c2f head (ours) 0.974 0.792 4.8 10.5 24.6 
YOLOv5n [15] (in 2022) 0.977 0.792 4.3 9.8 23.8 
YOLOv5s [15] (in 2022) 0.975 0.789 15.8 10 51.8 
YOLOv8n [17] (in 2023) 0.977 0.819 8.2 10.1 35.2 

Figure 14. Object detection experimental results (a) metrics/mAP@0.5 curve; (b) metrics/mAP@0.5 :
0.95 curve; (c) training loss curve of the YOLOv5; (d) validation loss curve of the YOLOv5; (e) training
loss curve of the YOLOv8; (f) validation loss curve of the YOLOv8.
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Figure 14 indicates that the convergence speed and accuracy of the YOLOv8s and
YOLOv8n models are superior to those of YOLOv5s and YOLOv5n. The YOLOv5n-c2f
head adopted parameters from YOLOv5n (transmission tower detection), showing a faster
decline in training loss compared to YOLOv5s and YOLOv5n. However, possibly due to
the model not being trained on the COCO dataset and a limited collection of dataset images
being available, no accuracy improvement was observed on the validation dataset. The
YOLOv5n-conv head also utilized transfer learning with YOLOv5n parameters (transmis-
sion tower detection). The results suggest a minor decline in model convergence accuracy.

3.2.2. Model Evaluation and Result Analysis

The models were evaluated on Server 1 and Server 2 using the test dataset, with the
results detailed in Table 5. The results indicate that the YOLOv8s achieved the highest accu-
racy on the test dataset, while the YOLOv5n-conv head demonstrated the fastest inference
speed on the dataset. The results show that, on Server 1, the inference speed of YOLOv5n-
conv head improved by 1.7 ms compared to the YOLOv5n. On Server 2, compared to
the YOLOv5n, its speed improved by 3.3 ms. Despite a reduction of approximately 0.7 in
GFLOPs, there was no significant decrease in mAP@0.5 and mAP@0.5:0.95. In comparison
to YOLOv8s and YOLOv8n, the mAP@0.5 for YOLOv5n-conv head only decreased by 0.003
and 0.006, respectively, while mAP@0.5:0.95 declined by 0.028 and 0.03. Moreover, when
the batchsize was set to 1, there was a notable reduction in inference time. Therefore, on the
current dataset, the YOLOv5n-conv head proposed in this study excels in both speed and
accuracy, offering a viable option for practical applications in mobile transmission tower
detection. YOLOv8s exhibits the highest accuracy and is suitable for the establishment of a
template library.

Table 5. Performance results of object detection algorithms on the test dataset.

Model mAP@0.5 mAP@0.5:0.95 FLOPs/G Inference (Batchsize = 1
A4000 Ubuntu)/ms

Inference (Batchsize = 1 3060
Windows)/ms

YOLOv5n-conv head (ours) 0.974 0.791 3.6 8.1 20.5
YOLOv5n-c2f head (ours) 0.974 0.792 4.8 10.5 24.6
YOLOv5n [15] (in 2022) 0.977 0.792 4.3 9.8 23.8
YOLOv5s [15] (in 2022) 0.975 0.789 15.8 10 51.8
YOLOv8n [17] (in 2023) 0.977 0.819 8.2 10.1 35.2
YOLOv8s [17] (in 2023) 0.98 0.821 28.7 10.9 43.5

3.3. Experiment on Transmission Tower Identity Matching
3.3.1. Model Training

To enhance the performance of the trained model under the constraints of a limited
dataset, this study employed transfer learning during model training. The backbone
feature extraction networks of all architectures adopted parameters pretrained on the
ImageNet dataset for model initialization. In terms of model construction, this research
evaluated three distinct backbone network architectures: MobileNet [41], MobileViT [42],
and Inception-ResNet-v1 [43]. The Adam optimizer was employed, with betas set to (0.9,
0.999). A cosine learning rate schedule was used, initializing the learning rate at 0.001
with a minimum rate of 10−5. The model’s batchsize was set to 27, with the triplet loss
hyperparameter α set to 0.15. The training results are illustrated in Figure 15. As shown in
Figure 15, models employing an online triplet generation strategy demonstrate an accel-
erated curve convergence speed when the backbone network generates 128-dimensional
feature vectors, in comparison to using basic triplet. It is noteworthy that in large networks
such as Inception-ResNet-v1, minor variations during the initial training phase can lead to
substantial differences in output. However, the introduction of online triplet generation
has been observed to decrease fluctuations in the convergence curve. Furthermore, for
the Inception-ResNet-v1 backbone network, using a 256-dimensional feature vector under
the online triplet generation strategy results in more pronounced fluctuations in curve
convergence compared to using a 128-dimensional feature vector.
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3.3.2. Model Evaluation and Result Analysis

Utilizing 337 images from the test dataset, for the evaluation of the model, we proceed
in two ways. On one hand, we compare the performance of different networks under the
same feature dimension (d), and on the other hand, we compare the performance of the
same network under different feature dimensions (d). The evaluation of the matching
model is conducted using Server 2.

This paper utilizes the training set from the transmission tower matching dataset
to establish a template library for transmission tower matching. For matching networks
constructed with different backbone networks, when the mapping dimension d is set to
128, the accuracy of the models on the test set is shown in Table 6. Three distinct backbone
architectures were integrated into the matching network. Upon adopting the proposed
triplet online generation strategy combined with the GPS preliminary filtering, enhance-
ments were observed in both rank-1 and mAP_rank-3. With the exclusive integration of
the triplet online generation strategy, Inception-Resnet-v1 exhibited the highest matching
precision, registering a rank-1 score of 89.32 and a mAP_rank-3 of 90.31. When solely
employing the GPS preliminary filtering, MobileNet demonstrated superior matching
precision, achieving a rank-1 score of 88.72 and a mAP_rank-3 of 90.01. Incorporating both
the triplet online generation strategy and GPS preliminary filtering, Inception-Resnet-v1
sustained its leading performance, with a rank-1 score of 89.32 and a mAP_rank-3 of 90.31.
Furthermore, after deploying GPS preliminary filtering, the inference speed of all models
was improved.
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Table 6. Comparative results in the test set for matching algorithms with varying backbone networks
(d = 128).

Backbone Triplet Generation
Online (Mining) GPS Rank-1 (%) mAP_Rank-3

(%)
Inference

(Rank-1)/ms mAPr (%)

MobileViT-XXS
(d = 128)

√ √
87.24 87.81 35.1 88.22√
86.65 87.36 71.2 87.59√
86.35 87.56 34.8 86.40
85.16 86.47 71.9 84.86

MobileNet
(d = 128)

√ √
89.32 90.08 29.5 89.69√
88.43 89.14 68.0 88.89√
88.72 90.01 29.9 90.53
88.13 89.37 68.4 89.89

Inception-
Resnet-v1
(d = 128)

√ √
89.32 90.31 33.3 85.98√
89.32 90.21 70.3 85.04√
86.35 87.66 34.5 88.24
85.46 86.92 69.6 87.37

The aforementioned experimental findings elucidate that the application of triplet min-
ing markedly elevates the rank-1 accuracy of models, a fact most prominently observed in
the Inception-ResNet-v1 based matching network, which attains the peak rank-1 accuracy
subsequent to the mining implementation. Delving into the effects of the feature dimension
d, as generated by the matching network, this investigation assesses the impact of varying
d values on the network’s efficacy, predicated based on the integration of online triplet gen-
eration. As delineated in Table 7, a comparative analysis of network performance, utilizing
Inception-ResNet-v1 as the backbone for d values of 128 and 256, reveals enhancements in
rank-1, mAP_rank-3, and mAP metrics upon increasing d from 128 to 256. Nevertheless,
in instances where GPS information is incorporated within the input images, the model
experiences a processing deceleration of 16.4 ms per image when the feature dimension d
is increased to 256, compared to d = 128. In the absence of GPS data, this delay extends to
40.5 ms per image. Therefore, setting d to 256 is suitable for processing inspection images
on local servers, while setting d to 128 is more appropriate for deployment on edge devices
such as UAVs.

Table 7. Comparative results on the test set for matching algorithms under different feature dimen-
sions (d = 128, d = 256).

Backbone Triplet Generation
Online (Mining) GPS Rank-1 (%) mAP_Rank-3

(%)
Inference

(Rank-1)/ms mAPr (%)

Inception-Resnet-v1
(d = 128)

√ √
89.32 90.31 33.3 85.98√
89.32 90.21 70.3 85.04

Inception-Resnet-v1
(d = 256)

√ √
91.39 91.62 49.7 90.70√
90.50 91.15 110.8 89.98

3.3.3. Visualization of Matching Network Results

When the matching network generates ‘features1’ as a 128-dimensional feature vec-
tor, the use of a matching network with Inception-ResNet-v1 (d = 128) as its backbone
demonstrated a robust overall performance on the dataset used in this study. Additionally,
although the use of a matching network with Inception-ResNet-v1 (d = 256) as its backbone
slightly surpasses its counterpart with d = 128 in terms of the accuracy metrics, the longer
inference time of the former makes it less suitable for optimization and deployment on edge
devices. Given our aim to deploy the algorithm directly on edge devices in the future, we
chose Inception-ResNet-v1 (d = 128) as the backbone network for our transmission tower
re-identification system. For a more in-depth performance analysis, this paper considered
the impact of online triplet generation strategy. In Figure 16, the numbers above each
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image (e.g., 0.4383) show the Euclidean distance between its ‘features1’ and the query’s
‘features1’. Smaller values denote higher similarity. “tower‘i’” indicates its sequence as
the ith transmission tower instance. The search results from left to right represent the
decrease in image similarity (top-1, top-2, top-3). As illustrated in Figure 16a,b, the online
triplet generation strategy can notably reduce distances between images of the same tower,
thereby enhancing the rank-1 accuracy of the matching network. In this study, a subsequent
data collection was conducted six months later for a subset of transmission towers. As
Figure 16c illustrates, changes in the environment led to some mismatches between the
newly collected images of these towers and those in the database. However, the metric
learning matching algorithm employed in this research demonstrated its robustness; even
without retraining the model, the Euclidean distance between the newly collected image
of a specific tower and its predicted counterpart remained small. This finding strongly
supports the argument that regularly updating the database can maintain and enhance the
model’s predictive accuracy.
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4. Conclusions

We introduced a novel system tailored for transmission tower re-identification, delin-
eated by the ensuing attributes:

1. For transmission tower detection, we devised two derivative architectures grounded
on YOLOv5n: YOLOv5n-C2f head and YOLOv5n-conv head. Empirical evidence
underscores the superior efficacy of YOLOv5n-conv head, achieving a 1.7 ms reduction
in detection time compared to YOLOv5n on Server 1;

2. Within the matching network, three disparate backbone architectures—MobileNet
(d = 128), MobileViT (d = 128), and Inception-Resnet-v1 (d = 128)—witnessed en-
hancements in both convergence velocity and rank-1 matching precision upon the
assimilation of an online triplet sample generation strategy. Notably, leveraging
Inception-Resnet-v1 (d = 128) as the backbone culminated in a pinnacle rank-1 match-
ing precision of 89.32%;

3. Harnessing GPS to constrict the matching ambit augments both matching accuracy
and efficiency. Instituting a GPS preliminary filtering scope of [−0.05, +0.05] yields a
superior outcome. Employing Inception-Resnet-v1 (d = 128) as the backbone elevates
matching precision, yet trims the matching time by approximately 37 ms;

4. In the absence of GPS signals, this matching network can also achieve identity match-
ing for transmission towers with a success rate of 89.32%, but the matching time will
increase by 37 ms.

After a comprehensive assessment of our research findings and their implications, we
acknowledge the following limitations in the transmission tower re-identification algorithm
that we propose:

1. The datasets leveraged for object detection and matching in this study are constrained
in size. Amassing a dataset could fortify the model’s adaptive capacity;

2. The system’s matching accuracy falls below that of nameplate recognition and POS
localization. Furthermore, its inference time is longer compared to POS localization;

3. Without GPS data, the model experiences an increase in inference time. Additionally,
the inference speed of the model proportionally increases with the number of images
in the template database. For mobile applications, reducing the system’s inference
time during the inference phase is crucial.
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